Технология струйного заряда аккумулятора

Технология струйного заряда аккумулятора

Свинцово-кислотные аккумуляторы, используемые в источниках бесперебойного питания устройств хранения информации при эксплуатации подвержены быстрому износу и преждевременному выходу из строя. Причиной является кристаллизация пластин, межэлектродные замыкания дендроидными отложениями на поверхности пластин, сульфатация.

Ёмкость и срок службы аккумуляторных батарей зависит от режима работы зарядного устройства, метода зарядки.

Прежде чем рассматривать желаемый режим заряда аккумулятора, следует проследить процесс разряда аккумулятора и причины его преждевременного выхода из строя.

Как правило разряд аккумулятора в системах бесперебойного питания в процессе эксплуатации происходит очень редко и на время в несколько минут, достаточного для вывода системы хранения данных из режима работы, для устранения сбоя. В винчестерах компьютеров за это время считывающая головка возвратится в исходное состояние, в ином случае могут быть испорчены загрузочные сектора и рабочая информация. В последующем потерянную информацию возможно частично восстановить, а полное использование жёсткого диска будет невозможным.

Отсутствие разрядной характеристики в работе аккумулятора приводит к его преждевременному выходу из строя.

Аккумуляторы в бесперебойных системах диагностируются внутренней схемой на соответствие напряжения на аккумуляторе заданным параметрам, при наличии сетевого напряжения устройство бесперебойного питания автоматически переводит питание нагрузки от сети. При потере питания сети устройство должно перейти в режим преобразования энергии аккумулятора в напряжение близкое по параметрам сетевому питанию.

Внешняя диагностика аккумулятора бесперебойного питания после эксплуатации подтверждает наличие высокого внутреннего сопротивления — ввиду высокой кристаллизации, высокий саморазряд при внутреннем замыкании пластин, вызванный сульфатацией. Высокое напряжение на электродах диагностируется внутренней схемой как полный заряд и аккумулятор далее не заряжается. Повышение напряжения заряда приводит к увеличению выделения тепла. Снижение ёмкости аккумулятора вызвано нерабочей сульфатацией поверхности пластин, ток нагрузки не в состоянии выйти из внутренних слоёв пористой структуры пластин аккумулятора и напряжение на выходе при нагрузке недопустимо падает, приводя к сбою в работе источника бесперебойного питания.

Небольшой расход энергии на выводе систем хранения информации из рабочего состояния не требует установки мощных автомобильных аккумуляторов, а для восполнения использованной энергии аккумулятора, мощных зарядных устройств.

Для зарядки аккумулятора и поддержания его в рабочем состоянии следует применить зарядное устройство с использованием двух методов зарядки : быстрого заряда и струйного (компенсационного) заряда.

Метод медленного заряда применяемый при зарядке аккумуляторов сотовых телефонов в данной ситуации неприемлем, как и на сотовых телефонах он приводит к кристаллизации пластин и выходу аккумулятора в неожиданный момент.

Батарея аккумулятора при этом методе не заряжается до конца или перегревается, с тепловым разрушением пластин. Системы хранения данных эксплуатируются более суток и аккумуляторы в устройствах поддержания напряжения должны находится в режиме дежурного подзаряда также продолжительное время.

Одной из причин выхода из строя аккумулятора является заряд постоянным током при отсутствии небольшого разрядного тока и отсутствия цикличности в режиме заряда. При разрядном токе ионы свинца успевают восстановиться до аморфного состояния с осаждением на поверхность пластин. В перерывах импульсов зарядного тока снижается температура аккумулятора.

Заряд аккумуляторов закрытого типа с гелиевым наполнителем должен отвечать следующим параметрам : ограничение напряжения заряда с целью снятия перезаряда и нагрева, автоматическое ограничение зарядного тока в начальный период быстрого заряда – это защитит регулятор тока от перегрузки и перегрева, а элементы аккумулятора от недопустимой величины зарядного тока, реализация струйного подзаряда импульсным током коротким по времени и амплитудой не ниже рекомендуемого изготовителем тока заряда. Среднее значение зарядного тока не превышает 0,05 С, где С — ёмкость аккумулятора.

Использование цикличности тока для регенерации пластин позволит поддерживать аккумулятор в рабочем состоянии сколько угодно долго. За короткое время снижается в десятки раз внутреннее сопротивление аккумулятора, восстанавливается ёмкость и рабочее напряжение.

Режим быстрого заряда характеризуется следующими параметрами:
Время заряда 1-2 часа, это достаточно для восстановления ёмкости аккумулятора, после аварийного включения бесперебойного питания, ток заряда 0,2-0,3 С, степень заряда батареи 100%.Полного отключения заряда не происходит — он переходит при достижении напряжения конца заряда в буферный режим струйного подзаряда. Конечное напряжение аккумулятора указано в паспорте или на корпусе, к примеру для аккумулятора Champion 12 Вольт 7 А/ч, установленный в устройство бесперебойного питания типа «АРС», составляет 13,3 -13,8 В при 20 градусах температуры корпуса. Характеристика зарядного тока крутопадающая — с повышением напряжения на аккумуляторе ток заряда падает приближаясь к минимальному значению в 0,03 -0,05 С — режиму струйного подзаряда. При отсутствии отключений электросети аккумулятор в заряженном состоянии может находиться сколько угодно долгое время в режиме ожидания. При технологии струйной подзарядки компенсируется расход ёмкости аккумулятора на поддержание работы схемы в дежурном режиме и саморазряд. Стабилизация напряжения заряда отрицательной обратной связью с аккумулятора на генератор импульсов зарядного тока позволяет поддерживать режим заряда в автоматическом режиме.

Характеристики зарядного устройства:
Напряжение сети 220 Вольт.
Максимальный ток заряда 650 мА.
Напряжение заряда 13,8 Вольт.
Аккумулятор 12 Вольт 1- 7а/ч.
Ток быстрого заряда 350-450 мА.
Ток струйного подзаряда 30- 40 мА.
Разрядный ток 22 мА.
Время заряда 1-2 часа.
Время подзаряда непрерывно.
Время аварийного режима 10-30 минут.
Мощность нагрузки 50 ватт.

В схему источника бесперебойного питания входит импульсное зарядное устройство, в котором постоянный зарядный ток преобразуется с помощью генератора на таймере в последовательность импульсов, а паузы между импульсами положительной полярности заполнены постоянным разрядным током отрицательной полярности. Аккумулятор нагружен разрядным током и во время зарядки, который используется для индикации подключения аккумулятора в схему.

