Сетевой источник питания с высокими удельными параметрами

ОБЩИЕ СВЕДЕНИЯ. Существует четыре основных типа сетевых источников питания:

Существует четыре основных типа сетевых источников питания:

− бестрансформаторные, с гасящим резистором или конденсатором;

− линейные, выполненные по классической схеме: понижающий трансформатор − выпрямитель − фильтр − стабилизатор;

− вторичные импульсные: понижающий трансформатор − фильтр − высокочастотный преобразователь 20-400 кГц;

− импульсный высоковольтный высокочастотный: фильтр − выпрямитель

220 В − импульсный высокочастотный преобразователь 20-400кГц.

Линейные источники питания отличаются предельной простотой и надежностью, отсутствием высокочастотных помех. Высокая степень доступности комплектующих и простота изготовления делает их наиболее привлекательными для повторения начинающими радиоконструкторами. Кроме того, в некоторых случаях немаловажен и чисто экономический расчет — применение линейных ИП однозначно оправдано в устройствах, потребляющих до 500 мА, которые требуют достаточно малогабаритных ИП. К таким устройствам можно отнести [2]:

− зарядные устройства для аккумуляторов;

− блоки питания радиоприемников, систем сигнализации и т.д.

Некоторые конструкции, не требующие гальванической развязки с промышленной сетью, можно питать через гасящий конденсатор или резистор, при этом потребляемый ток может достигать сотен миллиампер.

Эффективность и рациональность применения линейных ИП значительно снижается при токах потребления более 1 А. Причинами этого являются следующие явления:

− колебания сетевого напряжения сказываются на коэффициенте стабилизации;

− на входе стабилизатора приходится устанавливать напряжение, которое будет заведомо выше минимально допустимого при любых колебаниях напряжения в сети, а это значит, что когда эти колебания высоки, необходимо устанавливать завышенное напряжение, что в свою очередь влияет на проходной транзистор (неоправданно большое падение напряжения на переходе, и как следствие – высокое тепловыделение);

– большой потребляемый ток требует применения габаритных радиаторов на выпрямляющих диодах и регулирующем транзисторе, ухудшает тепловой режим и габаритные размеры устройства в целом [2].

В настоящее время традиционные линейные источники питания все больше вытесняются импульсными. Однако, несмотря на это, они продолжают оставаться весьма удобным и практичным решением в большинстве случаев радиолюбительского конструирования (иногда и в промышленных устройствах). Причин тому несколько: во-первых, линейные источники питания конструктивно достаточно просты и легко настраиваются, во-вторых, они не требуют применения дорогостоящих высоковольтных компонентов и, наконец, они значительно надежнее импульсных ИП.

Типичный линейный ИП содержит в своем составе:

– сетевой понижающий трансформатор;

– диодный мост с фильтром;

– стабилизатор, который преобразует нестабилизированное напряжение, получаемое со вторичной обмотки трансформатора через диодный мост и фильтр, в выходное стабилизированное напряжение, причем это выходное напряжение всегда ниже нестабилизированного входного напряжения стабилизатора [1].

Основным недостатком такой схемы является низкий КПД и необходимость резервирования мощности практически во всех элементах устройства (т.е. требуется установка компонентов допускающих большие нагрузки, чем предполагаемые для ИП в целом, например, для ИП мощностью 10 Вт требуется трансформатор мощностью не менее 15 Вт и т.п.). Причиной этого является принцип, по которому функционируют стабилизаторы линейных ИП. Он заключается в рассеивании на регулирующем элементе некоторой мощности

. (1)

Из формулы следует, что чем больше разница между входным и выходным напряжением стабилизатора, тем большую мощность необходимо рассеивать на регулирующем элементе. С другой стороны, чем более нестабильно входное напряжение стабилизатора и чем больше оно зависит от изменения тока нагрузки, тем более высоким оно должно быть по отношению к выходному напряжению. Таким образом, видно, что стабилизаторы линейных ИП функционируют в достаточно узких рамках допустимых входных напряжений, причем эти рамки еще сужаются при предъявлении жестких требований к КПД устройства. Зато достигаемые в линейных ИП степень стабилизации и подавление импульсных помех намного превосходят другие схемы [2].

