Схема управления rgb светодиодом

RGB-светодиоды: как они работают, внутреннее устройство, как подключить, RGB-led и Arduino

Многоцветные светодиоды, или как их еще называют RGB, используются для индикации и создания динамически изменяющейся по цвету подсветки. Фактически ничего особенного в них нет, давайте разберемся, как они работают и что такое RGB-светодиоды.

Внутреннее устройство

На самом деле RGB-светодиод – это три одноцветных кристалла совмещенные в одном корпусе. Название RGB расшифровывается, как Red – красный, Green – зеленый, Blue – синий соответственно цветам, которые излучает каждый из кристаллов.

Эти три цвета являются базовыми, и на их смешении формируется любой цвет, такая технология давно применяется в телевидении и фотографии. На картинке, что расположена выше, видно свечение каждого кристалла по отдельности.

На этой картинке вы видите принцип смешивания цветов, для получения всех оттенков.

Кристаллы в RGB-светодиоды могут быть соединены по схеме:

— С общим катодом;

В первых двух вариантах вы увидите, что у светодиода есть 4 вывода:

Или 6-тью выводами в последнем случае:

Вы можете видеть на фотографии под линзой четко видны три кристалла.

Для таких светодиодов продаются специальные монтажные площадки, на них даже указывают назначение выводов.

Нельзя оставить без внимания и RGBW – светодиоды, их отличие состоит в том, что в их корпусе есть еще один кристалл излучающий свет белого цвета.

Естественно не обошлось и без лент с такими светодиодами.

На этой картинке изображена лента с RGB-светодиодами типа SMD 5050, собранные по схеме с общим анодом, регулировка интенсивности свечения осуществляется путем управления «-» (минусом) источника питания.

Для изменения цвета RGB-ленты используются специальные RGB-контроллеры – устройства для коммутации напряжения подаваемого на ленту.

Вот цоколевка RGB SMD5050:

И ленты, особенностей работы с RGB-лентами нет, всё остается также как и с одноцветными моделями.

Для них есть и коннекторы для подсоединения светодиодной ленты без пайки.

Вот распиновка 5-ти мм РГБ-светодиода:

Как изменяется цвет свечения

Регулировка цвета осуществляется путем регулировки яркости излучения каждым из кристаллов. Мы уже рассматривали способ регулировки яркости светодиодов с помощью ШИМ-контроллера.

RGB-контроллер для ленты работает по такому же принципу, в нём стоит микропроцессор, который управляет минусовым выводом источника питания – подключает и отключает его от цепи соответствующего цвета. Обычно в комплекте с контроллером идёт пульт дистанционного управления. Контроллеры бывают разной мощности, от этого зависит их размер, начиная от такого миниатюрного.

Да такого мощного устройства в корпусе размером с блок питания.

Они подключаются к ленте по такой схеме:

Так как сечение дорожек на ленте не позволяет подключать последовательно с ней следующий отрезок ленты, если длина первого превышает 5м, нужно подключать второй отрезок проводами напрямую от РГБ-контроллера.

Но можно выйти из положения, и не тянуть дополнительных 4 провода на 5 метров от контроллера и использовать RGB-усилитель. Для его работы нужно протянуть всего 2 провода (плюс и минус 12В) или запитать еще один блок питания от ближайшего источника 220В, а также 4 «информационных» провода от предыдущего отрезка (R, G и B) они нужны для получения команд от контроллера, чтобы вся конструкция светилась одинаково.

А к усилителю уже подключают следующий отрезок, т.е. он использует сигнал с предыдущего куска ленты. То есть вы можете запитать ленту от усилителя, который будет расположен непосредственно возле неё, тем самым сэкономив деньги и время на прокладку проводов от первичного RGB-контроллера.

Регулируем RGB-led своими руками

Итак, есть два варианта для управления RGB-светодиодами:

1. Использовать три независимых ШИМ-контроллера и регулировать яркость каждого из кристаллов вручную.

2. Использовать микроконтроллер с ШИМ-выходами.

Чтобы управлять светодиодом с Arduino – используйте вот эту схему:

Обратите внимание выводы R, G и B у светодиода подключаются к ШИМ-пинам Ардуины.

Для управления мощной RGB-лентой схема не имеет принципиальных отличий, за исключением того, что подключается она к микроконтроллеру через усилители – транзисторы.

Вот вариант схемы без использования ардуин и других микроконтроллеров, с помощью трёх драйверов CAT4101, способных выдавать ток до 1А.

Однако сейчас достаточно дешево стоят контроллеры и если нужно регулировать светодиодную ленту – то лучше приобрести готовый вариант. Схемы с ардуино гораздо проще, тем более вы можете написать скетч, с которым вы будете либо вручную задавать цвет, либо перебор цветов будет автоматическим в соответствии с заданным алгоритмом.

Заключение

RGB-светодиоды позволяют сделать интересные световые эффекты используются в дизайне интерьеров, как подсветка для бытовой техники, для эффекта расширения экрана телевизора. Особых отличий при работе с ними от обычных светодиодов – нет.