Преобразователь тока выполнен на ключах полевых транзисторах с управлением от генератора сетевой частоты. При отсутствии сетевого напряжения выработанное преобразователем напряжение сетевой частоты и уровня поступает через реле на нагрузку, при наличии сетевого напряжения оно через контакты включенного в сеть реле поступает на нагрузку без преобразований.

В устройстве имеется световая индикация включения, полярности подключения аккумулятора, индикатор высокого напряжения и зарядки. Звуковой датчик указывает на отсутствие сетевого напряжения и предупреждает о принятии мер по выводу системы хранения информации из рабочего режима за короткое время по программе.

Аналоговый таймер DA1 (Рис.1) вырабатывает импульсы стабильной частоты в режиме автогенератора. Процесс заряд — разряда времязадающего конденсатора С1 будет проходить циклически, время заряда зависит от значения резистора R2 — Т1 =0.69 С1R2, время разряда более продолжительно T2 = 0.69C1 (R3+R4).

Полный период импульса равен Т=Т1+Т2. Частота автогенератора зависит от значения элементов R2,R3,R4, C1 — F=1/T. Скважность зависит от рабочего периода импульса D=T1/T. При снижении времени разряда уменьшением значения резистора R2 скважность увеличивается.

Диод VD1 формирует короткий импульс зарядного тока.
Резистор R3 позволяет установить ток заряда в соответствии с паспортными данными аккумулятора.
Питание таймера выполнено от аналогового стабилизатора DA2, диод VD2 позволяет защитить таймер и стабилизатор от неправильной полярности аккумулятора.

Напряжение таймера выбрано исходя из напряжения питания микросхемы DD1 –генератора преобразователя напряжения батареи питания.
Конденсаторы С2,С3,С4,С5 снижают уровень помех по цепям питания.

После подачи питания на таймер DA1 и внешние цепи конденсатор С1 начнёт заряжаться по экспоненте до напряжения 2/3 Un за время Т1, после чего внутренний компаратор таймера по входу 6 DA1 переключит внутренний триггер в противоположное состояние, откроется внутренний разрядный транзистор по выводу 7 DA1, конденсатор С1 начнёт разряжаться до уровня 1/3 Un за время Т2.

Зарядка аккумулятора произойдёт по такому же сценарию.
Вывод 5 в микросхеме таймера DA1 позволяет получить прямой доступ к точке делителя с уровнем 2/3 напряжения питания, являющейся опорной для работы верхнего компаратора. Использование данного вывода позволяет менять этот уровень для получения модификаций схемы, в данном случае, для установки выходного напряжения заряда на аккумуляторе GB1. В качестве ключевого переключателя тока в схему введён полевой транзистор N – типа, импульсы с выхода 3 таймера через резистор R5 поступают на затвор транзистораVT1, транзистор открывается и ток заряда с выпрямителя питания VD3 через ограничительный резистор R10 и предохранитель FU1 поступает на аккумулятор GB1. Индикатор HL3 указывает короткими световыми импульсами о процессе заряда аккумулятора, отсутствие свечения предупреждает об обрыве в цепи заряда аккумулятора или неисправном транзисторе VT1.

Наличие питания таймера DA1 индицируется светодиодом HL1 жёлтого свечения.
Светодиод HL2 в параллельном соединении с аккумулятором выполняет три обязанности, индицирует зелёным свечением правильную полярность подключения аккумулятора GB1 и является цепью разряда аккумулятора с током до 20 мА. При красном свечении светодиод указывает на аварийное состояние или неправильной полярности подключения аккумулятора в схему.

Напряжение отрицательной обратной связи с положительной шины аккумулятора через ограничительный резистор R7 и установочный резистор R8 подаётся на управляющий электрод регулируемого параллельного стабилизатора напряжения DA3 — интегральный аналог стабилитрона, способного формировать регулируемое образцовое
напряжение на выводе 5 таймера DA1.При повышении напряжения на аккумуляторе управляемый стабилитрон открывается и изменяется напряжение стабилизации.
Снижение напряжения на катоде (вывод 3 DA3 ) приводит к снижению напряжения в точке 5 DA1 прямого доступа делителя с уровнем 2/3 Un, что приведёт к повышению частоты генератора на таймере DA1 и снижению напряжения и зарядного тока аккумулятора GB1.

Пропадание сетевого напряжения вызывает отключение реле К1 с переключением контактов К1.1 и К1.2. Первые разрешают работу генератора на микросхеме DD1 подавая на вход R (вывод 5 DD1) низкого уровня, после запуска генератора на выходах T1 и Т2 сформируются прямоугольные импульсы частотой 50 Герц. Импульсы сдвинуты по фазе на четверть периода. Для преобразования импульсов прямоугольной формы в близкие к форме синусоиды на выходе трансформатора Т2 установлен конденсатор С7. Газоразрядный индикатор HL3 указывает на наличие высокого напряжения.

Применение полевых транзисторов не требует установки мощных радиаторов.
Большая часть радиодеталей схемы установлены на печатной плате, остальные закреплены в корпусе, использованном от блока питания компьютера. Бюджетный вентилятор В1 используется по прямому назначению.

Технология струйного заряда аккумулятора

Свинцово-кислотные аккумуляторы, используемые в источниках бесперебойного питания устройств хранения информации при эксплуатации подвержены быстрому износу и преждевременному выходу из строя. Причиной является кристаллизация пластин, межэлектродные замыкания дендроидными отложениями на поверхности пластин, сульфатация.

Ёмкость и срок службы аккумуляторных батарей зависит от режима работы зарядного устройства, метода зарядки.

Прежде чем рассматривать желаемый режим заряда аккумулятора, следует проследить процесс разряда аккумулятора и причины его преждевременного выхода из строя.

Как правило разряд аккумулятора в системах бесперебойного питания в процессе эксплуатации происходит очень редко и на время в несколько минут, достаточного для вывода системы хранения данных из режима работы, для устранения сбоя. В винчестерах компьютеров за это время считывающая головка возвратится в исходное состояние, в ином случае могут быть испорчены загрузочные сектора и рабочая информация. В последующем потерянную информацию возможно частично восстановить, а полное использование жёсткого диска будет невозможным.