Основные типы и критерии выбора источника питания

Основные типы и критерии выбора источника питания

Первая проблема, с которой при конструировании любых устройств сталкиваются и начинающие и опытные радиолюбители — это проблема электропитания. В настоящей главе будут рассмотрены разнообразные сетевые источники питания (микромощные, средней мощности, мощные). При выборе и разработке источника питания (далее ИП) необходимо учитывать ряд факторов, определяемых условиями эксплуатации, свойствами нагрузки, требованиями к безопасности и т.д. В первую очередь, конечно, следует обратить внимание на соответствие электрических параметров ИП требованиям питаемого устройства, а именно:

Являясь неотъемлемой частью радиоэлектронной аппаратуры, средства вторичного электропитания должны жестко соответствовать определенным требованиям, которые определяются как требованиями к самой аппаратуре в целом, так и условиями предъявляемыми к источникам питания и их работе в составе данной аппаратуры. Любой из параметров ИП, выходящий за границы допустимых требований, вносит диссонанс в работу устройства. Поэтому, прежде чем начинать сборку ИП к предполагаемой конструкции, внимательно проанализируйте все имеющиеся варианты и выберите такой ИП, который будет максимально соответствовать всем требованиям и вашим возможностям. Существует четыре основных типа сетевых источников питания:

220 В — импульсный высокочастотный преобразователь 20-400кГц.

Линейные источники питания отличаются предельной простотой и надежностью, отсутствием высокочастотных помех. Высокая степень доступности комплектующих и простота изготовления делает их наиболее привлекательными для повторения начинающими радиоконструкторами. Кроме того, в некоторых случаях немаловажен и чисто экономический расчет — применение линейных ИП однозначно оправдано в устройствах, потребляющих до 500 мА, которые требуют достаточно малогабаритных ИП. К таким устройствам можно отнести:

Необходимо отметить, что некоторые конструкции, не требующие гальванической развязки с промышленной сетью, можно питать через гасящий конденсатор или резистор, при этом потребляемый ток может достигать сотен мА. Эффективность и рациональность применения линейных ИП значительно снижается при токах потребления более 1А. Причинами этого являются следующие явления:

Достаточно просты в изготовлении и эксплуатации вторичные импульсные преобразователи напряжения, их отличает простота изготовления и дешевизна комплектующих. Экономически и технологически оправдано конструировать ИП по схеме вторичного импульсного преобразователя для устройств с током потребления 1-5 А, для бесперебойных ИП к системам видеонаблюдения и охраны, для усилителей низкой частоты, радиостанций, зарядных устройств.

Лучшая отличительная черта вторичных преобразователей перед линейными — массогабаритные характеристики выпрямителя, фильтра, преобразователя, стабилизатора. Однако их отличает большой уровень помех, поэтому при конструировании необходимо уделить внимание экранированию и подавлению высокочастотных составляющих в шине питания.

В последнее время получили достаточно широкое распространение импульсные ИП, построенные на основе высокочастотного преобразователя с бестрансформаторным входом. Эти устройства, питаясь от промышленной сети

110В/220В, не содержат в своем составе громоздких низкочастотных силовых трансформаторов, а преобразование напряжения осуществляется высокочастотным преобразователем на частотах 20-400 кГц. Такие источники питания обладают на порядок лучшими массогаба-ритными показателями по сравнению с линейными, а их КПД может достигать 90% и более. ИП с импульсным высокочастотным преобразователем существенно улучшают многие характеристики устройств, питаемых от этих источников, и могут применяться практически в любых радиолюбительских конструкциях. Однако их отличает достаточно высокий уровень сложности, высокий уровень помех в шине питания, низкая надежность, высокая себестоимость, недоступность некоторых компонентов. Таким образом, необходимо иметь очень веские основания для применения импульсных ИП на основе высокочастотного преобразователя в любительской аппаратуре (в промышленных устройствах это в большинстве случаев оправдано). Такими основаниями могут служить: вероятность колебаний входного напряжения в пределах

Блоки питания электронных устройств — устройство и принцип работы основных схем

ектронные устройства можно условно разделить на две группы: мобильные и стационарные. Первые из них используют так называемые первичные источники питания, — гальванические батареи или аккумуляторы, которые имеют запас электроэнергии.