Как правильно подключить RGB светодиодную ленту к контроллеру. Правильные схемы с описанием

Разноцветная светодиодная RGB лента – основной тренд 2018-2019 года. Разберем как ее правильно подключить, что такое RGB контроллер, усилитель и зачем они нужны.

Что такое RGB светодиодная лента

RGB (Red, Green, Blue – красный, зеленый, синий) – это светодиодная лента, способная при работе менять свой цвет. В каждом LED модуле находятся три светодиода – красный, синий и зеленый. Изменяя отдельно яркость свечения каждого кристалла, вы получаете любой цвет видимого спектра.

Что такое rgb светодиод

Внешне RGB led отличается от моноцветной только количеством выводов. Здесь их 4 – три из них для питания каждого отдельного кристалла и один общий плюс.

Существуют особые led ленты с пятью выводами. Маркируются они как LED RGB W (W – white). Пятый вывод отвечает за белый свет. Дело в том, что в трехцветном диоде белый цвет получается смешивая все три цвета в равных пропорциях. Такой «белый» отличается от чистого моно- света. Поэтому появился тип led с четвертым кристаллом белого цвета.

Эти ленты (как и моноцветные) имеют несколько классов пыле- влагозащиты:

  • IP20 – без защиты, боится влаги и пыли;
  • IP67-69 – не боится пыли, может быть использована во влажной среде (ванна, аквариум).

Что нужно для подключения RGB ленты

Разберемся как правильно подключить светодиодную RGB ленту. Для полноценной схемы освещения нам понадобится:

  • Светодиодная лента;
  • блок питания;
  • RGB-контроллер с пультом управления;
  • RGB-усилитель (опционально).

Блок питания

Питание для светодиодной ленты нужно подбирать с учетом предполагаемой нагрузки и его будущего места расположения. Рассмотрим на примере SMD5050 60 led. Потребляемая мощность – 14,4 Вт/м.

При длине в 5 метров, необходимая мощность БП будет:

5м * 14,4Вт * 1,25 (коэффициент запаса) = 90Вт

Разновидности блоков питания для led

Если длина 15 метров, то БП соответственно нужен в 3 раза мощнее – 270W. Если длина ленты 20, 25 и больше метров – целесообразно устанавливать несколько БП меньшей мощности.

Степень защиты зависит от расположения БП. Если располагается в сухом, закрытом помещении достаточно IP20. Если в ванной или других агрессивных условиях, то не ниже IP67.

RGB контроллер

Управление светом осуществляется через специальный контроллер. Он подключается между блоком питания и светодиодами, снабжается проводным или беспроводным пультом.

RGB контроллер

Контроллер, как и блок питания, подбирается в зависимости от суммарной мощности ленты. С тем отличием, что к необходимой мощности БП добавляют 25-30% запаса, а контроллер подбирают впритык по мощности.

Например. Нужно подключить 10 метров SMD5050 60 led. Мощность 1 метра – 14,4 Вт, соответственно нам нужен контроллер на 144 Вт.

По принципу управления различают: проводные – чаще монтируются на стену; беспроводные с управлением через:

  • Инфракрасный порт (ИК) – пульт должен находиться в зоне прямой видимости;
  • радио-канал – позволяет пользоваться в пределах дома;
  • Wi-Fi – позволяют как управлять с пульта, так и с приложения на смартфоне.

Управление освещением со смартфона

После установки и подключения, вы сможете:

  1. Устанавливать цвет вручную. Доступны как чистые цвета, так и смешанные оттенки.
  2. Регулировать яркость – аналогично обычному диммеру (подробнее про диммеры).
  3. Автоматические режимы. К ним относится переключение цветов, быстрое мерцание, плавное изменение, плавные затухания и другие алгоритмы.

А если мощности RGB контроллера не хватает, чтобы подключить все освещение (больше 20 метров)? Можно установить 2 контроллера, но управлять светом одной комнаты придется с двух пультов, что не удобно и дорого. Второй (правильный) вариант — использовать RGB усилитель.

RGB усилитель (led amplifier)

Этот прибор позволяет усиливать и передавать дальше по цепи сигнал от контроллера. Таким образом, задействовав несколько усилителей, можно собрать контур освещения любой длины.

Rgb усилитель (led amplifier)

Усилитель устанавливается в разрыв ленты и имеет отдельное подключение к блоку питания (про подключение ниже). Мощность подбираем исходя из остатка ленты, которой не хватает мощности контроллера.

Некоторые думают, что усилитель нужен для увеличения яркости и его нужно использовать даже для отрезка до 5 метров. Это в корне не верно.

Наглядный пример. Нужно подключить 20м SMD 3528 (14,4 Вт/м), общей мощностью 288 Вт. В наличии у нас только контроллер с мощностью 216 Вт и блок питания на 300W. Соответственно нужен усилитель:

288 Вт — 216 Вт = 72 Вт

Мощность БП 300 Вт, его достаточно для питания контроллера и усилителя. В случае если мощности БП недостаточно (например 250W), нужен отдельный БП для усилителя.