Отсутствие разрядной характеристики в работе аккумулятора приводит к его преждевременному выходу из строя.

Аккумуляторы в бесперебойных системах диагностируются внутренней схемой на соответствие напряжения на аккумуляторе заданным параметрам, при наличии сетевого напряжения устройство бесперебойного питания автоматически переводит питание нагрузки от сети. При потере питания сети устройство должно перейти в режим преобразования энергии аккумулятора в напряжение близкое по параметрам сетевому питанию.

Внешняя диагностика аккумулятора бесперебойного питания после эксплуатации подтверждает наличие высокого внутреннего сопротивления — ввиду высокой кристаллизации, высокий саморазряд при внутреннем замыкании пластин, вызванный сульфатацией. Высокое напряжение на электродах диагностируется внутренней схемой как полный заряд и аккумулятор далее не заряжается. Повышение напряжения заряда приводит к увеличению выделения тепла. Снижение ёмкости аккумулятора вызвано нерабочей сульфатацией поверхности пластин, ток нагрузки не в состоянии выйти из внутренних слоёв пористой структуры пластин аккумулятора и напряжение на выходе при нагрузке недопустимо падает, приводя к сбою в работе источника бесперебойного питания.

Читайте также  Lcd часы на attiny2313

Небольшой расход энергии на выводе систем хранения информации из рабочего состояния не требует установки мощных автомобильных аккумуляторов, а для восполнения использованной энергии аккумулятора, мощных зарядных устройств.

Для зарядки аккумулятора и поддержания его в рабочем состоянии следует применить зарядное устройство с использованием 2-х методов зарядки : быстрого заряда и струйного (компенсационного) заряда.

Метод медленного заряда применяемый при зарядке аккумуляторов сотовых телефонов в данной ситуации неприемлем, как и на сотовых телефонах он приводит к кристаллизации пластин и выходу аккумулятора в неожиданный момент.

Батарея аккумулятора при этом методе не заряжается до конца или перегревается, с тепловым разрушением пластин. Системы хранения данных эксплуатируются более суток и аккумуляторы в устройствах поддержания напряжения должны находится в режиме дежурного подзаряда также продолжительное время.

Одной из причин выхода из строя аккумулятора является заряд постоянным током при отсутствии небольшого разрядного тока и отсутствия цикличности в режиме заряда. При разрядном токе ионы свинца успевают восстановиться до аморфного состояния с осаждением на поверхность пластин. В перерывах импульсов зарядного тока снижается температура аккумулятора.

Заряд аккумуляторов закрытого типа с гелиевым наполнителем должен отвечать следующим параметрам : ограничение напряжения заряда с целью снятия перезаряда и нагрева, автоматическое ограничение зарядного тока в начальный период быстрого заряда – это защитит регулятор тока от перегрузки и перегрева, а элементы аккумулятора от недопустимой величины зарядного тока, реализация струйного подзаряда импульсным током коротким по времени и амплитудой не ниже рекомендуемого изготовителем тока заряда. Среднее значение зарядного тока не превышает 0,05 С, где С — ёмкость аккумулятора.

Использование цикличности тока для регенерации пластин позволит поддерживать аккумулятор в рабочем состоянии сколько угодно долго. За короткое время снижается в десятки раз внутреннее сопротивление аккумулятора, восстанавливается ёмкость и рабочее напряжение.

Режим быстрого заряда характеризуется следующими параметрами:
Время заряда 1-2 часа, это достаточно для восстановления ёмкости аккумулятора, после аварийного включения бесперебойного питания, ток заряда 0,2-0,3 С, степень заряда батареи 100%.Полного отключения заряда не происходит — он переходит при достижении напряжения конца заряда в буферный режим струйного подзаряда. Конечное напряжение аккумулятора указано в паспорте или на корпусе, к примеру для аккумулятора Champion 12 Вольт 7 А/ч, установленный в устройство бесперебойного питания типа «АРС», составляет 13,3 -13,8 В при 20 градусах температуры корпуса. Характеристика зарядного тока крутопадающая — с повышением напряжения на аккумуляторе ток заряда падает приближаясь к минимальному значению в 0,03 -0,05 С — режиму струйного подзаряда. При отсутствии отключений электросети аккумулятор в заряженном состоянии может находиться сколько угодно долгое время в режиме ожидания. При технологии струйной подзарядки компенсируется расход ёмкости аккумулятора на поддержание работы схемы в дежурном режиме и саморазряд. Стабилизация напряжения заряда отрицательной обратной связью с аккумулятора на генератор импульсов зарядного тока позволяет поддерживать режим заряда в автоматическом режиме.

Характеристики зарядного устройства:
Напряжение сети 220 Вольт.
Максимальный ток заряда 650 мА.
Напряжение заряда 13,8 Вольт.
Аккумулятор 12 Вольт 1- 7а/ч.
Ток быстрого заряда 350-450 мА.
Ток струйного подзаряда 30- 40 мА.
Разрядный ток 22 мА.
Время заряда 1-2 часа.
Время подзаряда непрерывно.
Время аварийного режима 10-30 минут.
Мощность нагрузки 50 ватт.

В схему источника бесперебойного питания входит импульсное зарядное устройство, в котором постоянный зарядный ток преобразуется с помощью генератора на таймере в последовательность импульсов, а паузы между импульсами положительной полярности заполнены постоянным разрядным током отрицательной полярности. Аккумулятор нагружен разрядным током и во время зарядки, который используется для индикации подключения аккумулятора в схему.

Преобразователь тока выполнен на ключах полевых транзисторах с управлением от генератора сетевой частоты. При отсутствии сетевого напряжения выработанное преобразователем напряжение сетевой частоты и уровня поступает через реле на нагрузку, при наличии сетевого напряжения оно через контакты включенного в сеть реле поступает на нагрузку без преобразований.

В устройстве имеется световая индикация включения, полярности подключения аккумулятора, индикатор высокого напряжения и зарядки. Звуковой датчик указывает на отсутствие сетевого напряжения и предупреждает о принятии мер по выводу системы хранения информации из рабочего режима за короткое время по программе.

Аналоговый таймер DA1 (Рис.1) вырабатывает импульсы стабильной частоты в режиме автогенератора. Процесс заряд — разряда времязадающего конденсатора С1 будет проходить циклически, время заряда зависит от значения резистора R2 — Т1 =0.69 С1R2, время разряда более продолжительно T2 = 0.69C1 (R3+R4).