Здесь сразу вспоминаются мобильные телефоны, фотоаппараты, пульты дистанционного управления и много других портативных устройств. В этом случае аккумуляторы и батареи вне конкуренции, поскольку заменить их попросту нечем. Единственным неудобством, платой за мобильность является то, что время действия таких устройств ограничено емкостью батарей, и, как правило, невелико. Исключением из этого правила являются, разве что, наручные часы. Потребление энергии у них очень низкое, что заложено на стадии проектирования, поэтому на одной батарейке часы могут ходить целый год, а то и больше.

Читайте также  Оптроны – современные приборы управления. часть 2

Стационарные устройства, как правило, получают питание от вторичных источников. Такие источники собственной энергии не вырабатывают, а лишь преобразуют электрический ток до требуемых параметров: из сетевого напряжения 220В блоки питания вырабатывают пониженные напряжения, необходимые для питания полупроводниковой аппаратуры. Такие блоки питания часто называются сетевыми.

Опасные сетевые блоки питания

Самыми простейшими являются блоки питания с гасящим конденсатором или резистором. Подобные блоки описывались в радиотехнических журналах в девяностые годы прошлого века. КПД таких блоков питания крайне мал не более 20%, поэтому они применяются для питания устройств, мощность которых не более единиц ватт: можно запитать одну – две микросхемы.

Основным недостатком подобных блоков является то, что они гальванически не развязаны от первичной сети, в результате чего вся схема – потребитель также находится под опасным потенциалом. Прикосновение к элементом такой схемы совсем нежелательно, и даже опасно. Поэтому налаживание подобных конструкций выполняется с использованием развязывающего трансформатора, описанного в статье «Как изготовить трансформатор безопасности».

Но даже при таком налаживании эти схемы все равно остаются опасными, поэтому рекомендовать их для применения не следует. Если все же такой схемы не избежать (какой смысл делать отдельный источник для питания фотореле, которое висит высоко на столбе?), то остается надеяться на аккуратность и грамотность пользователя.

Безопасные блоки с гасящим конденсатором

Схема блока питания с гасящим конденсатором и гальванической развязкой от сети описана в статье «Терморегулятор для сварки пластмасс» и показана на рисунке 1. Автор схемы В. Кузнецов.

Рисунок 1. Схема блока питания с гасящим конденсатором и гальванической развязкой от сети

Схема подробно описана в упомянутой статье, была многократно повторена (не один десяток раз) и показала отличные результаты. Поэтому здесь отметим только основные моменты. Сетевое напряжение через гасящий конденсатор C1 выпрямляется мостом VD1 и стабилизируется на уровне 24В стабилизатором на транзисторе VT3. От этого стабилизатора питается генератор, выполненный на транзисторах VT1, VT2. «Силовой» трансформатор Тр2 выполнен на ферритовом кольце диаметром 20 мм.

Такой трансформатор на частоте 40…50 КГц может выдать в нагрузку мощность до 7 ватт, что вполне достаточно для питания схемы, описанной в статье. Выходные напряжения стабилизируются простейшими параметрическими стабилизаторами на стабилитронах VD5, VD6. Благодаря наличию развязывающего трансформатора Тр2, питаемая нагрузка гальванически развязана от сети, что обеспечивает электробезопасность схемы.

Представьте себе, как бы выглядела термопара, находящаяся под потенциалом сети! Но следует заметить, что все, что изображено на схеме справа от сердечника трансформатора Тр2, находится под потенциалом сети, и требует аккуратного и осторожного обращения. Еще одна схема безопасного блока питания с гасящим конденсатором показана на рисунке 2.

Рисунок 2. Схема безопасного блока питания с гасящим конденсатором

Первичная обмотка трансформатора малогабаритных блоков питания содержит несколько (четыре…семь) тысяч витков сверхтонкого провода,- 0,05…0,06мм . Чтобы такую обмотку не мотать предлагается с помощью гасящего конденсатора снизить напряжение на первичной обмотке до 30…40В. В этом случае первичная обмотка содержит не более 600…700 витков достаточно толстого провода (0,1…0,15мм). Вторичная обмотка рассчитывается как обычно на требуемое напряжение.

