Технология снижения выбросов сероводородных соединений аккумуляторов

Технология снижения выбросов сероводородных соединений аккумуляторов

Заряд свинцовых аккумуляторов всегда сопряжён с выходом в атмосферу, в результате химических реакций, сероводородных соединений и атомарного кислорода и водорода.
Данные химические элементы вредны для здоровья и окружающей среды, при определённом соотношении такая смесь взрывоопасна. При пропускании через раствор электролита электрического тока на электродах аккумулятора оседают продукты разложения электролита. На отрицательном электроде — катоде – всегда выделяется водород и металлы. Процесс разложения электролита при пропускании через него электрического тока называется электролизом.

Внутри электролита происходит движение атомов или групп атомов, представляющих собой части молекулы растворённого вещества. Положительные ионы веществ движутся под действием электрического поля к катоду, отрицательных к аноду, оседая на их поверхности в виде нейтральных атомов.
Часть атомов элементов перестают участвовать в химической реакции из-за несовершенной технологии и выделяются в атмосферу в виде сероводородных соединений. Анализ работы зарядных устройств и технологий восстановления электродов аккумуляторов указывает на повышенное выделение газов при отсутствии в цикле восстановления периода разряда и периода « пауза».
Цикл восстановления (ЦВ) = Т заряда +Т пауза + Т разряда + Т пауза. Время заряда -Т заряда в заводских зарядных устройствах постоянного тока не имеет периода разряда и паузы, необходимых для рекомбинации ионов свинца.

Исследования показывают, что для полного использования в химическом процессе электролиза всех элементов требуется время разряда не менее 1/4 цикла восстановления при токе не более 1/10 тока заряда. Ионы элементов, которые по каким либо причинам (не хватило времени заряда, препятствия от примесей, большая плотность ионов элементов на пластинах электродов, снижение скорости ионов при падении энергии поля ), не успевшие своевременно достигнуть пластин электродов, при отрицательном импульсе тока восстановления, возвращаются на расстояние достаточное для последующего разгона при движении к электродам — при положительной полярности поля. Поскольку этим ионам не надо проходить полное расстояние между положительными и отрицательными электродами, то и мощность отрицательного периода восстановления незначительна по сравнению с положительным:

Для восстановления энергии ионов, перед последующим движением зарядного тока, они проходят рекомбинацию – перестроение во время паузы.
Заряд импульсными токами – постоянными по направлению, но переменными по величине хорошо снижает внутреннее сопротивление аккумулятора, продляется срок его эксплуатации, снижается нагрев электролита и пластин аккумулятора, выход смеси газов не превышает естественного испарения поверхности электролита — по сравнению с зарядом постоянным током.

Восстановление импульсами различной полярности, то есть переменным током ещё более улучшает экологическое состояние восстановительного цикла.
Технология восстановления мощных низковольтных аккумуляторов большой ёмкости типа 22СН-2200 подтвердила правильность выбранных режимов восстановления по технологии «4Т» – четыре периода восстановления.
Восстановление кислотных аккумуляторов классически проводят по нескольким технологиям таблица 1:

Технология восстановления

Заряд постоянным током

Заряд при постоянном напряжении

Модифицированный заряд

Ускоренный заряд

Заряд по предлагаемой технологии — 4Т

0,2 С10
396 Ампер -1 ступень.
99 Ампер -2я.

0,005С10 в конце заряда

Током 0,25 С10 1-я ступень.

2С10 — до кипения электролита..0,25С10-далее

0,2 С10 –25Ампер средний.
100Ампер в импульсе.
Т-имп.1-3мск.

2.3 Вольта
2,6 Вольта в конце заряда

Напряжением 2,15-2,35 Вольта 2-я ступень.

2,4 Вольта-
Конечное.

Сутки в две ступени

Менее 200 мл /час

1,21-1,24 в конце заряда

1,21-1,24 в конце заряда

1,21-1,24в конце заряда

Расход электроэнер-гии
на один элемент

191267,6 квт /час.

С10 — номинальная ёмкость аккумулятора при 10-ти часовом режиме разряда до напряжения 1,8 Вольта на элемент.
Выделение газа одним элементом при напряжении заряда 2,15 вольта — 172мл/час, 2,3 вольта -1720мл/час, 2,4 вольта — 4590 мл/час, при применении технологии заряда постоянным током с режимом от 99 до 396 Ампер с временем восстановления до пятнадцати суток. Ускоренное восстановление с применением больших токов заряда сопровождается высоким выделением сероводородных соединений.
Без мощной вытяжной вентиляции заряжать такие аккумуляторы невозможно из-за опасности отравления и возможного взрыва смеси водорода и кислорода. При заряде цепи элементов аккумулятора в 240 вольт выброс газовой смеси составляет более 10 куб. метров в сутки.

Да и атмосфере такой газ принесёт только урон с уничтожением растительного мира сероводородными соединениями.
Снижение выбросов сероводородных соединений возможно только с использованием циклических зарядно-разрядных устройств имеющих возможность рекомбинации ионов атомов свинца с переходом в аморфный свинец.
Короткие по времени и мощные по амплитуде импульсы заряда позволяют расплавить кристаллы сульфата свинца и перевести их в аморфное состояние. В таблице имеется существенная разница предлагаемой в статье технологии по сравнении с предложенными в литературе ранее.

Выброс сероводородных соединений ниже в 8 раз, чем при заряде постоянным током при напряжении заряда 2,3 вольта на элемент, а время восстановления в семь раз меньше. В цифрах это 25800 мл газовой смеси сероводорода при заряде постоянным током и около 400 мл при заряде по предлагаемой технологии.
Диагностика восстановленных по предлагаемой технологии аккумуляторов методом десятичасового разряда показала паспортную плотность в конце разряда, что подтверждает полный заряд за указанное время.

По данной технологии проводилось восстановление кислотных аккумуляторов открытого типа, применяемых для питания релейной автоматики подстанций железной дороги, общим напряжением 110 вольт и показала высокие результаты со снижением внутреннего сопротивления аккумуляторов, конечного напряжения, температуры и существенного снижения выбросов сероводорода в атмосферу от аккумуляторов, но и дополнительного расхода электроэнергии.
Расход электроэнергии за счёт уменьшения времени заряда и снижении мощности вытяжных установок снизился в 12 раз.