Полный период импульса равен Т=Т1+Т2. Частота автогенератора зависит от значения элементов R2,R3,R4, C1 — F=1/T. Скважность зависит от рабочего периода импульса D=T1/T. При снижении времени разряда уменьшением значения резистора R2 скважность увеличивается.

Диод VD1 формирует короткий импульс зарядного тока.
Резистор R3 позволяет установить ток заряда в соответствии с паспортными данными аккумулятора.
Питание таймера выполнено от аналогового стабилизатора DA2, диод VD2 позволяет защитить таймер и стабилизатор от неправильной полярности аккумулятора.

Напряжение таймера выбрано исходя из напряжения питания микросхемы DD1 –генератора преобразователя напряжения батареи питания.
Конденсаторы С2,С3,С4,С5 снижают уровень помех по цепям питания.

После подачи питания на таймер DA1 и внешние цепи конденсатор С1 начнёт заряжаться по экспоненте до напряжения 2/3 Un за время Т1, после чего внутренний компаратор таймера по входу 6 DA1 переключит внутренний триггер в противоположное состояние, откроется внутренний разрядный транзистор по выводу 7 DA1, конденсатор С1 начнёт разряжаться до уровня 1/3 Un за время Т2.

Зарядка аккумулятора произойдёт по такому же сценарию.
Вывод 5 в микросхеме таймера DA1 позволяет получить прямой доступ к точке делителя с уровнем 2/3 напряжения питания, являющейся опорной для работы верхнего компаратора. Использование данного вывода позволяет менять этот уровень для получения модификаций схемы, в данном случае, для установки выходного напряжения заряда на аккумуляторе GB1. В качестве ключевого переключателя тока в схему введён полевой транзистор N – типа, импульсы с выхода 3 таймера через резистор R5 поступают на затвор транзистораVT1, транзистор открывается и ток заряда с выпрямителя питания VD3 через ограничительный резистор R10 и предохранитель FU1 поступает на аккумулятор GB1. Индикатор HL3 указывает короткими световыми импульсами о процессе заряда аккумулятора, отсутствие свечения предупреждает об обрыве в цепи заряда аккумулятора или неисправном транзисторе VT1.

Наличие питания таймера DA1 индицируется светодиодом HL1 жёлтого свечения.
Светодиод HL2 в параллельном соединении с аккумулятором выполняет три обязанности, индицирует зелёным свечением правильную полярность подключения аккумулятора GB1 и является цепью разряда аккумулятора с током до 20 мА. При красном свечении светодиод указывает на аварийное состояние или неправильной полярности подключения аккумулятора в схему.

Напряжение отрицательной обратной связи с положительной шины аккумулятора через ограничительный резистор R7 и установочный резистор R8 подаётся на управляющий электрод регулируемого параллельного стабилизатора напряжения DA3 — интегральный аналог стабилитрона, способного формировать регулируемое образцовое
напряжение на выводе 5 таймера DA1.При повышении напряжения на аккумуляторе управляемый стабилитрон открывается и изменяется напряжение стабилизации.
Снижение напряжения на катоде (вывод 3 DA3 ) приводит к снижению напряжения в точке 5 DA1 прямого доступа делителя с уровнем 2/3 Un, что приведёт к повышению частоты генератора на таймере DA1 и снижению напряжения и зарядного тока аккумулятора GB1.

Пропадание сетевого напряжения вызывает отключение реле К1 с переключением контактов К1.1 и К1.2. Первые разрешают работу генератора на микросхеме DD1 подавая на вход R (вывод 5 DD1) низкого уровня, после запуска генератора на выходах T1 и Т2 сформируются прямоугольные импульсы частотой 50 Герц. Импульсы сдвинуты по фазе на четверть периода. Для преобразования импульсов прямоугольной формы в близкие к форме синусоиды на выходе трансформатора Т2 установлен конденсатор С7. Газоразрядный индикатор HL3 указывает на наличие высокого напряжения.

Применение полевых транзисторов не требует установки мощных радиаторов.
Большая часть радиодеталей схемы установлены на печатной плате, остальные закреплены в корпусе, использованном от блока питания компьютера. Бюджетный вентилятор В1 используется по прямому назначению.

Технология струйного заряда аккумулятора

Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Архив статей и поиск
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(500000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
▪ Ваши истории
▪ Викторина онлайн
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Голосования
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

Перевод:
Наталья Кузнецова

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua


сделано в Украине

БЕСПЛАТНАЯ ТЕХНИЧЕСКАЯ БИБЛИОТЕКА

В нашей Бесплатной технической библиотеке Вы можете бесплатно и без регистрации скачать статью Технология струйного заряда аккумулятора системы хранения данных.

Воспользуйтесь поиском по Архиву, чтобы узнать, в каком журнале опубликована статья Технология струйного заряда аккумулятора системы хранения данных. В результатах поиска запишите название журнала, год и номер. Затем нажмите на ссылку «скачать в Бесплатной технической библиотеке» и бесплатно скачайте архив с нужным Вам номером.

Для быстрого бесплатного скачивания можно сразу перейти в нужный раздел Библиотеки.

Поиск по книгам, журналам и сборникам:

Рекомендуем скачать в нашей Бесплатной технической библиотеке:

Быстрая и безопасная зарядка аккумуляторов

Любой радиолюбитель умеет быстро зарядить аккумуляторную батарею, но может ли он сделать это без риска взрыва, чрезмерного перегрева или фатального повреждения, сокращающего срок службы батареи?

Читайте также  Охранно-пожарная сигнализация своими руками

Многие компании владеют технологиями быстрого заряда батарей, в основе которых, как правило, лежит использование специальных алгоритмов. Эти алгоритмы основаны на учете химического состава батареи и использовании некоторых нестандартных режимов заряда. Сегодня многие производители оборудования и операторы беспроводной связи дают на смартфоны не менее двух лет гарантии, устанавливая ресурс аккумулятора равным 800 циклам перезаряда.

Я видел достаточно много, если не все, опубликованные производителями результаты тестов ускоренной зарядки популярных типов аккумуляторов. Одним их таких производителей является Chargetek. Эта компания, совместно с Potential Difference, сумела за 25 минут безопасно вернуть в батарею 51% ее заряда. Их методика основывается на уже апробированных патентах, химических анализах и подтвержденных всесторонними испытаниями наиболее важных аспектах технологии быстрого заряда.