Трансформатор можно намотать на магнитопроводе Ш12*15 от абонентского громкоговорителя. Более точно значение напряжений можно подобрать при помощи конденсатора C1. За счет использования трансформатора выход блока питания гальванически развязан от сети. Мощности подобного блока питания вполне хватало, чтобы запитать простенький генератор (шесть или семь микросхем серии К561) для настройки телевизоров. Напряжение питания было сделано 9 В. Подробно об устройстве и налаживании этого блока питания можно прочитать в журнале «Радио» №12_98.

Блоки питания современной аппаратуры

Современная аппаратура промышленного изготовления, например, компьютеры, музыкальные центры, телевизоры, — большей частью имеет импульсные источники питания.

Основная идея таких источников в следующем. Выпрямленное напряжение сети преобразуется инвертором в переменное частотой в несколько десятков, а иногда и сотен килогерц. На таких частотах трансформаторы получаются очень малых размеров, что позволяет значительно уменьшить габариты и массу блоков питания.

После трансформатора импульсные напряжения выпрямляются и сглаживаются фильтрами, размер которых за счет высокой частоты также невелик по сравнению с традиционными блоками питания, работающих на частоте сети. Стабилизация выходных напряжений осуществляется в первичной цепи при помощи широтно-импульсной модуляции – ШИМ, что также способствует повышению КПД и уменьшению габаритов блока питания.

Не столь давно считалось, что импульсные источники питания оправдывают себя лишь начиная от мощности не менее 100 Ватт. При этом основным критерием считалась удельная мощность, т.е. мощность, приходящаяся на 1 кубический дециметр объема блока питания. При мощности импульсного источника ниже 100 Вт, удельная мощность импульсного источника получалась ниже, чем у обычного блока питания. Попросту сказать, габариты импульсного источника могли получиться больше, чем у обычного трансформаторного.

Но техника не стоит на месте, элементная база электроники развивается очень быстро. Современная промышленность освоила производство импульсных источников мощностью всего в несколько ватт, достаточно вспомнить хотя бы зарядные устройства для сотовых телефонов и «пальчиковых» аккумуляторов.

Здесь уже просто на глаз видно, что удельная мощность таких источников выше, чем аналогичных «зарядников» (совсем недавно были и такие) с сетевым трансформатором. Вот так хорошо дело обстоит в промышленном производстве: на одном только обмоточном проводе, да трансформаторном железе и миниатюрных корпусах получается огромная экономия.

В условиях же любительского технического творчества для изготовления конструкции в единственном экземпляре вполне подходит традиционный источник питания с сетевым трансформатором. Хотя изредка приходится искать нестандартные решения проблемы электропитания, например при ремонте аппаратуры.

Импульсный блок питания из электронного трансформатора

Вот, пожалуйста, наглядный практический пример. В звуковом микшере импортного производства почему-то произошел обрыв первичной обмотки силового трансформатора, который был выполнен на кольцевом магнитопроводе.

Мощность данного трансформатора была около 20 Вт, что наводило на грустные размышления о том, что количество витков первичной обмотки, скорее всего, не одна тысяча витков (чем меньше размеры трансформатора, тем большее количество витков приходится на один вольт, и провод тоньше). А перематывать вручную на кольце… Но и это было не главным: высота кольцевого трансформатора была настолько мала, что заменить другим, уже готовым Ш-образным возможности не представлялось, не позволяли габариты корпуса.

Решить вопрос позволило применение электронного трансформатора, правда, потребовалась некоторая доработка, которая описана в статье «Как сделать блок питания из электронного трансформатора?». Смысл переделки в том, что электронный трансформатор рассчитан на работу с лампами накаливания, которые к нему подключены постоянно, то есть запуск трансформатора происходит под нагрузкой. Если же нагрузки нет, то схема не запускается. Тот же эффект наблюдается при незначительной нагрузке.

Представьте себе, что нагрузка мощный усилитель звуковой частоты: как только прекратился звук, — пауза, так блок питания выключился и больше не запустился. Вот доработка электронного трансформатора и сводится к тому, чтобы блок питания на его основе включался и работал даже без нагрузки.

Электронный трансформатор как раз тот случай, где изготовление импульсного источника упрощено до предела: все уже сделано, детали все на месте, трансформаторы уже все намотаны, а цена просто смешная. Просто набор «Сделай сам»! Даже в случае неудачного эксперимента, выбросить будет совсем не жалко. Если детали покупать в розницу, получится намного дороже. Поэтому в домашних условиях проще изготовить обычный трансформаторный блок питания.