Характеристики устройства восстановления аккумуляторов:
Напряжение сети 180-230 вольт.
Мощность трансформатора 330 ватт.
Напряжение аккумуляторов 2- 12 вольт
Ток заряда средний 2 – 10 Ампер
Ток заряда импульсный 50 Ампер
Ток разряда средний 0,2- 1,2 Ампера.
Время восстановления 42 часа.

Схема зарядно-восстановительного устройства предлагает восстановление одного элемента кислотного аккумулятора и может быть переработана на любое напряжение батареи кислотных аккумуляторов от 2 до 30 вольт постоянного тока с током восстановления от 1 до 50 ампер. На фотографии снято устройство с напряжением восстановления от 2 до 30 вольт при токе до 50 ампер.
В основе схемы определён генератор импульсов прямоугольной формы, позволяющий иметь на каждом выходе генератора интервал в 1/4 от полного времени цикла.
Импульсы тока заряда имея высокую амплитуду и короткое время действия не приводят к чрезмерному нагреву электролита и пластин аккумулятора, время пауз позволяет рассеять тепло, к тому же при таком режиме более полно используются элементы химической реакции, это заметно по значительному снижению выделения сероводорода и отсутствии электролиза.

Генератор прямоугольных импульсов выполнен на элементах DD1.1- DD1.3 цифровой микросхемы серии К561. Частота генерации F зависит от номиналов элементов частотозадающей RC — цепи F=0,44/(R1+R2)C1, частота генератора практически не изменяется от напряжения источника питания. Резистором R1 устанавливается время импульса и скорость переключения выходов счётчика DD2.
Сформированный генератором на микросхеме DD1 прямоугольный импульс с вывода 10 инвертора DD1.1 поступает на вход CN (14) двоично — десятичного счётчика на микросхеме DD2. Счётчик имеет десять выходов, которые позволяют при определённом включении использовать для формирования временных интервалов цикла восстановления: заряд – пауза – разряд -пауза. В данном устройстве для восстановления элемента аккумуляторной батареи используются равные временные интервалы.
При низком уровне на входе разрешения CP (13)DD2 счётчик выполняет свои операции синхронно с положительным перепадом на тактовом входе CN(14).
При высоком уровне на входе сброса R(15) счётчик очищается до нулевого отсчёта. Это происходит, когда на выходе 9DD2 присутствует высокий уровень. Индикатор на светодиоде HL 1 указывает на состояние счёта импульсов.

Питание микросхем DD1 и DD2 выполнено от аналогового стабилизатора напряжения на микросхеме DA1.
Для организации интервалов восстановления элемента аккумулятора, выходы 0-1 DD2 используются для заряда аккумулятора, со временем ¼ всего периода цикла. Сумматор на диодах VD1-VD2 при положительных уровнях счёта на выводе 3DD2 или 2 DD2 передаёт импульс прямоугольной формы через резистор R4 на резистор R6 — регулятора тока заряда и далее на затвор полевого транзистора N –типа VT1.Транзистор открывается в ключевом режиме и подаёт в аккумулятор GB1 с цепи питания импульс тока, короткий по времени, но высокий по амплитуде.

После периода заряда происходит период паузы с прохождением выходов 2 DD2 и 3DD2. При появлении высокого уровня на выходе 4DD2 или 5 DD2 на выводе 11 инвертора DD1.4 высокий уровень переключится на низкий и полевой транзистор VT2 ( прямой проводимости ), откроется и разрядит элемент GB1 на нагрузку R8, током зависящим от напряжения на затворе транзистора и номинала резистора.
Светодиод индикатора HL2 указывает на наличие тока разряда.
Выходы 6DD2, 7DD2 отрабатывают интервал второй паузы и при появлении высокого уровня на выходе 8DD2 счётчик по входу R очищается до исходного состояния, светодиод HL1 гаснет и счет повторится с высокого уровня на выходе 0 DD2.

Контроль работы:
Для контроля состояния напряжения и зарядного тока элемента GB1 аккумулятора в схеме установлены: амперметр PA1 с шунтом и вольтметр PV1. Амперметр регистрирует алгебраическую сумму тока заряда и разряда.
Среднее значение тока разряда можно примерно определить по отклонению амперметра в отрицательные величины (левее нуля шкалы) при снижении тока заряда до нуля резистором R6.

В отсутствии напряжения электросети разряд отключится. Светодиодный индикатор HL3 свечением указывает на правильную полярность подключения элементов аккумулятора GB1 в зарядно-разрядную цепь.
Резистор R10 в цепи питания устройства восстановления кислотных аккумуляторов ограничивает бросок тока при случайном коротком замыкании в цепи аккумулятора или неверной полярности подключения.

Источник питания выполнен на мощном трансформаторе T1 и диодном мосте VD3. При ёмкости аккумуляторов до 200 А/часов, достаточно использовать трансформатор на мощность в 100-300 ватт. Полевые транзисторы и диодный мост закреплены на отдельных радиаторах, используемых в блоках питания компьютеров.

Наладка:
Для проверки работоспособности схемы на место элемента GB1 достаточно подключить аккумулятор на напряжение 2,4- 12 Вольт ёмкостью 100 а/час. Предварительно регулятор тока заряда R6 вывести в нижнее положение, по амперметру установить ток разряда регулятором R5 — в 0,01 С10.
Резистором R6 поднять ток заряда с нуля до 0,2 С10.
Резистором R1 можно опытным путём выставить скорость восстановления пластин элементов аккумулятора с минимальным выходом сероводородной смеси, при минимальной температуре электролита и отсутствии электролиза.
Возможные аналоги радиодеталей схемы указаны в таблице.