Технология компании применима к широкому диапазону батарей, от литий-ионных аккумуляторов типоразмера 18650 до батарей емкостью 20,000 А·ч. Эта технология подходит и для свинцовых аккумуляторных батарей, таких, например, как Absorbent Glass Mat, а также для необслуживаемых герметичных свинцово-кислотных аккумуляторов. Методику можно использовать и для быстрой зарядки литий-кобальтовых или литий-железо-фосфатных аккумуляторов.

Я общался с Лу Жозефом (Lou Josephs), генеральным директором Chargetek, и мы обсуждали необходимость адаптации их программного обеспечения под приложение каждого потребителя. Одним из важных достоинств их запатентованного и проверенного алгоритма является то, что они способны одним зарядным устройством заряжать два больших батарейных блока. Каждый блок может иметь независимое регулирование.

Одновременная зарядка

Жозеф объяснил, как это работает:
Зарядное устройство имеет два порта, по одному на каждых блок батарей. Блок 1 и блок 2 поочередно заряжаются и разряжаются. На Рисунке 1 кривая напряжения обозначена зеленым цветом, кривая тока заряда красным, а разряда – фиолетовым.

Нарастание напряжения происходит при заряде. Спад характеристики показывает уменьшение напряжения при разряде. Плоская область соответствует периоду покоя в цикле заряда. Благодаря запатентованному алгоритму амплитуда положительного тока заряда может в 3-4 раза превышать значения, используемые в обычных зарядных устройствах.

Рисунок 1. Батарея 1 и Батарея 2 поочередно заряжаются и разряжаются.
На рисунке кривая напряжения обозначена зеленым цветом,
кривая тока красным и кривая тока разряда –
фиолетовым цветом.

Принятый в качестве промышленного стандарта метод расчета тока заряда базируется на емкости батареи, измеряемой в ампер-часах (A·ч) и обозначаемой буквой С. Например, если емкость аккумуляторной батареи равна 500 А·ч, то зарядный ток должен лежать в пределах C/3 … C/5, что в результате дает диапазон токов заряда 100 … 170 А. Эти величины могут различаться в зависимости от характеристик конкретной батареи.

Для этого конкретного случая ток заряда был бы установлен равным 2С (1000 А), что при рабочем цикле 50% соответствует емкости С или 500 А. Ток разряда слегка уменьшает это значение. В результате время заряда составило бы примерно 1.1 час. Это в 2-3 раза быстрее того, что достижимо с обычным зарядным устройством. При использовании обычного зарядного устройства ток заряда будет ограничен максимальным значением C/3 или 170 А.

С учетом того, что одно зарядное устройство используется для двух батарей, экономия в стоимости может быть весьма существенной. В дополнение к этому, одновременно могут заряжаться, как минимум, два блока батарей. В целом, наше устройство может заряжать в четыре раза больше батарей, чем обычное зарядное устройство.

Ограничения для батарей во время цикла заряда

В процессе заряда батарей необходимо учитывать три ограничения:

  1. Максимальное напряжение батареи
  2. Максимальная температура батареи
  3. Максимально допустимый ток заряда

Превышение любого из этих параметров может привести к недозаряду, перезаряду, перегреву или физической деградации батареи. Задача заключается в том, чтобы обеспечивать прием максимально возможного заряда, пока идет нарастание тока заряда.

Обычные методы заряда большим током могут вызвать концентрационную и электрохимическую поляризацию.

Задача

Чтобы за 25 минут вернуть 51% заряда в батарею емкостью 3000 мА·ч (71% общей емкости), потребуется средний ток 3.7 А:

Средний ток = 51% × емкость в А·ч × (60 мин/25 мин) = 3.7 А.

Средний ток, рекомендуемый производителем, составляет 0.883 А.

Каким образом алгоритм компании Chargetek позволяет обеспечить необходимый ток, соблюдая требования безопасности и не снижая срока службы аккумулятора?

Их алгоритм обходит физические ограничения батареи:

  • Уменьшает электрохимическую поляризацию за счет регулярных периодов отдыха, позволяющих ионам равномерно распределиться между двумя электродами;
  • Концентрационная поляризация устраняется путем использования сравнительно коротких обратных импульсов, предшествующих импульсу заряда или следующих за ним;
  • Температура, напряжение и количество принимаемого заряда постоянно контролируются, и на основе этой обратной связи производится постоянная коррекция алгоритма зарядки.

Алгоритм

Снижая тепловыделение и электрохимическую поляризацию во время заряда, алгоритм Chargetek позволяет выполнять зарядку исключительно высокими токами (Рисунок 2).

Рисунок 2. Временная диаграмма критических параметров.

Технология ускоренной зарядки компании Chargetek базируется на трех основных принципах:

  1. Пульсирующий ток заряда:
    Амплитуда (IC) и продолжительность (tC) обозначены красным цветом. Типовым режимом является ток заряда, в 2-3 раза превышающий емкость батареи в ампер-часах.
  2. Пульсирующий ток разряда:
    Амплитуда (ID) и продолжительность (tD) изображены синим цветом. Величина этого тока равна току заряда или превышает его. Продолжительность рассчитывается относительно тока заряда.
  3. Время покоя:
    Ток батареи равен нулю (tR).

На протяжении всего процесса зарядки температура батареи и степень ее изменения, напряжение и ток постоянно контролируются и регулируются под управлением разработанного Chargetek программного пакета PDI. Параметры алгоритма подстраиваются в режиме реального времени во время зарядки.

Сфера применения

Запатентованная Chargetek технология ускоренного заряда батарей является ключом к росту рынков электромобилей и смартфонов, ноутбуков, электроинструмента и других устройств, которым необходимо автономное питание, позволяя без перегрева заряжать уже существующие батареи в течение нескольких минут.

Конкурентные преимущества:

  1. Зарядные станции для электромобилей требуют быстрого заряда аккумуляторов, соизмеримого с временем обычной заправки бензином. 20 минут, которые может предложить Chargetek – уже близко к этой цели, учитывая, что лучшие современные технологии обеспечивают зарядку за 40 минут.
  2. 95% промышленных автопогрузчиков вынуждены между сменами менять батареи, вес которых может достигать 1 тонны, поскольку, хотя альтернативные устройства быстрого заряда и позволяют перезарядить аккумулятор за 3.5 часа, их использование сопровождается перегревом, повреждением батареи и выделению опасных веществ. Chrgetek решает эти проблемы, позволяя экономить до 75% на ускоренной промышленной зарядке и удвоить доход зарядных станций автомобилей.
  3. Владельцы мобильных телефонов, ноутбуков и электроинструментов нередко вынуждены часами ожидать зарядки своего устройства. Технология Chargetek позволяет решить эту проблему, заряжая устройство за 20 минут от обычной сетевой розетки с напряжением 110 В.