Сетевые адаптеры из Китая

В случае, когда мощность нагрузки невелика, спасти положение вполне может сетевой адаптер китайского производства. Это всем известный блок, выполненный в виде большой сетевой вилки с хвостом, оканчивающимся разъемом, который, почему-то называют «джек». Внутри вилки находится сетевой трансформатор мощностью не более 5…7 ватт, выпрямительный мостик и сглаживающий конденсатор.

Читайте также  Фильтрующая вытяжка для паяльных работ

В некоторых блоках имеется движковый переключатель, позволяющий ступенчато изменять выходное напряжение в пределах 5…15В. Выходное напряжение, указанное на переключателе, соответствует работе под нагрузкой. Например, если указано 12В, то без нагрузки можно намерять почти 18В. Просто конденсатор заряжается до амплитудного значения. Но под нагрузкой, все-таки, будет 12В, что соответствует величине действующего значения переменного напряжения.

Конструкция подобных адаптеров упрощена до предела: китайцы не удосужились даже установить предохранитель. Да по большому счету не слишком он тут и нужен. Первичная обмотка намотана таким тонким проводом, что он сам по себе является неплохим предохранителем. Если первичная обмотка сгорит, то остается этот адаптер просто выбросить и купить новый.

Цена таких адаптеров невелика, чтобы заниматься их ремонтом. Экономия обмоточного провода в этих адаптерах очень заметна. Такие блоки питания заметно греются даже на холостом ходу, без нагрузки.

В следующей статье будет рассказано, как можно самостоятельно сделать простой и надежный блок питания для домашней лаборатории.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Power Supply

Эта работа участвует в нашем конкурсе статей.

Современные источники питания строят по схемам с импульсной передачей энергии, большие трансформаторы и линейные стабилизаторы с огромными радиаторами канули в лету.

Сетевой блок питания.

реклама

В сетевых БП наиболее распространены 2 типа конвертеров: HalfBridge — полумостовой преобразователь и FlyBack — обратноходовой преобразователь. У обоих типов есть свои достоинства и недостатки.

HalfBridge достаточно спокойно относится к завышенному входному напряжению и большому диапазону токов нагрузки, но даже малейшее снижение входного напряжения ниже минимального сразу сказывается на величине и стабильности выходных напряжений. Основная идея построения HalfBridge заключается в следующем: если соединить источник питания и нагрузку через ключ и периодически его замыкать, то усредненное напряжение на нем будет зависеть от соотношения времени замкнутого состояния ключа от его периода (скважность), умноженного на величину входного напряжения. Т.о., для стабилизации этого напряжения при изменении входного источника необходимо так менять скважность, чтобы произведение скважности на входное напряжение было постоянным. Но, если входное стало меньше необходимого выходного, никакой скважностью исправить не удастся, ведь скважность может меняться от 0 (ключ никогда не замыкается) до 1 (ключ замкнут всегда). В данной ситуации разумно предложить увеличение номинального входного напряжения, но тут вступает в силу другой фактор — ток нагрузки равен току из входного источника и приведенная мощность БП возрастет. Например, при полуторакратном запасе по напряжению необходимо сконструировать БП с полуторакратным превышением номинальной мощности, для чего применяются транзисторы на бОльший ток и трансформатор с бОльшей габаритной мощностью. Частично уменьшить этот вредный запас можно применением активного PFC, не путать с пассивным PFC.