Читайте также  Электронный барометр своими руками

Подключение светодиодной RGB ленты

Правильный порядок подключения элементов цепи выглядит следующим образом:

Правильный порядок подключения

Запомните. Участки ленты, длиной больше 5 метров, должны подключаться только параллельно.

Что будет, если подключить последовательно?

Во-первых, вы заметно потеряете в яркости на конце участка. Хотя светодиоды и имеют очень малое сопротивление, но потери есть. При такой протяженности на конце напряжение будет порядка 10В. Пониженное напряжение даст пониженную яркость, уже заметную для глаза.

Неправильное подключение Правильное подключение

Во-вторых, токопроводящие дорожки ленты рассчитаны на максимальную длину 5м. Подключив последовательно еще 5, дорожки будут перегреваться и освещение скорее всего перегорит в самом начале участка.

RGB коннектор

Соединять ленту между собой можно с помощью пайки или клеммами. Для одноцветных вариантов продаются двухвыводные клеммы (коннекторы), для RGB – четырёх или пяти. Уточняйте этот момент при покупке.

Блок питания подключается в сеть 220В (клеммы AC, полярность не важна), преобразует переменное напряжение в постоянное 12В (клеммы V+, V-). При подключении следующих элементов цепи важно соблюдать полярность.

Клеммы подключения на БП

RGB контроллер подключается после блока питания (с соблюдением полярности), а в него подключается ргб лента. Каждый вывод на корпусе предназначен для конкретного вывода светодиодов. Если перепутаете местами, ничего страшного не произойдет, просто цвета будут перепутаны.

Клеммы подключения контроллера к светодиодам

В результате готовая схема в сборе должна иметь вид:

Схема в сборе

Усилитель внешне похож на контроллер, отдельно подключается к БП, только имеет не одну плашку с клеммами, а две. Маркируется чаще всего как Led Amplifier, устанавливается в разрыв ленты. Подключается по схеме:

Порядок подключения RGB усилителя в цепь Назначение клемм led amplifier

Разберем теперь схемы подключения лент разной длины с усилителем и без, с одним или несколькими блоками питания.

Схема подключения RGB светодиодной ленты без усилителя

Это простейшая схема включения rgb светодиодной ленты длиной до 5 метров через контроллер с пультом.

Электрическая схема подключения RGB освещения

Для подключения светодиодной RGB ленты длиной 10 или 15 метров, убедитесь, что хватает мощности контроллера и БП (с запасом), и подключайте по следующей схеме:

Схема подключения 10 или 15

Схема подключения ленты с RGB усилителем

Усилитель используем, если не хватает мощности контроллера. Если мощность блока питания позволяет подключить контроллер и усилитель, используем следующую схему:

Когда суммарная мощность контроллера и усилителя выше мощности БП или блок такой мощности использовать нерационально (большой, сильно греется или шумит), тогда подключаем led amplifier к отдельному питанию по схеме:

Схема подключения усилителя с 2 блоками питания

По такой схеме наращивать суммарную длину ленты можно сколько угодно. Вся она будет управляться с одного пульта.

Помимо последовательного подключения, как в примерах выше, усилители можно подключать параллельно.

Схема параллельного подключения нескольких RGB усилителей с одним блоком питания.

Схема: один БП несколько усилителей

Схема с несколькими параллельными усилителями с отдельным питанием.

Схема: несколько параллельных усилителей с отдельными БП

Если клемм нет – используйте паяльник и монтажный провод, НО не перегревайте контактные площадки. Подробнее как соединять ленту.

Правильная схема подключения 20 метров RGB ленты показана на видео.

Типичный ошибки при подключении

Последовательное подключение более 5 метров ленты. Этого делать нельзя.

Скрутки вместо пайки проводов (или коннекторов). Если не хотите паять, используйте коннекторы, они копеечные.

Несоблюдение порядка подключения: блок питания ⇒ контроллер ⇒ лента ⇒ усилитель ⇒ лента.

Экономия на блоке питания, покупая «впритык» по мощности. К сожалению, светодиоды гуляют как в плюс так и минус по потребляемым Ваттам. Покупая БП без 20-25% запаса, он будет работать на износ и через год вы купите новый, но уже с запасом.

Покупка контроллера излишней мощности. Хуже не будет, но деньги переплатите. Правильно подбирать по мощности 1 к 1.

Выбор очень мощных лент и монтаж без теплоотвода. Например SMD5050 120 led/m потребляет 28,8 Вт/м. При такой мощности светодиоды греются достаточно сильно и конструкцию нужно монтировать на теплоотвод – алюминиевый профиль. В противном случае диоды начинают деградировать, терять мощность и перегорать.

Готовые RGB лампочки под цоколь с пультом управления

Отдельно стоит упомянуть про готовые RGB изделия под цоколь E14 или E27.

Такие лапочки бывают в совершенно корпусах и исполнениях. Внутри лампа содержит компактный драйвер для питания от сети 220В, контроллер и трехцветные светодиоды.

Для полноценного освещения комнаты она не подойдет, т.к. несколько ламп синхронизировать в одну систему не получится. Используется как ночник или декор. Потребление 1-3 Вт/ч. Стоимость стартует от 3$ за Китай.