Как предотвратить взрыв водорода в тяговом аккумуляторе

У взрыва аккумуляторов обидные причины — спешка, неаккуратность водителей, ошибки в обслуживании. При этом у свинцово-кислотных батарей есть одна особенность, которая повышает риск взрыва — это выделение водорода при зарядке. О тонкостях работы с такими аккумуляторами рассказывает Александр Логинов, генеральный директор компании «Энергоэлемент», которая продает и обслуживает все типы тяговых аккумуляторов.

Читайте также  Терморегулятор на pic

Водород настолько взрывоопасен, что при концентрации в воздухе более 4% способен сдетонировать без внешнего воздействия, сам по себе. Столько водорода накопится за 2 часа, если мы возьмем пять самых ходовых батарей 48 В 500 А·ч и поставим заряжаться без вентиляции в типовой зарядной комнате. Но на деле такой концентрации не потребуется: достаточно тонкой струйки газа и искры — и аккумулятор рванет.

Почему образуется водород

Выделение водорода в свинцово-кислотных аккумуляторах — естественный процесс. Однако при ошибках в обслуживании этот газ образуется сверх меры. Чтобы разобраться, что это за ошибки, рассмотрим сначала, откуда вообще берется водород в батарее.

Зарядка аккумулятора проходит в три фазы. Первая — основной заряд, вторая — дозаряд и третья — перемешивающий или уравнительный заряд.

В первой фазе батарея принимает ток высокой мощности, а напряжение постепенно растет. Вся энергия поступает в пластины электродов и идет на восстановление свинца.

Вторая фаза начинается, когда напряжение достигло нужного уровня. Далее оно остается постоянным, а ток падает, пока батарея не зарядится до 100%. Сколько бы тока мы ни вливали после этого, пластины уже не смогут его принять.

Излишек тока будет уходить в воду и запустит ее электролиз — вода начнет разлагаться на молекулы кислорода и водорода. Аккумулятор «закипит» и будет выделять огромное количество энергии. Это и есть третья фаза.

Считается, что такого кипения нужно избегать. На деле не совсем так. Непродолжительное кипение аккумулятора необходимо: пузырьки газа поднимаются вверх и перемешивают разные по плотности слои электролита, чтобы выровнять. А вот затягивать кипение нежелательно.

Что усиливает выделение водорода

Зарядка трансформаторными устройствами с профилем WoWa. У зарядных устройств есть коэффициент перезаряда — он показывает, какой излишек энергии идет на третью фазу. Современные высокочастотные устройства подают разный ток в зависимости от фазы, а их коэффициент перезаряда равен 1,03—1,07. В отличие от них трансформаторные зарядные устройства WoWa подают ток постоянной мощности. Коэффициент перезаряда таких устройств составляет 1,2, то есть третья фаза начинается раньше, а водорода выделяется больше.

Зарядка горячей батареи также приводит к раннему началу третьей фазы. Чем выше температура, тем ниже напряжение, при котором начинается электролиз воды. Фактически из-за этого в не успевшей остыть батарее третья фаза начнется одновременно с первой. Батарея критически нагревается — до 90 градусов, это ведет к коррозии электродов и перерасходу воды. Если после заряда открыть крышку для долива воды, капли горячего электролита полетят наружу.

Зарядка аккумулятора без одного из элементов. Зарядное устройство подает ток высокой мощности, пока не получит нужное напряжение. Так как прибор заряжает не отдельные аккумуляторные элементы, а батарею в целом, нужное напряжение равно сумме напряжения всех элементов. Это число записано в профиле зарядного устройства, и прибор не может сделать перерасчет, если какого-то элемента нет. В итоге оставшиеся элементы получают перенапряжение, а избыток энергии идет в электролиз воды.

Работа на старых аккумуляторах более одного разряда в день. На новом аккумуляторе литр воды испаряется за пять-семь циклов работы, а на старых — за один-два. Чем ниже уровень электролита, тем больше внутри элемента пространства для скапливания водорода. Это особенно опасно для техники с высокими аккумуляторами, например, узкопроходных высотных штабелеров.

Как происходит взрыв

В крышках для долива воды в аккумулятор есть отверстия диаметром 2 мм — через них водород выходит их элемента. Это удобнее, чем каждый раз открывать крышку с риском выплеснуть кислоту на корпус.

После зарядки водород еще какое-то время выходит наружу и скапливается в пазухах крышек. Если не дождаться полного выветривания, газ может взорваться. К взрыву приводят искры, сильный нагрев, открытое пламя, а также короткое замыкание — из-за коррозии перемычек, оголенных проводов, трещин в пластиковой обшивке.

Чаще всего изоляция разрушается, когда водители торопятся приступить к погрузке и забывают об аккуратном обращении. Например, тянут силовой кабель не за коннектор, а за провод, из-за чего место соединения оголяется. В спешке забывают поправить провода и придавливают их батареей или сидушкой — пара таких ударов и изоляция лопается.

Мы занимаемся обслуживанием аккумуляторов и не раз сталкивались с последствиями взрыва водорода. Вот некоторые случаи из нашей практики.

Пример 1. У узкопроходных высотных штабелеров и погрузчиков с грузоподъемностью от двух тонн через аккумулятор идет ток мощностью 1000 А·ч. Опасность в том, что он может раскалить всю проводку батареи. К тому же у такой техники высокие аккумуляторы и места для скопления водорода много.

В этом примере у штабелера из-за коррозии перегревалась одна из перемычек батареи. Водитель не выждал паузу и начал работу, когда концентрация водорода под крышкой была максимальной. Перемычка перегрелась и водород сдетонировал. Взорвался один элемент. На поставку нового из Европы ушло четыре недели — все это время батарея простаивала.

Пример 2. К замыканию привело использование неизолированной траверсы для подъема аккумулятора. Когда изоляция изнашивается со временем, возрастает риск попасть деталями траверсы на оголенные элементы «+» и «−» батареи, например, в этом случае — на поврежденные болты.

Пример 3. Когда водители ставят аккумулятор в технику, то в спешке забывают о мерах безопасности. Складская техника массивная, а места для батареи впритык — можно пережать провода.