FlyBack строится по другой топологии, в нем энергия накапливается в трансформаторе (вернее дросселе) и при закрывании ключа передается на выходные нагрузки. Качество трансформатора должно быть значительно лучше, чем в HalfBridge — из-за некоторой неидеальности связи первичной и вторичной обмоток существует так называемая индуктивность рассеивания. Это паразитный параметр и его величина чрезвычайно сильно сказывается на параметрах всего преобразователя. Из-за индуктивности рассеивания часть энергии выдается в виде высоковольтного импульса на первичной обмотке трансформатора, а следовательно, и на ключевом элементе. Величина этого выброса определяется индуктивностью рассеивания и энергией, накопленной в трансформаторе. Последнее пропорционально квадрату выходной мощности блока питания. Т.о., при повышении нагрузки на силовой ключ одновременно действуют два вредных фактора — увеличивается ток через ключ и напряжение на нем. С этим недостатком борются введением различных демпферных цепочек, но устранить его в топологии FlyBack невозможно. Существуют резонансные конверторы, которые компенсируют паразитную индуктивность в резонансный контур, что позволяет значительно повысить рабочую частоту преобразователя и общий КПД, но у них тоже есть свои ограничивающие факторы, поэтому и не распространены. Из перечисленного следует, что FlyBack очень спокойно относится к понижению входного напряжения, но не переносит даже кратковременного превышения выше критического — транзистор просто пробивается. Особенно неприятно соотношение предельной нагрузки и повышенного входного напряжения. Первое вызывает большой импульс напряжения из-за индуктивности рассеивания и при наложении на второе может вызвать пробой. Второй недостаток FlyBack — он плохо относится и к диапазону токов нагрузки. При маленьком токе нагрузки в трансформаторе сложно накопить столь малую энергию из-за относительно небольшой его индуктивности и сам конвертер может перейти в прерывистый режим работы, т.е. выходные напряжения будут иметь сильную пульсацию вплоть до дикого диапазона 0 — 200% и больше. Превышение тока нагрузки также вредно, ведь это вызывает повышение паразитного импульса напряжения на первичной стороне.

Внешним проявлением примененного типа конвертера может служить диапазон входных напряжений. Если указано 90-24 или «autoswitch» — это FlyBack, для HalfBridge такой диапазон невозможен и для него или ставят переключатель 110-220 или ограничивают рамками 180-250V. Как следует из особенностей, HalfBridge очень чувствителен к качеству питающего напряжения, особенно его провалам, и емкости конденсатора входного выпрямителя сети 220V. При отсутствии активного PFC, его емкость должна быть не меньше выходной мощности БП, рекомендуемое значение — в 2 раза больше. Например, для мощности нагрузки в 150W его номинал должен быть ни в коем случае не меньше 150uF, а лучше — 330uF. Если установлена меньшая емкость, то возникнут 2 деструктивных момента из-за очень значительного напряжения пульсаций на нем:

  • ухудшается (возрастает) минимальное рабочее напряжение сети
  • увеличивается нагрев самого конденсатора.

Прецизионный источник опорного напряжения (ИОН) AD584LH: проверяем точность мультиметров в домашних условиях

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о недорогом прецизионном источнике опорного напряжения (ИОН) на базе микросхемы AD584LH, позволяющим в домашних условиях проверить различные измерительные приборы на соответствие заявленной точности. Прибор достаточно популярный, поэтому если заинтересовались, милости прошу под кат.

Приобрести ИОН можно здесь

Характеристики:

  • — Тип – ИОН
  • — Напряжение питания – 4,5-30V
  • — Выходное напряжение – 2,5V, 5V, 7,5V или 10V
  • — Используемая микросхема – AD584LH
  • — Размеры платы – 56мм*47мм

Внешний вид:

Источник опорного напряжения AD584LH (в дальнейшем ИОН) поставляется в обычном антистатическом пакете:

У некоторых продавцов в комплекте еще идет поверочная бирка с контрольными значениями, но в моем случае ее не было.

Основное назначение прибора — формирования прецизионного малошумящего напряжения известной величины с минимальными температурными и временными дрейфами. ИОН могут применяться как источники эталонного напряжения для АЦП, ЦАП, для источников питания и т.д. Данный прибор позволяет выставить на выходе четыре значения выходного напряжения: 2,5V, 5V, 7,5V и 10V. Конечно, диапазон небольшой, но общее представление о точности измерительного прибора дать может.

Выглядит он следующим образом:

Представляет собой плату, на которой распаяны следующие основные элементы:

  • — микросхема AD584LH
  • — два вида разъемов питания
  • — выключатель питания
  • — четыре контактные клеммы
  • — два типа выходных клемм
  • — индикатор
Читайте также  Сварочный полуавтомат с сенсорным управлением

Монтаж платы односторонний:

Присутствуют небольшие следы несмытого флюса, но на работоспособность это никак не влияет.