Урок 16. Управление RGB светодиодом

Продолжаем осваивать ШИМ, на этот раз для управления цветом RGB светодиода.

По сути, RGB светодиод совмещает в себе три обычных светодиода — красный, зеленый и синий.

Соответственно у RGB светодиода 4 ножки: для управления каждым из цветов используется по одной ножке и одна общая (обычно самая длинная). Общим может быть как катод(-), так и анод(+). На схеме приведен пример, для схемы с общим анодом.

Примечательно то, что смешивая эти 3 цвета можно получить практически любой другой цвет. Если зажечь все 3 светодиода одновременно, получится белый цвет.

Теперь о реализации, мне достался светодиод с общим катодом, номинальный ток, которого по даташиту составлял 20мА. Однако, есть небольшой нюанс, у каждого цвета свой порог зажигания. Например, у красного светодиода, 20мА соответствовало напряжению 2.1В, зеленому и синему — напряжение 3.2В. В целом ножка микроконтроллера должна выдерживать такой ток, поэтому можно смело подключать через токоограничивающие резисторы к микроконтроллеру.
[spoiler]
Я же использовал pnp транзисторы, однако эту идею никому не навязываю.
[/spoiler]

У Atmega8 есть 3 канала ШИМ: два канала на таймере1(ножки PB.1 — OCR1A, PB.2 — OCR1B) и один таймере2(ножка PB.3 — OCR2). Регулируя заполнение ШИМ, мы регулируем напряжение на светодиоде, соответственно его яркость.

Создаем новый проект, настраиваем таймер2.

Так как OCR2 8-битный, а OCR1 10-битный, то максимальное значение OCR2=0хFF(255), а OCR1A/B=0х3FF(1023), т.е. в 4 раза больше. Учитываем эту особенность, поэтому чтобы каналы регулировались одинаково, настраиваем частоту таймера в 4 раза больше. Соответственно, максимальная яркость для OCR2 будет при 0xFF, а для OCR1 при 0x3FF.

Настраиваем ножки PB1-PB3 как выход. В основной цикл программы дописываем код, который плавно зажигает красный от 0 до 255, а затем плавно тушит его от 255 до 0.

Аналогично для зеленого/синего

Результат:

Если нужно получить, некоторый определенный цвет, например пурпурный, открываем какой нибудь графический редактор, например Paint.net заходим в палитру нажимаем на понравившийся цвет, справа, где написано RGB отобразятся его числовые значения R=255, B=220.

Канал R у меня на OCR2, поэтому смело в OCR2 записываем 0xFF(255), канал B на OCR1A, но т.к. максимальное значение 1023, то по пропорции пересчитываем:

(220*1023)/255=882 вот его смело пихаем в OCR1A, результат довольно таки похож:

5 комментариев: Урок 16. Управление RGB светодиодом

Здравствуйте,скажите пожалуста , а как сделать так чтоб совместить термометр и rgb вместе? если не хватает шим,ведь в вашем терм он тоже работает на шим и при использовании приходится выбирать между.хотел бы сделать термометр на rgb чтоб он показывал темп и светом rgb под определенную темп.
помогите если можете начинающему.

Термометр это то что измеряет, а ШИМ то что выдает напряжение, как бы вещи не связанные. Хотите совместить — легко, берете урок 12, получаете температуру, связываете ее с каналом RGB — как? Вопрос творческого подхода, например теплее — увеличиваете канал R, красный, уменьшаете синий. Холоднее — наоборот.

Скажите пожалуста а как это сделать?просто у вас в уроке обработка поджика разряда сегмента стоит в обработке под таймером , а под этими т.е. даже все свободные заняты шим для ргб , а как тогда обрабатывать поджиг разряда,просто хотел бы чтоб он работал на 7segа а не на lcd или так не получится?

Семисегментники можно подключать через сдвиговый регистр, либо использовать программный ШИМ, тогда вся обработка будет висеть на 1-2 таймерах.

admin, глянь пожалуйста, это работоспособно?

while (1)
<
//Ставим S0 и S1 в высокий уровень и кликаем. На выходе Q0-Q7 у нас фиксируется необходимый нам байт.
S1=1;
CLK=1;
CLK=0;
S1=0;

//Пропускаем пустые
CLK=1;
CLK=0;

//Читаем состояние ноги D5, если там 0, убавляем.
if((PINB.0==0)&&(B>0x00))
<
B=B-0x04;
>

//Читаем состояние ноги D4, если там 0, прибавляем.
if((PINB.0==0)&&(B0x000))
<
G=G-0x010;
>

//Читаем состояние ноги D2, если там 0, прибавляем.
if((Button==0)&&(G0x000))
<
R=R-0x010;
>

//Читаем состояние ноги D0, если там 0, прибавляем.
if((Button==0)&&(R

Характеристика RGB светодиода

Подсветка, меняющая свой цвет, выглядит эффектно. Ее применяют для рекламных объектов, декоративного освещения объектов архитектуры, во время различных шоу и массовых мероприятий. Один из способов реализации такой подсветки – применение трехцветных светодиодов.