При установке аккумулятора в электропогрузчик водитель не рассчитал высоту подъема и угол наклона тележки. Провода прижало к корпусу и взорвалось 12 элементов. Куски пластика с кислотой разлетелись вокруг и только случайно не попали в водителя.

Пример 4. Водитель ричтрака не поправил силовой кабель, когда задвигал аккумулятор. Провода попали между ним и бортом ричтрака, и их срезало. Произошло короткое замыкание и 6 элементов взорвались. Ситуацию усугубило то, что батарею почти не обслуживали, уровень электролита был низкий, а места для водорода много.

Пример 5. Во время заряда аккумулятор находился в тягаче и был закрыт сидушкой с герметичной крышкой — инженер забыл ее поднять. Водород накапливался под крышкой, да еще сверх меры, потому что батарею заряжали без одного элемент. Взрыв произошел прямо под водителем, когда он включил зажигание. Парень получил контузию, из ушей пошла кровь. К работе он смог вернуться только через две недели. А аккумулятор стоимостью 11 тысяч евро вышел из строя.

Иногда к взрыву приводит халатность механиков, например, когда начинают чистить клеммы, не отключив батарею от зарядного устройства. Такая забывчивость — все равно что уехать с заправки, не вынув пистолет из бака.

При работе со свинцово-кислотными батареями важно соблюдать требования ГОСТа по утилизации водорода из зарядной комнаты. Как правило, к недостаточной вентиляции приводит плохая вытяжка или одновременная зарядка слишком многих аккумуляторов. Однако вместо того, чтобы устранить нарушения, компании порой предпочитают откупиться от пожарного надзора.

Мы рекомендуем установить в зарядной комнате датчик водорода, следить за состоянием изоляции всех элементов батареи и делать паузу в 15 минут после заряда. Надеемся, наш опыт поможет компаниям предотвратить чрезвычайные ситуации.

Форум для экологов

Форум для экологов

  • Темы без ответов
  • Активные темы
  • Поиск
  • Персональные данные

Зарядка автомобильных аккумуляторов

Зарядка автомобильных аккумуляторов

Сообщение kirya » 16 мар 2009, 23:48

Re: зарядка автомобильных аккумуляторов

Сообщение V.Kurochkin » 16 мар 2009, 23:48

примерно вот так.
Аккумуляторные работы

Расчет выполнен по «Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)»

Валовый выброс серной кислоты подсчитывается по формуле:

M = 0.9*g*(Q1a1 + Q2a2 + …..Qnan)*10 -9 , т/год (3.7.1)

где g — удельное выделение серной кислоты = 1 мг/Ач
Q — номинальная емкость каждого типа аккумуляторных батарей, имеющихся на предприятии, А/ч
a — количество проведенных зарядок батарей соответствующей емкости за год
(по данным учета в предприятии).
Расчет максимально разового выброса серной кислоты производится исходя из условий, что мощность зарядных устройств используется с максимальной нагрузкой. При этом сначала определяется валовый выброс за день.

Mсут = 0,9*g*(Q * n)*10-9 т/день (3.7.2)

Максимально — разовый выброс серной кислоты определяется по формуле:

Gраз = Mсут*106/ 3600*m , г/сек (3.7.3)

где m — Цикл проведения зарядки в день. Принимаем m = 10час.