Рабочее напряжение ИОН составляет от 4,5V до 30V, наиболее точные результаты получаются при напряжении 12-15V. Напряжение питания ИОН должно быть выше выходного как минимум, на 1 вольт. На плате присутствует два вида разъема питания:

Внутренний хорошо подходит для работы с 12V батарейками типа 23А:

Сама по себе батарейка там не поджимается, а вот со специальным держателем (холдером) встает как родная:

Такие держатели достаточно распространены и стоят меньше доллара за десять штук, поэтому рекомендую приобрести:

К тому с помощью таких источников питания (батареек) можно запитывать различные маломощные приборы, которым требуется для работы более 10V.

Второй разъем предназначен для подключения внешнего питания, преимущественно от сетевого источника. Представляет собой разъем DC 5мм:

У каждого разъема присутствует по одному диоду Шоттки для защиты от переполюсовки питания, поэтому по-дурости сжечь плату не получится.

Что касается самой микросхемы, то есть несколько серий и AD584L самая точная (см. спецификации). Серии «J» и «S» имеют погрешность 30mV при 10V, «K» и «T» 10mV при 10V, а «L» всего 5mV, поэтому выбирайте именно ее.

Габариты:

Размеры платки составляют всего 56мм*47мм:

По традиции сравнение с тысячной банкнотой и коробком спичек:

Тестирование:

В качестве сравнения будем использовать мультиметр UNI-T UT61E как самый точный из всей серии. Первым делом посмотрим точность при 10V:

Очень неплохо, учитывая тот факт, что сама микросхема имеет небольшую погрешность. При 10V допускается погрешность 0,005V.

Опорное напряжение 7,5V:

Погрешность самой микросхемы на этом напряжении составляет 4mV.

Опорное напряжение 5V:

Опорное напряжение 2,5V:

Конечно, немного огорчает отсутствие бирки с измеренными контрольными значениями, но ходят слухи, что китайцы ее «рисуют» от балды. В любом случае точности для домашних измерений хватает с большим запасом.

При использовании источника питания с напряжением меньшим, чем установлено на выходе, погрешность огромная. Напряжение батарейки 23А составляет 9,5V, выставлено 10V, а в действительности на выходе ИОН около 8,41V:

При установке на выходе 7,5V, показания в норме:

При 2,5V также все в норме:

На мой взгляд, разница по напряжению должна быть не менее одного вольта, чтобы получить хорошую точность на выходе ИОН.

Выоды:

отличная и главное недорогая плата для проверки точности измерительных приборов в домашних условиях. Огорчает лишь небольшой диапазон выходного напряжения, хотелось бы больше. По ссылке самая точная из серии, рекомендую именно ее.

Сетевой источник питания для аппаратуры

Сетевой источник питания для аппаратуры с автономным питанием обычно рассчитана на номинальное напряжение питания кратное 1,5V, – стандартному значению номинального напряжения одного гальванического элемента. Питание от гальванической батареи хорошо только в переносном режиме, но как только появляется доступ к электросети очень желательно перейти на питание от неё, потому что емкость гальванической батареи весьма ограничена. Сетевой источник питания должен состоять из силового трансформатора, выпрямителя и стабилизатора с регулируемым выходным напряжением.

На рисунке показана схема сетевой источник питания для аппаратуры

Трансформатор на схеме не показан, потому что это может быть практически любой силовой трансформатор с выходным переменным напряжением в пределах 15-20V. Например, можно использовать китайский трансформатор с вторичной обмоткой 9-0-9V, используя крайние выводы, а средний отвод не подключая в схему. Либо любой другой покупной или самодельный вариант.

Регулировка выходного напряжения осуществляется переключением десяти фиксированных значений от 1,5V до 15V с шагом в 1,5V. Таким образом, можно питать аппаратуру, питающуюся от гальванического источника состоящего из числа гальванических элементов от одного до десяти последовательно включенных.

Переменное напряжение 18V (от 15 до 20V) поступает на мостовой выпрямитель на диодах VD1-VD4.Выпрямленное напряжение сглаживается конденсатором С1.

Стабилизатор напряжения выполнен на основе регулируемого стабилизатора А1 типа LM317. Данная микросхема представляет собой регулируемый интегральный стабилизатор напряжения от 1,25 до 33V при входном напряжении не более 37V. Величина выходного напряжения зависит от соотношения сопротивлений двух резисторов, образующих делитель напряжения на выходе микросхемы, для подачи на регулирующий вход. В схеме на рисунке 1 этот делитель состоит из резистора R1 и резисторов R2-R14, переключаемых переключателем S1.