Что такое RGB-светодиод

Обычные светоизлучающие полупроводниковые приборы имеют один p-n переход в одном корпусе, либо представляют собой матрицу из нескольких одинаковых переходов (COB-технология). Это позволяет в каждый момент времени получить один цвет свечения – непосредственно от рекомбинации основных носителей или от вторичного свечения люминофора. Вторая технология дала разработчикам широкие возможности в выборе цвета свечения, но менять окраску излучения в процессе эксплуатации прибор не может.

Читайте также  Блок питания для домашней лаборатории

RGB светодиод содержит в одном корпусе три p-n перехода с разным цветом свечения:

  • красным (Red);
  • зеленым (Green);
  • синим (Blue).

Аббревиатура из английских названий каждого цвета и дала название этому типу LED.

Виды диодов RGB

Трехцветные светодиоды по способу соединения кристаллов внутри корпуса делятся на три типа:

  • с общим анодом (имеют 4 вывода);
  • с общим катодом (имеют 4 вывода);
  • с раздельными элементами (имеют 6 выводов).

От исполнения LED зависит способ управления прибором.

По типу линзы светодиоды бывают:

  • с прозрачной линзой;
  • с матовой линзой.

Для RGB-элементов с прозрачной линзой для получения смешанных оттенков могут понадобиться дополнительные рассеиватели света. В противном случае могут быть видны отдельные цветовые составляющие.

Принцип работы

Принцип работы RGB-светодиодов основан на смешении цветов. Управляемое зажигание одного, двух или трех элементов позволяет получить различное свечение.

Включение кристаллов по отдельности дает три соответствующих цвета. Попарное включение позволяет достичь свечения:

  • красный+зеленый p-n переходы в итоге дадут желтый цвет;
  • синий+зеленый при смешивании дают бирюзовый;
  • красный+синий позволяют получить фиолетовый.

Включение всех трех элементов позволяет получить белый цвет.

Намного больше возможностей дает смешивание цветов в различных пропорциях. Сделать это можно, раздельно управляя яркостью свечения каждого кристалла. Для этого надо индивидуально регулировать ток, протекающий через светодиоды.

Управление RGB-светодиодом и схема включения

Управляется RGB-светодиод так же, как и обычный LED — приложением прямого напряжения анод-катод и созданием тока через p-n переход. Поэтому подключать трехцветный элемент к источнику питания надо через балластные резисторы – каждый кристалл через свой резистор. Рассчитать его можно через номинальный ток элемента и рабочее напряжение.

Даже при объединении в одном корпусе различные кристаллы могут иметь различные параметры, поэтому параллельно соединять их нельзя.

Типовые характеристики для маломощного трехцветного прибора диаметром 5 мм приведены в таблице.

Красный (R) Зеленый (G) Синий (B)
Максимальное прямое напряжение, В 1,9 3,8 3,8
Номинальный ток, мА 20 20 20

Очевидно, что красный кристалл имеет прямое напряжение в два раза ниже, чем у двух остальных. Параллельное включение элементов приведет к разной яркости свечения или выходу одного или всех p-n переходов из строя.

Постоянное подключение к источнику питания не позволяет использовать все возможности RGB-элемента. В статическом режиме трехцветный прибор лишь исполняет функции монохромного, а стоит намного больше обычного LED. Поэтому гораздо интереснее динамический режим, в котором цветом свечения можно управлять. Реализуется это посредством микроконтроллера. Его выводы в большинстве случаев обеспечивают выходной ток в 20 мА, но это каждый раз нужно уточнять в даташите. Подключать LED к портам вывода надо через токоограничивающий резистор. Компромиссный вариант при питании микросхемы от 5 В – сопротивление 220 Ом.

Элементы с общими катодами управляются подачей на выход логической единицы, с общими анодами – логического нуля. Изменить программным способом полярность управляющего сигнала труда не составляет. LED с раздельными выходами можно подключать и управлять любым способом.

Если выходы микроконтроллера не рассчитаны на номинальный ток светодиода, подключать LED надо через транзисторные ключи.

В этих схемах оба типа LED зажигаются подачей положительного уровня на входы ключей.

Упоминалось, что яркостью свечения управляют, изменяя ток через светоизлучающий элемент. Цифровые выводы микроконтроллера напрямую управлять током не могут, потому что имеют два состояния – высокое (соответствующее напряжению питания) и низкое (соответствующее нулевому напряжению). Промежуточных положений не бывает, поэтому для регулировки тока используются другие пути. Например, способ широтно-импульсной модуляции (ШИМ) управляющего сигнала. Его суть состоит в том, что на LED подается не постоянное напряжение, а импульсы определенной частоты. Микроконтроллер в соответствии с программой меняет соотношение импульса и паузы. При этом изменяется среднее напряжение и усредненный ток через светодиод при неизменной амплитуде напряжения.

Существуют специализированные контроллеры, разработанные специально для управления свечением трехцветных LED. Они продаются в виде готового прибора. В них также используется метод ШИМ.