Мсут = 0,9*1*(190*4)*10-9 = 0,000000684т/день

Gраз = 0,000000684*106 /3600*10 = 0,000019 г/сек

Re: зарядка автомобильных аккумуляторов

Сообщение elena-lyupa » 16 мар 2009, 23:48

Re: зарядка автомобильных аккумуляторов

Сообщение elena-lyupa » 16 мар 2009, 23:48

Re: зарядка автомобильных аккумуляторов

Сообщение alex27 » 16 мар 2009, 23:48

Re: зарядка автомобильных аккумуляторов

Сообщение elena-lyupa » 16 мар 2009, 23:48

Re: зарядка автомобильных аккумуляторов

Re: Зарядка автомобильных аккумуляторов

Сообщение Лёха » 15 сен 2011, 09:21

Re: Зарядка автомобильных аккумуляторов

Сообщение Wespe » 15 сен 2011, 09:56

Re: Зарядка автомобильных аккумуляторов

Сообщение Lesya102 » 22 апр 2014, 05:37

  • Программы для экологов
  • ↳ Online сервисы для экологов
  • ↳ Программные продукты серии «Эколог» — программы для экологов
  • ↳ УПРЗА «Эколог» — программа для расчета рассеивания
  • ↳ «ПДВ-Эколог» — программа для разработки проекта ПДВ
  • ↳ «Эколог-Шум» 2 — программа для расчета шума
  • ↳ «СЗЗ-Эколог» — программа для разработки и корректировки СЗЗ
  • ↳ Отходы — программы по безопасному обращению с отходами
  • ↳ «АТП-Эколог» — программа для расчета выбросов от АТП
  • ↳ Воздух — программы для расчета выбросов загрязняющих веществ
  • ↳ Серия «ЭкоМастер»
  • ↳ Электронные ключи
  • Нормативно-методические вопросы
  • ↳ Законодательство — экологическое законодательство
  • ↳ Законодательство по воздуху
  • ↳ Законодательство по воде
  • ↳ Законодательство по земле
  • ↳ Законодательство по отходам
  • ↳ Законодательство по плате
  • ↳ Законодательство по СЗЗ
  • ↳ Законодательство по проектной документации
  • ↳ Охрана атмосферного воздуха
  • ↳ Литература
  • ↳ Коды и ПДК веществ
  • ↳ Теплоэнергетика
  • ↳ Транспорт
  • ↳ Лакокраска
  • ↳ Сварка
  • ↳ Деревообработка
  • ↳ Металообработка
  • ↳ Сельское хозяйство + Пищевая промышленность
  • ↳ Строительство
  • ↳ Резервуары и АЗС
  • ↳ Объекты добычи, переработки, транспортировки нефти и газа
  • ↳ Дизель
  • ↳ Отчетность
  • ↳ Парниковые газы
  • ↳ Безопасное обращение с отходами
  • ↳ Литература
  • ↳ Расчет количества отходов
  • ↳ Лицензирование
  • ↳ ПНООЛР
  • ↳ Паспортизация
  • ↳ Компонентный состав, расчет класса опасности, ФККО
  • ↳ Перечень образующихся отходов
  • ↳ Отчетность
  • ↳ Утилизация отходов
  • ↳ Обращение с твердыми коммунальными отходами (ТКО)
  • ↳ Охрана водной среды
  • ↳ Литература
  • ↳ Законодательство
  • ↳ Отчетность
  • ↳ Акустика
  • ↳ Литература
  • ↳ Шумовые характеристики
  • ↳ Экологическая отчетность, производственный экологический контроль и экологический аудит
  • ↳ Экологические платежи
  • ↳ Отчетность в области охраны атмосферного воздуха
  • ↳ Отчетность в области обращения с отходами
  • ↳ Отчетность в области охраны водной среды
  • ↳ Производственный экологический контроль
  • ↳ Экологический аудит
  • ↳ СЗЗ — санитарно защитная зона
  • ↳ Законодательство
  • ↳ «СЗЗ-Эколог» — программа для разработки и корректировки СЗЗ
  • ↳ Разделы проектной документации
  • ↳ Вопросы связанные с ОВОС
  • ↳ Вопросы связанные с ПМООС (ООС)
  • ↳ Общие вопросы: ОВОС, ПМООС(ООС)
  • ↳ ПОС
  • ↳ ИТМ ГОЧС
  • ↳ Пожаробезопасность
  • ↳ Прочие вопросы проектно-сметной документации
  • ↳ Инженерные изыскания
  • ↳ Экологические платежи
  • ↳ Платежи за выбросы ЗВ в атмосферный воздух
  • ↳ Платежи за сброс ЗВ
  • ↳ Платежи за размещение отходов
  • ↳ Ущерб
  • ↳ Электромагнитное излучение
  • ↳ Вибрация
  • ↳ Охрана земельных ресурсов
  • ↳ Законодательство
  • ↳ Растительный и животный мир
  • ↳ Водные биоресурсы
  • ↳ Литература для экологов
  • ↳ Литература по воздуху
  • ↳ Литература по отходам
  • ↳ Литература по акустике
  • ↳ Литература по воде
  • ↳ Общее
  • Курсы и семинары для экологов
  • ↳ Учебный центр ИПК «Интеграл» — курсы для экологов
  • Прочее
  • ↳ Общение
  • ↳ Конкурсы
  • ↳ Люблю готовить
  • ↳ Юмор
  • ↳ Наш сайт, форум
  • ↳ Новости Фирмы «Интеграл»
  • ↳ Новости в сфере экологии
  • ↳ Работа, вакансии, резюме
  • ↳ Ищу работу
  • ↳ Предлагаю работу
  • Экологам предприятий
  • ↳ Экологические платежи
  • ↳ Отчетность
  • ↳ Отчетность в области охраны атмосферного воздуха
  • ↳ Отчетность в области обращения с отходами
  • ↳ Отчетность в области охраны водной среды
  • ↳ Производственный экологический контроль
  • ↳ Экологический аудит
  • ↳ Экологическое законодательство
  • ↳ Лицензирование
  • Правила
  • ↳ Правила
  • Корзина
  • ↳ Корзина
  • АРХИВ
  • ↳ «Эколог-Шум»
  • ↳ УПРЗА «Эколог» 3
Читайте также  Таймер 0...9999 секунд для засветки фоторезиста на attiny13

Ответственность

Форум «Форум для экологов» является общедоступным для всех зарегистрированных пользователей и осуществляет свою деятельность с соблюдением действующего законодательства РФ.
Администрация форума не осуществляет контроль и не может отвечать за размещаемую пользователями на форуме «Форум для экологов» информацию.
Вместе с тем, Администрация форума резко отрицательно относится к нарушению авторских прав на территории «Форум для экологов».
Поэтому, если Вы являетесь обладателем исключительных имущественных прав, включая:

— исключительное право на воспроизведение;
— исключительное право на распространение;
— исключительное право на публичный показ;
— исключительное право на доведение до всеобщего сведения

и Ваши права тем или иным образом нарушаются с использованием данного форума, мы просим незамедлительно сообщать нам по электронной почте.
Ваше сообщение в обязательном порядке будет рассмотрено. Вам поступит сообщение о результатах проведенных действий, относительно предполагаемого нарушения исключительных прав.
При получении Вашего сообщения с корректно и максимально полно заполненными данными жалоба будет рассмотрена в срок, не превышающий 5 (пяти) рабочих дней.

Наш email: eco@integral.ru

ВНИМАНИЕ! Мы не осуществляем контроль за действиями пользователей, которые могут повторно размещать ссылки на информацию, являющуюся объектом Вашего исключительного права.
Любая информация на форуме размещается пользователем самостоятельно, без какого-либо контроля с чьей-либо стороны, что соответствует общепринятой мировой практике размещения информации в сети интернет.
Однако мы в любом случае рассмотрим все Ваши корректно сформулированные запросы относительно ссылок на информацию, нарушающую Ваши права.
Запросы на удаление НЕПОСРЕДСТВЕННО информации со сторонних ресурсов, нарушающей права, будут возвращены отправителю.

Фильтры очистки сероводорода: методы и установки для удаления, улавливания или нейтрализации H2S

Завод-производитель газоочистного оборудования ООО «ПЗГО» тепло приветствует своих Клиентов и Посетителей и предлагает к рассмотрению такие технологические установки как фильтры очистки от сероводорода, а также методы утилизации, улавливания, нейтрализации и ликвидации H2S, широко востребованные в современной промышленности.

Сульфидводород является одним из распространенных индустриальных загрязнителей, в больших количествах образующихся на множестве предприятий энергетического комплекса, химической, нефтехимической и нефтегазовой сферы.

Наряду с аммиаком, в немалых количествах дигидросульфид образуется и на крупных свинофермах и птицефабриках, в телятниках, конюшнях, овчарнях, навозохранилищах.