При указанных на схеме величинах сопротивления резисторов R1-R14 фактические выходные напряжения будут следующими: 1,51V, 3,08V, 4,45V, 5,9V, 7,47V, 9,03V, 10,58V, 11,88V, 13,51V и 15,12V. Но это при условии, что сопротивления резисторов R1-R14 точно такие, как подписано на схеме. На деле существует погрешность номинальных сопротивлений постоянных резисторов, и поэтому, в пределах погрешности реальное сопротивление может отличаться. Здесь может быть два выхода из положения, – использовать прецизионные резисторы, что дорого и не всегда доступно, или из кучи резисторов общего применения с помощью точного омметра выбрать подходящие, либо набирать необходимые величины сопротивления составляя их из нескольких резисторов.

Есть и третий вариант, не годный для серийного производства, но вполне пригодный для радиолюбительского творчества.

Дело в том, что сопротивление резистора зависит от толщины его резистивного слоя. Можно взять резистор немного более низкого сопротивления, чем требуется, а затем с помощью нулевой шкурки подточить его поверхность. При этом сопротивление резистора будет увеличиваться. Как показывает практика, таким образом можно увеличить фактическое сопротивление резистора в пределах 8-10%, но не более, так как при более значительном стачивании резистивного слоя может возникнуть его разрыв и сопротивление резисторами VT1-VT10. А индикация выходного напряжения с помощью десяти светодиодов HL1-HL10.

Основу схемы переключателя составляет десятичный счетчик D1 типа К561ИЕ8. Кнопкой S2 счетчик устанавливается в нулевое положение, что соответствует выходному напряжению 1,5V. Кнопка S1 служит для последовательного выбора выходного напряжения по нарастающей. Каждое нажатие кнопки S1 формирует импульс, поступающий на счетный вход D1. При этом счетчик переходит на одно положение вверх. То есть, каждое нажатие S1 прибавляет к выходному напряжению 1,5V.

Конденсатор СЗ служит для устранения ошибок переключения от дребезга контактов кнопки S1.

Если нужно чтобы в момент подачи питания переключатель гарантированно устанавливался на минимальное напряжение, нужно параллельно кнопке S2 включить конденсатор, такой же как СЗ.

Питается логическая схема переключателя от источника постоянного тока напряжением 12V, создаваемым интегральным стабилизатором А2. Монтаж схемы по рисунку 1 выполнен без печатной платы.

Микросхема А1 закреплена на радиаторе, который в свою очередь закреплен в корпусе источника питания. Конденсатор С1 прикреплен в корпусе источника питания с помощью проволочного хомута. Монтаж резисторов R2-R14 выполнен на контактах галетного переключателя S1. Переключатель S1 – галетного типа на 11 положений и 1 направление. Используется только десять положений, а 11-е заблокировано соединением одиннадцатого контакта с соседним десятым.

Схема по рисунку 2 собрана на печатной плате,

показанной на рисунке 3. На плате есть три проволочные перемычки. На рисунке 3 печатные дорожки показаны со стороны их расположения. Если плату делать фотоэкспонированием или «лазерным утюгом» будет нужен зеркальный рисунок, показанный на рис.4.

Диоды 1N4004 можно заменить любыми аналогичными диодами, например, 1N4002, 1 N4007, 1N5404, 1N5405, 1N5406, 1N5407, 1 N5408, КД209, КД105, КД226 и другими. Транзисторы КТ3102 можно заменить любыми аналогами, например, 2SC945, 2SC815, 2SC1815, 2SC1845, ВС547, SS9014, КТ503.
Все конденсаторы должны быть на напряжение не ниже указанного на схеме. Микросхему К561ИЕ8 можно заменить на К176ИЕ8 или зарубежный аналог 4017. Стабилизатор по схеме на рис.1 можно использовать и в автомобиле, но верхний предел напряжения ограничить 9V (резисторы R8-R14 удалить), потому что напряжения аккумулятора автомобиля 11-14V будет недостаточно для эффективной стабилизации напряжения выше 9V.