Распиновка

Если имеется новый, не паяный светодиод, то расположение выводов можно определить визуально. Для любого типа соединения (общий анод или общий катод) вывод, подключенный ко всем трем элементам, имеет наибольшую длину. Если повернуть корпус так, что длинная ножка окажется в левой части, то левее его будет находиться «красный» вывод, а в правую сторону – сначала «зеленый», потом «синий». Если LED уже был в употреблении, его выводы могли быть укорочены произвольным образом, и для определения распиновки придется прибегнуть к другим способам:

  1. Можно определить общий провод с помощью мультиметра. Надо включить прибор в режим тестирования диодов и подключить зажимы прибора к предполагаемой общей ножке и к любой другой, потом сменить полярность подключения (как при обычной проверке полупроводникового перехода). Если предполагаемый общий вывод определен правильно, то (при всех трех исправных элементах) в одном направлении тестер покажет бесконечное сопротивление, в другом – конечное (точное значение зависит от типа LED). Если в обоих случаях на дисплее тестера будет сигнал обрыва, значит, вывод выбран неверно, и надо повторить проверку с другой ножкой. Может получиться, что испытательного напряжения мультиметра хватит для зажигания кристалла. В этом случае можно дополнительно убедиться в правильности распиновки по цвету свечения p-n перехода.
  2. Другой способ – подать питание на предполагаемый общий вывод и любую другую ножку светодиода. Если общая точка выбрана правильно, в этом можно убедиться по свечению кристалла.

Важно! При проверке с помощью источника питания надо плавно поднимать напряжение с нуля и не превышать значение 3,5-4 В. Если регулируемого источника нет, можно подключить LED к выходу постоянного напряжения через токоограничивающий резистор.

У светодиодов с раздельными выводами определение распиновки сводится к выяснению полярности и расположения кристаллов по цветам. Сделать это также можно перечисленными методами.

Плюсы и минусы светодиодов RGB

RGB-светодиодам присущи все достоинства, имеющиеся у полупроводниковых светоизлучающих элементов. Это низкая стоимость, высокая энергоэффективность, долгий срок службы и т.д. Отличительным плюсом трехцветных LED является возможность получения практически любого оттенка свечения простым способом и за небольшую цену, а также смена цвета в динамике.

К основному минусу RGB-светодиодов относят невозможность получения чистого белого цвета за счет смешения трех цветов. Для этого потребуется семь оттенков (в качестве примера можно привести радугу – ее семь цветов являются результатом обратного процесса: разложения видимого света на составляющие). Это накладывает ограничения на использование трехцветных светильников в качестве осветительных элементов. Чтобы несколько компенсировать эту неприятную особенность, при создании светодиодных лент применяется принцип RGBW. На каждый трехцветный LED устанавливается один элемент белого свечения (за счет люминофора). Но стоимость такого осветительного устройства заметно возрастает. Также бывают светодиоды исполнения RGBW. У них в корпусе установлено четыре кристалла – три для получения исходных цветов, четвертый – для получения белого цвета, он излучает свет за счет люминофора.

Срок службы

Период эксплуатации прибора из трех кристаллов определяется временем наработки на отказ самого недолговечного элемента. В данном случае он у всех трех p-n переходов примерно одинаковый. Производители заявляют срок службы RGB-элементов на уровне 25 000-30 000 часов. Но к этой цифре надо относиться осторожно. Заявленное время жизни эквивалентно непрерывной работе в течение 3-4 лет. Вряд ли кто-то из производителей проводил ресурсные испытания (да еще в различных тепловых и электрических режимах) в течение столь долгого периода. За это время появляются новые технологии, испытания надо начинать заново – и так до бесконечности. Гораздо более информативен гарантийный срок эксплуатации. А он составляет 10 000-15 000 часов. Все, что дальше – в лучшем случае математическое моделирование, в худшем – голый маркетинг. Проблема в том, что на распространенные недорогие светодиоды сведения о гарантии производителя, как правило, отсутствуют. Но ориентироваться можно на 10 000-15 000 часов и держать в голове еще приблизительно столько же. А дальше уповать только на везение. И еще один момент – период службы очень сильно зависит от теплового режима во время эксплуатации. Поэтому один и тот же элемент в разных условиях прослужит разное время. Для продления срока жизни LED надо внимательно относиться к проблеме отведения тепла, не пренебрегать радиаторами и создавать условия для естественной циркуляции воздуха, а в некоторых случаях прибегать и к принудительной вентиляции.

Но даже уменьшенные сроки — это несколько лет эксплуатации (ведь LED не будет работать без пауз). Поэтому появление трехцветных светодиодов позволяет дизайнерам широко применять полупроводниковые приборы в их задумках, а инженерам – эти идеи реализовывать «в железе».