Трагическая гибель трех человек в канализационном септике, Караганда, Казахстан

В микроскопических количествах эндогенный сульфид водорода выполняет важные функции сигнального клеточного газотрансмиттера. В малых дозах нередко используется в составе лечебных сероводородных ванн.

Промышленная же фильтрация выбросов сернистого водорода обеспечивает не только сохранение здоровья персонала и людей, но защиту металлических газовоздушных коммуникаций, газопроводов, воздуховодов, насосов, компрессоров, вентиляторов. Так же, в силу высокой кислой активности крайне негативно влияние сероводорода на стальные трубы очистных сооружений.

Опасность для рабочего персонала и оборудования

Сернистый водород при обычных условиях – сладковатый газ. Одно из наиболее реакционных соединений серы, которое, как и все серосодержащие вещества, обладает крайне неприятным запахом. Относится к сильнодействующим ядовитым веществам (СДЯВ).

Таблица характеристик воздействия на организм

Параметр Значение
Токсикологический класс опасности 3
Действие Нейротоксин. Даже при небольших концентрациях вызывает тошноту, рвоту, головокружение, помутнение сознания и судорожные состояния
Летальная доза При содержании H2S в воздухе ≈1000 ppm летальный исход может наступить после первого вдоха. При 800 ppm – через 5 минут
Прямой контакт с жидкостью обморожение, ледяные ожоги
Попадание в глаза ожоги слизистой оболочки, вплоть до полной слепоты

Вторичную опасность представляет H2S как соединение, способное связываться другими окислителями, (например, хлороводородом в дымовых и отходящих газах), что ведет к образованию в прилегающей к предприятию атмосфере серной кислоты.

Водоем после осаждения газового облака, Китай

Помимо прочего, дигидросульфид очень пожаро- и взрывоопасен, причем взрывоопасные воздушные смеси могут образовываться в очень широком диапазоне концентраций. Так, в 2003 году из-за взрыва сероводородного хранилища в Китае, (провинция Чуангдонгбей), погиб, по меньшей мере, 191 человек.

Основные типы фильтров и методов утилизации, нейтрализации и устранения сероводорода

Несмотря на все негативные эффекты H2S, его химические и физические свойства хорошо изучены, и на сегодняшний день фильтры удаления сероводорода показывают высокую результативность в утилизации, устранении или ликвидации опасного газа.

Сиборд-комплекс компании Seaboard Overseas & Trading Group, Канада

Основными методами нейтрализации, захвата и утилизации сероводорода являются адсорбционная очистка, мокрая сорбция / хемосорбция (щелочные сиборд-процессы), аминовая очистка, ликвидация с помощью каустика – фенолята натрия – и термическое разложение / сжигание.

ПДК вредных газов нормируется в России через гигиенический стандарт ГН 2.2.5.1313-03.

Среди других подходов к нейтрализации H2S и полисероводородов (сульфанов) можно выделить никель- и феррокс-процессы, метод Куэтта-Тейлора, хемосорбцию через фирменные калий-фосфатные абсорбенты «AlkaCid» немецкого технологического концерна «BASF» и некоторые другие, не находящие широкого применения.

Адсорбционные / угольные очистители

Промышленный каталитический захват газов через сухую угольную адсорбцию известен с начала прошлого века. С тех пор разработано множество новых адсорбентов, а технологии активации угля драматически улучшились, что позволяет современным маркам актикарбона осуществлять эффективный и тонкий захват широкого спектра загрязнителей газовой природы.

Адсорбция, представляющая собой частный тип сорбции, описывает удержание атомных или молекулярных конденсатов на поверхности адсорбционного материала.

Наиболее высокий КПД устранения сульфидоводорода показывают очистительные фильтры на базе слоя активированного угля, алюмосиликатов (цеолитов), металлизированных полимеров, высокопористых керамических субстратов.

Типы адсорбирующих материалов (слева направо – шарики силикагеля, угольные пеллеты, гранулы цеолита)

При практически 100%-ной эффективности удаления из воздуха сернистого водорода и возможности последующей экстракции полезного вещества из адсорбирующей подложки, адсорбционные установки имеют две особенности, которые нужно брать в расчет еще на этапе проектирования газоочистной системы.

  1. Необходимость периодической регенерации и полной перезагрузки фильтра, (первая в некоторых случаях может быть совмещена с десорбцией). По мере работы адсорбера происходит забивание микропор улавливаемым веществом, что ведет к постепенной потере эффективности удаления поллютанта из газовоздушного потока. Для активированного угля полная перезагрузка требуется раз в ≈ 100 фильтрующих циклов.
  2. Применимость адсорбционных колонн только для газа с влажностью не выше 70%. В случае присутствия влаги и / или пыли в очищаемой струе необходима установка предварительного осушителя и / или пылеуловителя.

Впрочем, это ничуть не умаляет достоинств сухой каталитической фильтрации. На некоторых крупных производствах системы очистки сероводорода работают в таких тяжелых режимах, что требуется ежедневная перезагрузка десятков тонн адсорбента, и при этом, именно адсорбционный подход является наиболее экономически предпочтительным.

Сиборд-процесс, сорбция и хемосорбция

Аппараты, использующие в своей работе принцип мокрой сорбции, (а также хемосорбции), известны с 19 века. Что же касается непосредственно удаления сернистого водорода, то, наверное, пионером в создании фильтров для H2S была американская компания «Koppers Company».

Отличие хемосорбции от физиосорбции заключается в том, что в первом случае имеет место образование ковалентных связей. Физиосорбция же подразумевает поглощение абсорбата без возникновения новых химсвязей.

Первые установки прошли успешные испытания в содружестве Пенсильвании в 20-ых годах прошлого столетия, а ключевым абсорбентом был выбран водный раствор карбоната натрия (кальцинированной соды).

Хемосорбционное взаимодействие (обратимое) кальцинированной соды с дигидросульфидом в Seabord-процессе выглядит так:

В целом, свойство сернистого водорода активно реагировать с основаниями и легло в основу его современного отфильтровывания и утилизации.