Перевод: Алексей Ревенко по заказу РадиоЛоцман

Зарядка под контролем

Мало того, британский журнал Auto Express отдал победу в основной номинации «Продукт года» всей линейке зарядных устройств СТЕК, включая, естественно, и новый MULTI XS 4003. Особо были отмечены дизайн, инновационность и уникальный поэтапный режим заряда.

Kit 4003

Разработчики новинки сохранили все качества прежнего модельного ряда, но добавили удобную функцию контроля за происходящими процессами в каждый момент времени (а их на протяжении полного цикла зарядки может быть до восьми!)

Если раньше владельцу приходилось брать на веру утверждения изготовителя о сложном алгоритме зарядки и восстановления батареи, то теперь достаточно бросить беглый взгляд на индикаторы, чтобы убедиться: все идет штатно. А в случае каких-либо отклонений, можно увидеть, на каком именно этапе они возникли. Для этого 8 светодиодных индикаторов разместили под графиком заложенного в устройство процесса в соответствии с его этапами. По мере зарядки гаснет очередной индикатор и загорается следующий.

Напомним, что же это за этапы? Вот графическое изображение процесса заряда батарей:

Indication_4003

1 — Восстановление сульфатированных батарей. На этом этапе в течение долей секунды на аккумулятор подается импульсное напряжение для десульфатации пластин.

2 — «мягкое» начало зарядки. Ток ограничен до 3A. Когда напряжение поднимается выше 12,6 В, MULTI XS4003 переходит к следующему этапу. Но, если за 8 часов напряжение так и не перейдет этой «планки», процесс прервется и загорится индикатор «Ошибка».

3 — Основная зарядка. На данном этапе зарядка происходит при максимальном значении тока до 80% емкости.

4 — Окончательный этап зарядки до 100% емкости при постоянном напряжении. При прохождении этого этапа ток постепенно уменьшается до очень низкого значения. Этот этап также заканчивается, если общее время 3 и 4 этапов превысит 38 часов.

5 — Этап, на котором зарядное устройство проверяет способность батареи удерживать заряд. Если саморазряд батареи слишком большой, зарядка автоматически прекращается и загорается индикатор «Ошибка».

6 —На шестом этапе происходит восстановление сильно разряженных негерметичных батарей. При выборе кнопкой «MODE” режима RECOND в цикле зарядки активируется этап Восстановление, который добавляется между этапами диагностики и профилактики. На данном этапе происходит контролируемое „кипение” для перемешивания слоев электролита. После окончания этапа Восстановление зарядное устройство переключится в режим профилактической зарядки. Индикатор режима RECOND будет гореть, напоминая о том, что был выбран режим восстановления.

7 — Этап поддерживающей зарядки при подключенных к аккумуляторной батареи потребителях. На этом этапе батарея считается заряженной и готовой к эксплуатации. Об этом сигнализирует зеленый индикатор.

8 — Зарядное устройство автоматически переходит к этапу поддерживающей импульсной зарядки при полной (свыше 95% емкости) заряженности аккумулятора. MULTI XS4300 выдает периодические импульсы тока амплитудой в 5А. Проверка необходимости подачи очередного импульса проводится раз в 10 минут. На этом этапе происходит постоянный контроль состояния АКБ и, в случае необходимости, его подзарядка.

Этапы 7 и 8 очень удобны для поддержания АКБ в работоспособном состоянии в период сезонного хранения транспортных средств.

Как уже говорилось, для управления устройством предусмотрена всего одна кнопка, но с ее помощью можно выбрать и дополнительные функции. Например, для начала процесса нужно выбрать один из двух режимов зарядки Normal или «Снежинка». Режим «Снежинка» рекомендуется использовать для зарядки аккумуляторных батарей при температурах ниже +5оС. Так же данный режим рекомендуется для зарядки большинства батарей типа AGM. Для всех других батарей, включая батареи GEL, а так же для профилактической подзарядки лучше подойдет режим Normal.

Кроме собственно заряда, MULTI XS4003 реализует еще два дополнительных режима. Режим SUPPLY служит для питания бортовой сети автомобиля, когда зажигание включено, а двигатель выключен. Раньше мы такого не знали, но с появлением в автомобилях контроллеров, появились требования изготовителей к напряжению при их перепрошивке, которая занимает довольно длительное время. Обычно, допускается падение напряжения не ниже 13,4 — 13,5 В. Батарея такого обеспечить не может, напряжение на ней обязательно просядет и процесс перепрограммирования даст сбой! В режиме SUPPLY устройство поддерживает напряжение 13,6 В с допустимым током потребления до 4A. В этом режиме, кроме перепрошивки, можно также отключить батарею от бортовой сети без риска потери информации в энергозависимых ячейках памяти бортовых контроллеров.

В режиме RECOND происходит восстановление расслоения электролита в глубоко разряженных батареях. Проблема, связанная с расслоением электролита характерна для негерметичных батарей. В режиме RECOND на клеммы аккумулятора подается напряжение 15,8 В при токе до 1,5 А. Время необходимое для завершения данного режима составляет от 30 минут до 4 часов. Большинство зарядных устройств просто отказываются заряжать глубоко разряженные батареи и не дают даже малейшего шанса на их восстановление. Заметим, что разряженной считается батарея у которой напряжение опустилось ниже 10,5 В, а MULTI XS4003 способно восстановить батарею даже если на клеммах осталось всего 2 В.

Читайте также  Самодельный музыкальный синтезатор

Кроме восьми сигнальных индикаторов, соответствующих отдельным этапам процесса, на панели устройства есть и еще несколько, показывающих выбранный пользователем режим (диапазон емкости батареи, зимнюю подзарядку, наличие напряжения в сети, ошибку подключения батареи или возникший сбой). Кстати, а что произойдет, если вдруг обесточится розетка, в которую включено устройство, оставленное в гараже для профилактического поддержания заряда? Оказывается, ничего страшного! После включения напряжения зарядное устройство само возвратится в режим, на котором находилось до момента отключения питания.

Заметим, что по универсальности MULTI XS 4003 не имеет равных: он работает с любыми типами батарей, обслуживаемыми и необслуживаемыми, с жидким электролитом и связанным (батареи AGM и гелевые), емкостью от 1,2 до 140 А∙ч. Лишь бы не шестивольтовыми. А для удобства подключения фирма СТЕК выпускает ряд дополнительных аксессуаров серии Comfort Connect.

Например, один раз прикрутив наконечники Comfort Connect — eyelet к полюсным зажимам, вы сможете подключать зарядное устройство через специальный мини-разъем, исключив вероятность ошибки и необходимость в «крокодилах».

comfort_connect_eyelet

Если у вас Comfort Indicator — eyelet, можно дополнительно в любой момент увидеть степень зарядки батареи.

О быстрой зарядке аккумуляторов электромобилей

11 октября 2019

Прадип Чатержи, Маркус Хермвил (Infineon)

Чтобы электромобиль стал по-настоящему распространенным, необходимы доступные средства быстрой зарядки его аккумулятора. В ассортименте Infineon уже сейчас имеется все необходимое для этого.

В настоящее время правительства разных стран прилагают серьезные усилия, направленные на сокращение выбросов углерода. Использование электрического транспорта помогает решить эту проблему, что приводит к постоянному росту интереса к электромобилям (Battery Electric Vehicles, BEV). Рынок электромобилей расширяется и предлагает все более богатый выбор моделей по все более привлекательным ценам. Тем не менее, ограниченная дальность передвижения такого транспорта по-прежнему вызывает опасения у потребителей. Ситуация усугубляется существующими проблемами подзарядки. Подзарядка припаркованного автомобиля в течение рабочего дня кажется идеальным решением, но отсутствие инфраструктуры приводит к тому, что многие владельцы электрокаров вынуждены выполнять зарядку аккумуляторов дома. Кроме того, потребители хотят, чтобы в длительных поездках, например, в путешествиях во время отпуска, зарядка занимала столько же времени, сколько занимает заправка обычных автомобилей с двигателями внутреннего сгорания (ДВС).

Большинство электромобилей имеет возможность зарядки аккумуляторов в домашних условиях от бытовой однофазной сети переменного напряжения. Благодаря этому подзарядку удобно производить ночью. Существуют различные варианты подключения к сети: от простых кабелей, подключаемых к электрической розетке и кабелей со встроенными устройствами управления и защиты (IC-CPD) до сложных настенных зарядных устройств, снабженных комплексной защитой и обладающих расширенным функционалом, например, возможностью обмена данными с транспортным средством.

Непосредственная зарядка аккумуляторов производится от источника постоянного напряжения, причем преобразование из переменного напряжения в постоянное происходит в силовых блоках, встроенных в автомобиль. Этот подход подразумевает, что каждое транспортное средство должно иметь собственное зарядное устройство, которое разрабатывается с учетом требований по отводу тепла, КПД и весу, то есть по тем факторам, которые в конечном итоге ограничивают мощность зарядки и, следовательно, скорость ее выполнения. Очевидно, что следующим шагом в развитии отрасли станет разработка универсальных автономных зарядных устройств, размещаемых вне кузова автомобиля.

Зачем нужна быстрая зарядка аккумуляторов

Типовое зарядное устройство мощностью 22 кВт способно за 120 минут зарядить аккумулятор электромобиля до уровня, необходимого для выполнения пробега 200 км. Однако для сокращения времени зарядки до 16 минут (при той же дальности пробега 200 км) необходимо использовать зарядную станцию мощностью 150 кВт. При мощности 350 кВт время зарядки может быть уменьшено до 7 минут, что примерно соответствует времени, затрачиваемому для дозаправки обычного автомобиля с ДВС. Разумеется, все вышесказанное возможно только в том случае, если аккумулятор поддерживает такие скорости зарядки. К этому нужно прибавить, что пользователи ожидают, что процесс зарядки будет одинаковым вне зависимости от места заправки, точно так же, как стандартизован процесс заправки обычных автомобилей.

В Европе организация CharIN e.V. сосредоточила усилия на разработке и продвижении комбинированной системы зарядки (Combined Charging System, CCS). Стандарт, разработанный организацией, определяет тип зарядной вилки, последовательность зарядки и даже передачу данных. В других регионах, таких как Япония и Китай, есть аналогичные организации – CHAdeMO и GB/T соответственно. Собственная запатентованная система зарядки есть у компании Tesla.

Спецификация CharIN предусматривает возможность зарядки от источников как переменного, так и постоянного напряжения с помощью специализированных вилок и розеток. Спецификация также определяет максимальный постоянный выходной ток 500 А при напряжении 700 В DC, а также максимальное напряжение 920 В DC. КПД системы установлен на уровне 95%, хотя в будущем он будет увеличена до 98%. Следует отметить, что для зарядного устройства мощностью 150 кВт уровень потерь 1% соответствует 1,5 кВт. Таким образом, уменьшение потерь до минимально возможного значения является приоритетной задачей для быстрых зарядных устройств.

Архитектура быстрого зарядного устройства

Существуют два варианта реализации зарядных устройств. Первый подход подразумевает преобразование входного переменного трехфазного напряжения в регулируемое постоянное напряжение, которое, в свою очередь, преобразуется с помощью DC/DC-преобразователя. Точное значение выходного постоянного напряжения согласуется в ходе обмена данными с заряжаемым электромобилем. Альтернативный подход заключается в преобразовании входного переменного напряжения в постоянное напряжение фиксированного уровня, после чего второй DC/DC-преобразователь регулирует выходное напряжение в соответствии с потребностями аккумулятора транспортного средства (рисунок 1). Поскольку ни один из представленных подходов не имеет явных преимуществ или недостатков, то выбор оптимального решения становится достаточно сложной задачей. Столь мощные зарядные устройства не могут быть моноблочными, вместо этого требуемая выходная мощность набирается путем объединения нескольких зарядных модулей, каждый из которых имеет выходную мощность 15…60 кВт. Таким образом, основными задачами, решаемыми в процессе разработки, становятся упрощение системы охлаждения, обеспечение высокой удельной мощности и уменьшение общего размера системы.

Рис. 1. Варианты организации зарядных устройств большой мощности

Проектирование начинается с разработки AC/DC-преобразователя. Корректор коэффициента мощности обычно строится на базе однонаправленного трехфазного трехуровневого выпрямителя с ШИМ-управлением, выполненного по схеме Вина (Vienna rectifier). Возможность использования активных компонентов с рейтингом напряжения 600 В помогает достичь оптимального соотношения стоимости и эффективности. Благодаря наличию высоковольтных SiC-устройств обычный двухуровневый AC/DC-каскад с ШИМ-управлением также становится популярным в диапазоне мощностей 50 кВт или даже выше. При использовании любого из предложенных вариантов построения AC/DC-каскада можно обеспечить управление выходным напряжением, синусоидальный входной ток с коэффициентом мощности выше 0,95, THD ниже 5% и КПД 97% или выше. В тех случаях, когда зарядное устройство может быть изолировано от сети с помощью трансформатора среднего напряжения, часто используют диодные или тиристорные выпрямители. Их популярность объясняется простотой и надежностью, а также высокой эффективностью.

В настоящее время DC/DC-преобразователи, как правило, строятся на базе резонансных топологий, которые оказываются предпочтительными из-за их высокой эффективности и наличия гальванической развязки. Резонансные топологии обеспечивают высокую плотность мощности и компактные габариты, а переключения при нулевых напряжениях (ZVS) гарантируют уменьшение динамических потерь и способствуют повышению общей эффективности системы. Мостовая топология со сдвигом фазы на базе силовых SiC-устройств является альтернативным вариантом при необходимости получения изолированного решения. Для изолированных архитектур наиболее предпочтительными становятся многофазные DC/DC-преобразователи. Среди их преимуществ можно отметить распределение нагрузки между фазами, снижение уровня пульсаций и уменьшение габаритов фильтра. Однако расплатой за перечисленные достоинства становится усложнение схемной реализации и увеличение числа используемых компонентов.

В диапазоне мощностей 15…30 кВт зарядные модули могут быть реализованы с помощью дискретных компонентов (рисунок 2). Для создания бюджетных трехфазных выпрямителей с ШИМ-управлением идеально подходит комбинация из IGBT TRENCHSTOP™ 5 и диодов Шоттки CoolSiC™. Некоторое повышение КПД может быть достигнуто, если вместо IGBT использовать МОП-транзисторы CoolMOS™ P7 SJ. Что касается DC/DC-преобразователя, то для получения хорошего КПД подойдут МОП-транзисторы семейства CoolMOS CF D7. Если же требуется максимальная эффективность, то следует воспользоваться МОП-транзисторами из семейства CoolSiC.

Рис. 2. Построение зарядных устройств на базе дискретных компонентов

Если предполагается создание зарядного устройства с возможностью дальнейшей модификации или модернизации, а также при необходимости получения максимальной мощности, рекомендуется создавать зарядные блоки на базе силовых модулей. Обычно при работе с таким уровнем мощности предпочтительным становится жидкостное охлаждение, однако вариант с воздушным охлаждением также остается возможным. Трехфазный выпрямитель с ШИМ-управлением может быть построен с помощью модулей CoolSiC Easy 2B, работающих с частотой переключений до 40 кГц. Для построения DC/DC-преобразователей, как правило, используются трехфазные или многофазные понижающие регуляторы с рабочей частотой до нескольких сотен кГц. В данном случае для получения высокого КПД оптимальным выбором станет комбинация модулей CoolSiC Easy 1B и дискретных диодов CoolSiC.

Силовой модуль F3L15MR12WM1_B69 из семейства CoolSiC представляет собой трехфазный выпрямитель с ШИМ-управлением, выполненный в корпусном исполнении Easy 2B. Благодаря малому значению сопротивления открытого канала RDS(ON) 15 мОм модуль имеет высокую плотность мощности и компактные размеры, что упрощает построение зарядного устройства. Модуль поставляется в керамическом корпусе, заполненном гелем, и отличается малой паразитной емкостью, кроме того, потери на его переключения не зависят от температуры. Полумостовые топологии доступны как в корпусах Easy 2B, так и в корпусах Easy 1B меньшего размера. Для таких модулей сопротивление открытого канала RDS(ON) составляет всего 6 мОм (рисунок 3).

Рис. 3. Построение зарядных устройств на базе силовых модулей

Контроль, связь и безопасность

Управление силовыми каскадами обычно осуществляется с помощью микроконтроллеров. Микроконтроллеры семейства XMC4000 имеют в своем составе аналого-цифровые преобразователи (АЦП) с возможностью гибкой настройки, а также многофункциональные таймеры и периферийные модули, позволяющие организовать ШИМ-управление. Наличие CAN-контроллера гарантирует, что зарядные модули смогут общаться друг с другом и согласовывать свою работу при использовании различных типов аккумуляторов. Защита при оплате услуг, проверка подлинности обновлений программного обеспечения или аппаратных изменений может выполняться с помощью HSM-модуля (Hardware Security Module) семейства микроконтроллеров AURIX™. Это семейство часто используется в автомобильных приложениях, связанных с безопасностью.

Аутентификация отдельных модулей и защита от подделок может быть обеспечена с помощью специализированных чипов OPTIGA ™ Trust B. Для организации более надежной и целостной системы защиты следует использовать микроконтроллеры семейства OPTIGA TPM.

Заключение

Организация инфраструктуры быстрой зарядки аккумуляторов является важной частью стратегии по увеличению числа электромобилей. Без эффективных решений, обеспечивающих приемлемое время зарядки, электромобили неизбежно останутся привлекательными только для сторонников экологического транспорта и для потребителей, передвигающихся на незначительные расстояния. Подготовительные работы по определению параметров зарядных устройств и разъемов уже выполнены. Кроме того, имеются необходимые инновационные полупроводниковые решения. Эти решения включают как традиционные кремниевые силовые компоненты, так и карбид-кремниевые, которые обеспечивают высокую частоту переключений и большой КПД, при этом гарантируя высокую надежность зарядных устройств. Если учесть наличие современных микроконтроллеров и продуманных решений для проверки подлинности и безопасности, то становится очевидным, что модульные зарядные устройства способны выполнить существующие требования электротранспорта и обеспечить дальнейшее развитие отрасли.

Перевел Вячеслав Гавриков по заказу АО КОМПЭЛ