RGB светодиод: принцип работы, подключение и распиновка многоцветных диодов, что такое Arduino, как настроить плавное изменение цвета

Обычные светодиоды уверенно заняли свою нишу и серьезно потеснили традиционные осветительные приборы. Параллельно с этим, расширяют сферу деятельности многоцветные, или RGB светодиоды. Они способны работать группами и создавать различные виды управляемой подсветки. Например, с микроконтроллером они могут образовать движущиеся изображения. Возможности РГБ диодов велики и еще не раскрыты полностью. Рассмотрим их внимательнее.

Читайте также  Команды передачи управления

Как устроены 3 цветные LED диоды

С точки зрения конструкции, RGB LED — это три цветных светодиода, установленные в один корпус, или, как говорят специалисты, на одной матрице. Обычные виды мощных осветительных приборов содержат три чипа одного цвета. У многоцветных используются красный, зеленый и синий кристаллы (английское Red Green Blue образует аббревиатуру, обозначающую трехцветные светодиоды).

Каждый из них имеет самостоятельное подключение к источнику питания, поэтому вместо обычных двух выводов у них как минимум 4 контакта — по одному на каждый кристалл и один общий. Это позволяет задействовать один из трех чипов, создавать различные сочетания, менять и смешивать цвета в группе. Если режим подключения отдельных кристаллов упорядочить с помощью микроконтроллера, можно получить массу интересных световых эффектов. Подобные технологии известны давно и используются в цветной печати, в устройстве цветных телевизоров и т.п.

Существует несколько разновидностей RGB светодиодов:

  • элементы с общим катодом, которые управляются положительными сигналами, подаваемыми на аноды чипов. Такие элементы маркируются буквами CA;
  • с общим анодом. Комaнды на изменение режима работы идут на катоды элементов. Маркировка CC;
  • собственной парой контактов для каждого кристалла (6 выводов).

Такое разнообразие вариантов создавалось для облегчения процессов управления группами устройств. Наибольшую самостоятельность демонстрирует третья группа — с 6 выводами. Единый стандарт на распиновку так и не принят, поэтому в каждом случае необходимо определять тип полярности RGB светодиодов.

Каждый чип может получать питание от собственного источника. Однако, такая система требует большого количества проводов или токопроводящих дорожек, поэтому подобные компоненты выпускаются в формате элементов SMD. Помимо этого, РГБ компоненты выпускаются в корпусах:

  • стандартный круглый вид, оснащенный линзой (для приборов малой мощности);
  • корпус «Emitter» для мощных устройств, требующих самостоятельного режима работы для каждого чипа;
  • Элементы типа «Пиранья», не нуждающиеся в установке теплоотводов.

Важно! Управление многоцветными светодиодами представляет собой сложную задачу, поэтому в дополнение к внешним контроллерам, в корпуса некоторых моделей вставляют микросхемы.

Подключение

Самым простым способом присоединения RGB светодиодов к источнику питания считается подключение к микроконтроллеру Arduino. Общий вывод (обычно он самый длинный) припаивается к контакту «Gnd», а остальные присоединяют к соответствующим точкам, отмеченным как D12, D10 и D9. Напрямую паять контакты нельзя, каждый из них (кроме общего) должен иметь токоограничивающий резистор.

При подключении светодиода с общим анодом используется отрицательный контакт «Gnd», расположенный в том же ряду, что и катоды. Если используется подключение с общим катодом, используется плюсовой контакт «Gnd» с противоположного ряда.

Управление

Управление работой RGB светодиодов проще всего осуществлять с помощью микроконтроллера Ардуино. Изменение цветности происходит путем смешивания двух или трех цветов в разных соотношениях. Если все чипа горят на полную яркость, результатом будет белый цвет свечения. Для изменения оттенка и получения нужных цветов необходимо контролировать яркость каждого кристалла. Это делается методом широтно-импульсной модуляции. На управляющие контакты подаются сигналы прямоугольной формы с разной скважинностью. Чем шире пик (или ниже скважинность), тем ярче светится кристалл.

Есть способы управления RGB светодиодами аналоговыми методами. Собирается схема на транзисторах, которые регулируют яркость соответствующих кристаллов. В обоих случаях важно правильно определить полярность светодиодов, иначе ожидаемого эффекта не будет.

Для управления режимом работы многоцветной светодиодной ленты также используются контроллеры. Они состоят из микропроцессора, а регулировку и настройку режима выполняют с помощью пульта управления. Мощность и рабочие параметры зависят от размеров и технических хаpaктеристик ленты, типа светодиодов и прочих факторов.

RGBW светодиоды

Получить чистый белый свет на стандартных RGB устройствах достаточно сложно. Проблема заключается в регулировке яркости. Если нужен белый, но довольно тусклый оттенок, приходится очень точно настраивать питание трех кристаллов. Учитывая, что каждый из них имеет собственный номинал напряжения, изменяющийся нелинейно, получать неяркие тона — сложная задача.

Для упрощения процесса и увеличения возможностей светодиодов выпускают четырехцветные, или RGBW устройства (от английского Red, Green. Blue и White). Дополнительный белый чип снимает нагрузку с контроллера, облегчает расчеты и увеличивает качество цветопередачи. Питание таких устройств обеспечивается специальными контроллерами с инфpaкрасными ПДУ.

Применение

Все RGB светодиоды применяются для декорирования и оформления объектов. Они выполняют разные задачи:

  • создают подсветку рекламы;
  • световые эффекты на концертных площадках;
  • оформление развлекательных мероприятий;
  • украшение и парадная подсветка зданий;
  • декорирование фонтанов, памятников, мостов и т.д.

Интересно! Кроме этого, входит в моду световое оформление интерьеров помещений, в котором активно используются дизайнерские многоцветные решения. При изменении оттенка свечения визуально меняется цвет мебели, помещение получает новый, непривычный облик.

Основные выводы

Использование RGB светодиодов постоянно расширяется. Они выполняют различные задачи:

  • создание динамичных световых эффектов;
  • украшение зданий, сооружений, интерьеров;
  • подсветка и акцентирование рекламных конструкций;
  • оформление массовых мероприятий, концертов, представлений.

Область использования RGB светодиодов увеличивается и активно развивается. Возникают новые варианты подсветки. Разpaбатываются программные пакеты для использования в микроконтроллерах. Свои способы использования RGB светодиодов излагайте в комментариях.

CiameC › Блог › Схема подключения светодиодной RGB-ленты. Подключение RGB-контроллера и RGB-усилителя.

В принципе, схема подключения RGB-ленты, та же, что и схема подключения обычной одноцветной (монохромной) ленты. Разница в том, что между блоком питания и лентой, устанавливается RGB-контроллер (устройство управления цветом ленты).

Контроллеры бывают разные по внешнему виду, мощности, программам управления цветом и пультом дистанционного управления. Но суть у них у всех, одна и та же. Пришло на контроллер 2 провода от блока питания, ушло четыре провода на RGB-ленту.

Какой бы контроллер вы не выбрали, он всегда подключается по одной и той же схеме. Разъемы, питания обозначаются «V+» и «V-». Соответственно красный провод блока питания идет на плюсовой контакт, а черный провод идет на минусовой.

Разъемы для подключения RGB-ленты обозначаются:
R (red)-управление красным цветом
G (green)-управление зеленым цветом
B (blue)-управление синим цветом
V+ общий провод (на разных контроллера он может обозначаться по разному, но вы все равно его не спутаете с другими)

Не перепутайте провода ленты! Ничего страшного, конечно, не произойдет (ничего не сгорит), но у вас перепутаются цвета. Нажмете на пульте красный, а загорит синий.

Как подключить более 5 метров ленты? Токоведущие дорожки светодиодной ленты рассчитаны на длину 5 метров (именно поэтому лента всегда продается такой длины). Нельзя просто взять и соединить последовательно две ленты. Даже если и будет работать, то это продлится не долго (проверено на практике).

Принцип удлинения тот же, что и с обычной лентой. Существует два способа. Вот первый

Для этой схемы требуется четырехжильный удлиняющий провод сечением 1,5 мм и длиной 5 метров. Эту схему я применяю, для соединения RGB-лент c 30 диодами на метр. Но т.к. эта лента светит тускло (из-за малого количества светодиодов) и желающих ее использовать мало, то это схему я применяю редко.

С RGB-лентами 60 диодов на метр, тоже можно применить эту схему, но при этом, потребуются блок питания и контроллер мощностью в 2 раза большей.

Посчитаем. Две RGB-ленты потребляют 140 ватт. Блок питания такой мощности, это увесистая железяка, весьма немалых размеров. В потолочную нишу его спрятать, конечно же, можно. Но для этого, необходимо заранее спланировать под него место (на этапе проектирования потолков).

Контроллер на 140 ватт. Как показывают мои опыты, контроллеры выходят из строя, через некоторое время. Хотя в технических параметрах указано, что они рассчитаны на такую мощность и тянут 10-15 метров. На самом деле, горят. У меня уже было несколько случаев, хотя по расчетам, все вроде бы должно работать.

Поэтому, контроллер я рекомендую выбирать с запасом мощности в 2 раза, т.е. для данного случая, это 280 ватт. Но тут, резко увеличивается его стоимость, да и найти какой контроллер не просто. Поэтому, мне больше нравится вот такая схема

В данной схеме подключения, используется дополнительный блок питания и RGB-усилитель. Ко входу усилителя (на нем написано «Input») подключается конец первой ленты, к выходу (написано «Output») — начало второй.

Не перепутайте цвета проводов: каждый провод подключается в соответствующий разъем. На питающие контакты, подключите провода от блока питания.

Эта схема немного сложнее и по стоимости она получается чуть подороже первой, но при этом:
Размеры блоков питания существенно меньше
Можно использовать почти все имеющиеся в продаже контроллеры
Можно подключать неограниченное количество лент

Если вам трудно разбираться в электрических схемах, то вот вам фотография, на которой все видно. Еще раз. Если нужна одна лента, то используете блок питания и контроллер. Если нужно две и более ленты, то добавляете усилитель и еще один блок питания.

Установка светодиодной RGB-ленты пугает многих не столько ценой, сколько кажущейся сложностью установки. Надеюсь эта статья помогла вам разобраться с этим вопросом.