Хемосорбционный метод взаимодействия с основаниями используется и при аминовой магистральной очистке водород-сульфида в нефтегазовой сфере. Каустик – фенолят натрия C6H5ONa – также является основанием и нередко используется для тонкой, управляемой деактивации H2S.

Абсорберы и газопромыватели

Сорбционный принцип удержания нежелательных компонентов газопотока используется и в абсорберах (поглотителях), и в скрубберах (подробнее об аппаратах можно прочитать по ссылкам).

Не вдаваясь в подробности, стоит отметить, что абсорберы в большей степени нацелены на нейтрализацию химически активных компонентов, в то время как преимущественное назначение скруббинг-систем – одновременная обработка потоков, обильно загрязненных и механическими (пылевыми), и газообразными, в том числе, – кислыми – включениями.

Скруббер «ШВ» для комплексного улавливания пыли и / или кислых и реактивных газов из отходящих выбросов

Термическое разложение / сжигание

В силу высокой взрывоопасности газа термическое разложение газа применяется очень редко. Главным недостатком термической диссоциации является продукт реакции горения SO2 (диоксид серы), который также представляет биологическую опасность и нуждается в обязательной хемосорбционной, каталитической или физиосорбционной дезактивации.

Заказ, изготовление, доставка и монтаж

По любым вопросам, касающимся индивидуального проектирования и изготовления современных и высокопроизводительных промышленных фильтров от сероводорода, пожалуйста, связывайтесь с нами любым удобным способом или заполняйте Анкету Заказчика.

Быстро доставим оборудование до любой точки в России, СНГ, Европе или Азии. При необходимости проведем оперативный монтаж или шеф-монтаж. Гарантия.

Углеродный ноль: как технологии помогают решить проблему выбросов в атмосферу

В 2015 году 196 стран подписали Парижское соглашение — международный договор, посвященный изменениям климата. Его главной целью стало не допустить глобального роста температуры и сократить количество выбросов углекислого газа в атмосферу. Сегодня углеродная нейтральность — это показатель, которого стремятся добиться компании по всему миру. Microsoft работает над тем, чтобы стать углеродно-отрицательной к 2030 году — это значит, что корпорация будет удалять из атмосферы больше углекислого газа, чем производит. О своей приверженности идеям экологии заявил Netflix — стриминг подсчитал, что в 2020 году его углеродный след составил 1,1 млн метрических тонн, и намеревается добиться нулевых выбросов уже к 2022 году. В 2020 году глава Google Сундар Пичаи объявил, что IT-гигант стал углеродно-нейтральным еще в 2007 году и за 13 лет полностью устранил свой карбоновый след.

В России достигнуть углеродной нейтральности к 2030 году планирует «Сбер». Для «обнуления» собственного следа банк сокращает использование бумаги, перерабатывает пластиковые карты и экономит на электричестве. Немногие российские компании присоединились к мировой борьбе с изменениями климата, но игнорировать проблему становится все труднее. Директор по цифровым технологиям SAP CIS Дмитрий Красюков в своей колонке для Forbes Life рассказывает, как «углеродный ноль» стал важной тенденцией в мировом бизнесе и какие убытки могут понести российские компании, если не будут работать над сокращением выбросов.

Кому и зачем потребовался углеродный налог

К глобальному потеплению можно по-разному относиться на бытовом уровне (кто-то рад мягким зимам в Москве, другим хочется больше снега), но на уровне стран и крупных компаний игнорировать проблему теперь не получится. Именно стремление уменьшить эффект от глобального потепления может в скором времени изменить принцип конкуренции на европейском рынке: важна будет не только цена продукта, но и его карбоновый след.

Читайте также  Корпус дроссельной заслонки

В России, несмотря на повсеместную осведомленность о проблеме загрязнения атмосферы, говорить о мерах ее преодоления до сих пор не принято, хотя компания BP и Всемирный банк, которые ведут мониторинг вредных выбросов, уверенно ставят нашу страну на четвертое место в мире по количеству эмиссии CO2. По абсолютным показателям Россия (больше 146 млн населения на январь 2021 года) опережает Германию, где проживают более 80 млн человек, и Японию — страну со сравнимым числом населения. По количеству выбросов нас обгоняют только Китай, США и Индия, которые значительно превосходят и по числу жителей.

В России неоднозначно отреагировали на новость о начале действия с 2023 года в Евросоюзе углеродного налога, который может коснуться нашей страны. Цель налога — сделать Европу углеродно-нейтральной к 2050 году. Предполагается, что облагаться сбором будут товары, экспортируемые из стран с высоким уровнем выбросов CO2 в атмосферу и имеющие углеродный след, — то есть, производства и поставка которых приводит к выбросам углекислого газа. Это может привести к тому, что сырье и материалы, поставляемые в Европу российскими производителями, начнут проигрывать ценовую войну. Общий экспорт углеродоемких продуктов в Европу составляет порядка $180 млрд в год, а трансграничный налог, по оценкам Boston Consulting Group, — около $30 за тонну выбросов. Для российских экспортеров убытки составят порядка $3-5 млрд в год. Ежегодные потери экспортеров нефти могут достигать $2,5 млрд, металлургических компаний — около $1 млрд. Сбор может ударить и по рентабельности удобрений. Российским компаниям из многих отраслей придется уделить особое внимание работе с карбоновым следом.

Но углеродный налог — это не новость. Инициатива возникла в Европе после осознания серьезности проблемы глобального потепления и принятия в 1997 году Киотского протокола. К тому моменту, когда на смену протоколу в 2015 году пришли Парижские соглашения, большинство европейских стран уже ввели специальные обложения, стимулирующие сокращение углеродных выбросов. Появилась также инициатива Science Based Targets, которая объединяет более 1400 бизнесов, взявших на себя обязательства по сокращению в своей деятельности углеродного следа. В 2017 году к инициативе присоединилась компания SAP с целью добиться нулевого показателя выбросов углерода и полностью перейти на использование возобновляемых источников энергии в дата-центрах. SAP также стремится предотвратить выбросы CO2 там, где они связаны с деятельностью компании. К этому относится применение энергоэффективных систем освещения и кондиционирования в офисах, выбор телекоммуникаций вместо бизнес-поездок, поддержка климатических проектов и денежная компенсация выбросов в тех случаях, когда они неизбежны. Необходимость отвечать деньгами за формируемую бизнесом нагрузку на экологию стала нормой, и европейские страны намерены распространить ее и на другие регионы мира.

Чем заметнее углеродный след компании, тем меньшую привлекательность она имеет для потребителей

Активность Европы не случайна. Инициаторами распространения углеродного налога являются не столько правительственные органы или бюрократия ЕС, сколько потребители — они формируют общественное мнение и оказывает влияние на инвесторов. Чем заметнее углеродный след компании, тем меньшую привлекательность она имеет. Сейчас потребители обращают внимание на энергоэффективность тех или иных бытовых приборов, а завтра будут смотреть на углеродный след, покупая смартфон или кофемашину. Это касается и инвесторов, которые уже руководствуются при выборе ESG-рейтингом (Environmental, Social and Governance — Экологическое, социальное и корпоративное управление). Тем, кто за ним не следит, все сложнее привлекать инвестиции для развития.

Углеродный след бизнеса

Свой углеродный след оставляет любая компания, а не только те, кто непосредственно осуществляет выброс CO2 в атмосферу. К примеру, условная ИТ-компания, которая на первый взгляд не имеет никакого отношения к загрязнению воздуха, использует автомобили и авиатранспорт, потребляет электроэнергию, для производства которой используются невозобновляемые источники, закупает продукцию, при выпуске которой осуществляются выбросы углекислого газа. Все это делает борьбу с углеродным следом важной задачей для топ-менеджмента.

Компания Walmart осенью прошлого года объявила о своем намерении стать углеродно-нейтральной к 2040 году и уже активно работает со своими поставщиками, стараясь в ближайшие годы исключить углеродный след из своих цепочек поставок. Крупнейший морской грузоперевозчик Maersk в 2023 году начнет эксплуатацию углеродно-нейтральных контейнеровозов. О своем намерении прекратить страхование электростанций, продолжающих сжигать уголь, сообщила Allianz. SAP удалось сократить выбросы углекислого газа в атмосферу на 43% — это 135 килотонн вместо планирующихся 238 (в 2019 году, для сравнения, их объем составил 300 килотонн). К 2023 году, на два года раньше, чем планировалось, компания полностью избавится в своей работе от углеродного следа.

Как технологии помогут бороться с выбросами

Российским компаниям, прежде всего, нужно понять, что сокращение углеродного следа должно стать частью стратегии и пронизывать всю цепочку добавленной стоимости. Для этого потребуются инструменты для сбора информации по энергоэффективности. На основе качественного анализа данных, который доступен только при условии деления цепочки добавленной стоимости на мелкие этапы (по центрам прибыли и затрат), компании смогут делать выводы и изменять свои процессы в режиме реального времени.

Такие проекты уже существуют. «Сургутнефтегаз» и «Северсталь» инвестируют в создание систем мониторинга эффективности энергопотребления. Опираясь на показания более чем 2500 приборов учета, «Северсталь» с помощью предиктивного анализа и технологии машинного обучения не просто более точно прогнозирует энергопотребление, но и отслеживает аномалии. Это позволяет экономить от $10 млн в год за счет сокращения штрафов, оптимизации закупки и противодействия кражам электричества.

Еще одно интересное решение предлагает компания «Ангара» — оно помогает нефтехимикам, нефтяникам и энергетикам поддерживать чистоту теплообменного оборудования за счет использования нового физического принципа очистки под управлением цифровой технологии. Это позволяет сократить расход ископаемого топлива и выбросов углекислого газа до 40% без остановки технологических процессов предприятия.

Контроль энергоэффективности — начальный шаг в определении и управлении углеродным следом, а конечная точка — создание интеллектуального предприятия. Одна из его составных частей — экологическая нейтральность. На таком предприятии большинство тактических решений принимается с помощью цифровых помощников или с использованием искусственного интеллекта на основе данных. Важно отследить не только собственные выбросы CO2, но и те, что присутствуют в цепочках создания добавленной стоимости компании.

Ответственность — главное качество бизнеса, который стремится быть полезным своей стране

Российские компании учатся управлять собственным углеродным следом, и это уже свидетельствует об ответственности, которую осознают и принимают на себя собственники и руководители. Ответственность — главное качество бизнеса, который стремится быть не только прибыльным, но и полезным своей стране. Мир работает над сокращением выбросов, однако из сферы сознательного этот вопрос перешел в сферу конкретных денег. Маховик прозрачной экономики уже запущен, и остановить его вряд ли получится. Быть прозрачным становится выгодно, так как за непрозрачность придется платить. И российский рынок, и экономики других стран ждут серьезные изменения — компаниям стоит серьезно задуматься над новыми целями и инструментами, чтобы минимизировать риск и финансовые потери.

Технология снижения выбросов сероводородных соединений аккумуляторов

Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Архив статей и поиск
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(500000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
▪ Ваши истории
▪ Викторина онлайн
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Голосования
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

Перевод:
Наталья Кузнецова

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua


сделано в Украине

БЕСПЛАТНАЯ ТЕХНИЧЕСКАЯ БИБЛИОТЕКА

В нашей Бесплатной технической библиотеке Вы можете бесплатно и без регистрации скачать статью Технология снижения выбросов сероводородных соединений аккумуляторов.

Воспользуйтесь поиском по Архиву, чтобы узнать, в каком журнале опубликована статья Технология снижения выбросов сероводородных соединений аккумуляторов. В результатах поиска запишите название журнала, год и номер. Затем нажмите на ссылку «скачать в Бесплатной технической библиотеке» и бесплатно скачайте архив с нужным Вам номером.

Для быстрого бесплатного скачивания можно сразу перейти в нужный раздел Библиотеки.

Поиск по книгам, журналам и сборникам:

Рекомендуем скачать в нашей Бесплатной технической библиотеке: