Простой измеритель температуры

Как сделать термометр своими руками

Одной из характеристик среды, всегда интересовавших человека, была температура. Знание текущей дома или на улице обуславливает нахождение людей в помещении и возможность выхода их за пределы комфортного пространства. Не последним, при надлежащей информированности, будет и выбор носимой одежды. Посудите сами: изнывая от жары, и наблюдая на домашнем градуснике +35, при этом видя на уличном +20, где пожелает остаться человек? Или на оборот, при возникновении необходимости выхода, но в случае внешней температуры далеко ниже 10, устройство ее измеряющее, предупредит владельца о необходимости тепло одеться.

Возможность изготовить термометр своими руками доступна любому человеку, даже в тех случаях, если он и понятия не имеет об электронике, механике или связанных науках. Достаточно вспомнить историю и виды существовавших устройств, измеряющих температуру.

Изначально, градусники были аналоговыми на основе изменения свойств различных жидкостей и материалов при нагреве и охлаждении. Все они расширяются при повышении температуры и сужаются в процессе ее падения. Соответственно, столбик жидкости внутри стеклянной трубочки, выступавшей в роли индикатора, поднимался или опускался. Для металлических спиралей, выступавших в роли градусника, использовался факт их сужения на холоде или раскручивания в тепле. На конец подобной пружины помещалась стрелка, которая двигалась в зависимости от окружающей температуры и указывала на текущее ее значение по шкале.

На смену аналоговым измерителям пришли электромеханические градусники. Основой их работы стали терморезисторы и чувствительные к характеристике диоды. Первые в зависимости от температуры изменяют сопротивление, у вторых с ее повышением нарушается p-n переход, позволяя легче идти току в обратном направлении. В качестве индикаторов для электромеханики применялись стрелочные вольтметры и амперметры, градуированные к работе с конкретным чувствительным элементом.

Дальнейшее развитие технологий и перевод аналоговой обработки в цифровую коснулась и градусников. Теперь реакцию датчика определяет «умный» микроконтроллер, преобразовывая ее в понятный людям вид и высвечивая итоговые градусы числами на индикаторе. Плюсом последних аппаратов, служит возможность дальнейшей обработки, сохранения и передачи полученной информации о текущем состоянии окружающей среды.

Аналоговый термометр

Начнем с самого простого способа изготовления бытового термометра, который не требует знания электрической части. Понадобится:

  • бутылка или любая иная относительно небольшая емкость, главное требование к которой, чтобы соломинка помещалась в нее почти полностью;
  • пластилин;
  • тушь или иной краситель;
  • прозрачная или матовая соломинка для коктейля;
  • содержащая спирт жидкость (духи, одеколоны, водка или любые аналогичные);
  • вода;

Рецепт изготовления: заливаем емкость до края, смесью воды пополам со спиртом. Добавляем краситель и перемешиваем. Опускаем соломинку до половины в жидкость. Фиксируем пластилином, плотно замазав промежуток между ней и стенками.

Позади получившегося индикатора размещают лист бумаги, на котором в зависимости от показаний эталонного градусника и высоты жидкости в соломинке размечают значения температур.

Точность устройства зависит только от качественной градации индикатора. Пределы измеряемой температуры лежат в промежутке от −40 °C до +90 °C.

Простой электронный

Для того, чтобы сделать электронный градусник, требуется немного более сложная конструкция. Индикатором температуры в нем служит амперметр чувствительностью в 50 мкА, а датчиком выступает терморезистор типа СТЗ-19 с унарным номиналом сопротивления в 10 кОм. У последнего есть много аналогов различных производителей, на тот случай, если не удастся найти оригинал указанной маркировки.

Итак, чтобы создать электронный термометр, потребуются:

Обозначение на схеме Наименование Аналоги
VT1, VT2 Транзисторы KT315A КТ3102 (А, Б, В, Г)
S1 Тумблер включения
R1 Резистор 68 Ом
R2 Переменный резистор 680 Ом
R3 Переменный резистор 22 кОм
R4, R5 Резисторы 6.2 кОм
R6* -//- 9.1 кОм
R7* -//- 910 Ом
R8 Терморезистор СТЗ-19 10 кОм
GB1 Две пальчиковые батарейки 1.5 В
S2 Двухпозиционный переключатель режима работы калибровка/измерение
PA1 Любой микроамперметр с предельным положением стрелки в 50 мкА. Желательно наибольшей длины шкалы, для последующего удобства разметки.

Схема

Единственное замечание к конструкции — терморезистор R8 нужно вынести отдельно на двух проводах от остальных элементов, чтобы излучаемое ими тепло в процессе работы не влияло на итоговые показания. В остальном схема электронного термометра отображена на картинке:

Наладка

Прежде чем производить градуировку шкалы микроамперметра под показания температуры, требуется подобрать суммарное сопротивление R6 и R7 равное значению, которое выдает R8 при эталонной температуре, планируемой, как самой низкой в измерениях настоящим градусником. Использоваться цепь R6-R7 будет только при калибровке. Впоследствии ее можно безболезненно демонтировать.

Подобрав параметры элементов согласно рекомендации, поворотом R2, при работе аппарата в режиме «калибровка», устанавливаем стрелку PA1 в нулевую позицию. Подстройка R3 должна находится на средине.

Переключив самодельный термометр на «измерение» производим пробу терморезистором нагрева воздуха или жидкости с известной температурой. Отмечаем ее на шкале микроамперметра. Аналогичным образом поступаем с остальными показаниями эталонного градусника.

По окончании настройки устройства, резисторы R4, R6 и R7, вместе с переключателем S2 можно убрать, соединив минусовой контакт амперметра напрямую с точкой связи R5 и R8.

Точность и пределы

Электронно-аналоговый датчик, несмотря на простоту конструкции, весьма точен — до 0.1 градусов Цельсия. Пределы зависят только от минимальной температуры с которой производились установки нуля шкалы, и максимума нагрева до выхода терморезистора из строя. Для СТЗ-19 предел «выживания» находится чуть свыше 110 ºC.

С использованием Arduino

Есть много схем описывающих цифровой термометр с использованием микроконтроллера Ардуино. Все они однообразно берут измеренную температуру от датчика и отображают ее на дисплее, который имеет достаточно небольшой размер. То есть, на улице такую систему конечно использовать можно, но требуется отображающий экран помещать поближе к людям или вообще монтировать его внутри помещений.

Чем хорош микроконтроллер, что шкалой может выступать не только цифровой индикатор. Хотя и последний имеет право на жизнь, для считывания показаний в тех местах, где не видно уличный информатор. Что касается последнего, — в его роли можно использовать длинную самодельную линейку (в роли которой способна выступать и обычная доска любых габаритов), с нанесенной разметкой и перемещаемой сервоприводом стрелкой, демонстрирующей текущие значения температуры.

Механизм

Общая конструкция механизма выглядит следующим образом:

Нижний и верхний конец шкалы определяется физическим положением установленных выключателей, которые замыкает собой подвижный указатель, при достижении предела размеченной длины. Требуется последнее только для стартовой калибровки механизма при первом запуске системы.

Чтобы на точность представленного измерителя не влияли внешние погодные факторы (подвижная струна и направляющая удлиняются в жару и сокращаются при холоде), рекомендуется верхний ролик и поддерживающую проволоку закреплять на жестких пружинах «в натяг».

Схема

Несколько замечаний по схеме. Для числового вывода информации о температуре используется цифровой индикатор TM1637. Дополнительно, описанный ранее механизм, отображает значение на «аналоговой» шкале с помощью биполярного тактового двигателя М1. S1 — блокирующий выключатель, устанавливаемый сверху шкалы, S2 — снизу.

Однократное нажатие кнопки S3 переключает Ардуино в поиск положения нулевой температуры (при этом загорится светодиод LED1). «Стрелка», указывающая градусы, передвинется на требуемый уровень, для последующей отметки места начала измерений. Далее, пользуясь установленным максимумом и минимумом, с помощью линейки, размечают остальную шкалу ниже и выше нуля.

Повторное нажатие S3 переключит устройство в стандартный режим работы. Светодиод погаснет, а стрелка передвинется на позицию, соответствующую текущей температуре.

Питание на ULN2003A подается от иного источника, чем тот, который поддерживает работу самого микроконтроллера. Последнее сделано во избежание «наводок» паразитными токами двигателя на общую схему.

Управляющий скетч

Для работы с TM1637 понадобиться библиотека Groove 4Digital Display, ее адрес:

Скетч можно скачать здесь: https://cloud.mail.ru/public/4gRK/ri7sjm19N

Точность

Округления до целой части в скетче, привели к снижению точности показаний до ближайшего градуса на аналоговой шкале. На числовом индикаторе, подобной проблемы не наблюдается — он отображает полученную температуру корректно.

Высокотемпературный градусник

Для тех случаев, когда требуется измерение температуры свыше пределов «выживания» терморезистора, используется термопара. Ее функциональность сохраняется и при 600 градусах Цельсия. Подобный определитель нагрева среды может быть полезен не только на производстве, но и дома. К примеру, определять температуру работы духовки или текущую на жале паяльника.

Схема

Термопара генерирует микроскопический ток, малым напряжением и силой. Для преобразования полученных характеристик, в понятный микроконтроллеру вид, используется шилд Ардуино с микросхемой MAX6675. Вывод показаний осуществляется на числовой индикатор ТМ1637.

Скетч

Скетч, как и в предыдущем случае, требует библиотеки Groove 4Digital Display для управления индикатором. Преобразователь MAX6675 контролируется процедурами из одноименной коллекции, расположенной по адресу:

Скетч можно скачать здесь: https://cloud.mail.ru/public/Y8Yz/jYWsjgY29

Резюмируя

Создание термометра своими руками доступно любому человеку. Даже в тех случаях, если он не имеет базовых знаний электротехники. Устройства изначально легки в сборке и настройке, а точность измерения вполне достаточна для любых бытовых и промышленных применений. Надеемся, статья в общем и частностях дала понятие, как сделать термометр любого вида в домашних условиях.

Видео по теме

Простой измеритель температуры

Автор: Сэр Мурр
Опубликовано 03.05.2007

Измерение температуры — один из самых насущных видов измерений и в быту, и в работе. Электронный термометр — штука полезная, особенно если он цифровой. Характеристики термометра в первую очередь определяются первичным датчиком температуры, или термопреобразователем. Для краткости будем называть его просто — датчик. Наиболее популярные виды датчиков приведены в таблице.

Существуют и более экзотические датчики температуры — манометрические, кварцевые нетермокомпенсированные резонаторы, пирометрические датчики, и ещё другие, о которых неизвестно даже Премудрому Коту.
Чаще всего применяются термопары — из-за их дешевизны . Это хорошо для промышленности, когда известна характеристика термопары. Чаще всего используются типа ХА (К) с предельной рабочей температурой +1300 о С, и ХК (L) c предельной температурой +850 о C. Прочие виды термопар — более дефицитны. Можно и самому сделать простейшую термопару, например, для паяльной станции — взять один провод от держателя нити накала осветительной лампочки, а другой провод — железный или медный, скрутить их концы плоскогубцами — и вуаля- термопара готова! Но надёжность такого решения весьма сомнительна, лучше всё-таки сварить концы термопары в газовой горелке. Придётся также самому снимать температурную характеристику этой термопары.
У нас на сайте публиковались практические реализации термометров на полупроводниковом датчике и на термопаре. Там же рассматривались способы калибровки термометров на этих датчиках.
Сейчас мы рассмотрим конструкцию термометра типа RTD. Как уже упоминалось, датчики такого типа обладают наиболее высокой линейностью (или, более точно — монотонностью) и повторяемостью характеристик.

Кстати, стоит заметить, что все справочники перепечатывают одну и ту же информацию о необыкновенно высокой линейности таких датчиков. Но достаточно построить график характеристики, как будет видна её нелинейность. Коэффициент пропорциональности между изменением температуры и приращением сигнала называется коэффициентом Зеебека (или Сибека — кому как нравится). Этот коэффициент наиболее равномерен у датчиков типа RTD. А вот у термопар коэффициент Зеебека может даже менять знак, особенно при широком диапазоне измерения. И чем чувствительнее термопара, тем меньше линейность коэффициента.

Читайте также  Разделительные фильтры для встраивания в магнитолу

Простейший датчик RTD можно сделать, намотав соответствующее количество медной проволоки на оправку. Недостаток такого датчика — предельная рабочая температура, ограниченная +200 о С. Гораздо более высокой температурной стойкостью обладают платиновые термометры сопротивления — до +850. +1100 о С . Все образцовые термометры и эталоны делаются на их основе. Конечно, сделать тончайшую платиновую проволоку непросто, поэтому стоимость таких датчиков высока. Но сейчас производители насобачились делать платиновые сопротивления по той же технологии, что и микросхемы — напылением, и стоимость снизилась настолько, что их может купить любой человек.

На фотографии можно видеть три вида исполнения датчиков. Слева направо — в керамическом корпусе для измерения высоких температур; бескорпусный датчик, изготовленный по интегральной технологии; датчик для измерения температуры агрессивных сред (корпус сделан из кварцевого стекла); и готовый термометр. Градуировка такого термометра очень проста. Вместо датчика включается образцовый магазин сопротивлений, и выставляется сопротивление, соответствующее измеряемой температуре.
Cледует знать, что существует два вида зависимости сопротивления от температуры: группа с W100=1.3850 (стандартDIN, используется платина чистоты 99,99%) и W100=1,3910 (американский стандарт, в платину добавлены другие элементы платиновой группы). При покупке датчика неплохо бы знать эту зависимость, чтобы правильно калибровать термометр. Номинальное сопротивление изготовляемых платиновых датчиков Rном= 20; 50; 100; 1000 Ом при нуле градусов Цельсия. Сопротивление датчика в зависимости от температуры выражается простой формулой
Rt= Rном * К
В таблице приведены значения нормированного сопротивления К при разной температуре для обоих видов зависимости W100

Для любительских целей точности этой таблицы вполне достаточно. Точность калибровки будет зависеть только от точности образцового магазина сопротивлений (при калибровке по магазину сопротивлений) или от точности омметра (при отсутствии образцовых сопротивлений).
Сама принципиальная схема достаточна проста. Представлены два варианта исполнения — с датчиком на Rном=100 Ом на два предела измерения +/- 199,9 о C и -200. +800 о C(первичный датчик не рассчитан на более высокую температуру).

Здесь:
S1.1 включение питания измерительной схемы
S1.2 включение питания вольтметра
S2.1 переключение диапазона измерения +- 199,9 градуса Цельсия или +800 — 200 градусов Цельсия.
S2.2 переключение запятой на вольтметре.
R2 подстройка шкалы +800 градусов Цельсия.
R5 подстройка нуля шкалы.

Второй вариант использует датчик на Rном=1000 Ом. Этот вариант — однопредельный +/- 199,9 о C , но зато очень экономичный.

Здесь:
S1.1 вкл. питания измерительной схемы
S1.2 вкл. питания вольтметра
R2 подстройка шкалы +199,9 градусов Цельсия.
R5 подстройка нуля шкалы.

Образцовое стабильное напряжение 2,5 вольта подаётся на неинвертирующие входы ОУ, что превращает ОУ в источники тока. По закону Ома падение напряжения на сопротивлении пропорционально току. Но ток у нас постоянный, и падение напряжения будет зависеть от сопротивления. Источник тока на DA2.1 нагружен на постоянное сопротивление, и поэтому напряжение на выходе ОУ будет постоянным. Источник тока на DA2.2 нагружен на датчик, и напряжение на выходе ОУ будет меняться с температурой. Вольтметр по шкале измерения 0,2 вольта измеряет разность напряжений, прямо пропорциональную температуре. Такое схемное решение позволяет сохранять точность измерения в диапазоне напряжения от 3 до 10 вольт. Следует обратить особое внимание на источник образцового напряжения, поскольку он определяет точность всего термометра. С обычными стабилитронами и даже прецизионными типа TL431 ничего толкового не получится. Надо использовать специальные микросхемы- источники опорного напряжения, например AD680, REF192. Они дороже, но лучше по всем характеристикам, и гораздо экономичнее по току потребления. Однопредельный термометр потребляет 1,5 мА по измерительной цепи, и менее 1 мА по цепи индикации.

Ещё одна особенность схемного решения — раздельные цепи питания измерительной цепи и вольтметра. Вольтметр — готовый модуль с Ж/К индикатором, но ничто не мешает использовать любой другой вольтметр. Главное — цепи питания должны быть раздельные, без гальванической связи. Однопредельный термометр, показанный на фото, питается от двух батареек «Крона».

Резисторы должны быть с 1% допуском от номинала. Если их нет, то подберите по цифровому омметру как можно ближе к номиналу. Подстроечные резисторы — многооборотные типа СП5-22.

Настройка однопредельного термометра с датчиком номинальным сопротивлением 1000 Ом.
Вместо датчика подключите образцовый магазин сопротивлений, желательно класса 0,05. Установите сопротивление 1000,00 Ом — это соответствует температуре 0оC. Регулировкой резистора R5 установите на цифровом индикаторе 0.0. Установите на магазине сопротивление 1754,70 или 1766,60 Ом (в зависимости от характеристики датчика W100); на цифровом индикаторе резистором R2 установите показания +199,9 о C .

Настройка двухпредельного термометра с датчиком номинальным сопротивлением 100 Ом немного сложнее. Сначала калибруем по нулевым показаниям индикатора (100,00 Ом на магазине сопротивлений), затем калибруем первый предел измерения +/-199,9 подстройкой опорного напряжения вольтметра (для этого см. принципиальную схему используемого вольтметра), на магазине сопротивлений 176,66 или 175,47Ом; и, наконец, верхний предел измерения температуры — точку +800 о C — на магазине сопротивлений 375,51 или 379,72 Ом.
Теперь можно установить на магазине любое табличное сопротивление и на индикаторе прочесть соответствующее значение температуры, или повторить калибровку по другим точкам, например на точках 20 и 80 % полной шкалы. Так мы немного разбросаем погрешность измерения из-за нелинейности датчика по всему диапазону.

Тут с криком «Я, я знаю как это объяснить!» к клавиатуре пролез кот Сэра Мурра и накатал следующий текст.
Построим график зависимости и соединим конец и начало графика прямой линией. Мы увидим, что примерно посредине наш график имеет максимальное отклонение от прямой линии, и здесь у нас максимальная погрешность измерения со знаком + (рис. а). Теперь переместим прямую параллельно, так, чтобы она касалась нашей экспериментальной кривой в одной точке. Отклонение от прямой сменило знак на минус, и наибольшее отклонение наблюдается на краях диапазона (рис. б). А теперь поместим прямую посредине двух предыдущих положений (рис. в). И — чудо! Отклонение от прямой получилось и со знаком плюс, и со знаком минус, но абсолютная величина отклонения стала почти в два раза меньше!
Вот таким способом можно уменьшить погрешность калибровки при линейной аппроксимации.

Поскольку на этом энтузиазм кота Сэра Мурра закончился, сопроводительные рисунки хозяину пришлось сделать самому, а также написать заключительную фразу:

После тарировки не забудьте подключить датчик вместо проверочного сопротивления!

Схема электронного термометра с выносным датчиком своими руками

На замену не совсем удобным аналоговым измерителям температуры, в основе работы которых лежит свойство жидкости расширяться и сжиматься, промышленность предложила дискретные устройства. Эти совсем несложные приборы обладают рядом неоспоримых преимуществ. Купить измеритель можно практически в любом магазине бытовой или климатической техники, но гораздо интереснее изготовить электронный термометр с выносным датчиком своими руками.

Суть устройства

Термометр, разговорный аналог — градусник, предназначен для измерения температуры окружающей среды. Первое устройство было изобретено в 1714 году немецким физиком Д. Г. Фаренгейтом. В основе своей конструкции он использовал прозрачную запаянную колбу, внутри которой находился спирт. После в качестве жидкости учёный применил ртуть. Но шкала аналогового измерителя, существующая и по сей день, была разработана лишь только через 30 лет шведским астрономом и метеорологом Андерс Цельсием. За начальные точки он предложил взять температуру тающего льда и кипения воды.

Интересным фактом является то, что изначально числом 100 была отмечена температура таяния льда, а за ноль взята точка кипения. Впоследствии шкалу «перевернули». По некоторым мнениям это сделал сам Цельсий, по другим — его соотечественники ботаник Линней и астроном Штремер.

Вскоре изготовление ртутных измерителей было широко налажено производством в промышленных масштабах. Со временем ртуть из-за своей ядовитости была заменена на спирт, а затем и вовсе был предложен новый тип устройства — цифровой. Сегодня, пожалуй, градусник стал неотъемлемым атрибутом любого жилища. По совету Всемирной организации здравоохранения была принята Минаматская конвенция, направленная на постепенный вывод из обихода ртутных градусников. Согласно ей в 2022 году использование ртути в измерителях будет полностью прекращено.

Поэтому из-за своих отличных характеристик термометр с цифровой схемой практически не имеет конкурентов. Предлагаемые в продаже спиртовые приборы проигрывают ему по точности и удобству восприятия данных.

Электронные модели могут располагаться в любом месте, ведь в контролируемом помещении необходимо расположить только небольшой датчик, подключённый к устройству. Этот тип используется во многих технологических процессах промышленности, например, строительных, аграрных, энергетических. С их помощью контролируется:

  • температура воздуха в производственных и жилых зданиях;
  • проверка нагрева сыпучих продуктов;
  • состояние вязких материалов.

Принцип работы

Перед тем как непосредственно приступить к изготовлению электронного термометра, следует разобраться в принципе его действия и определиться, из каких узлов будет состоять конструкция. Промышленно выпускаемые электронные градусники различаются по своим размерам и назначению. Но все они построены на однотипном принципе действия.

Проводимость материала изменяется в зависимости от температуры окружающей среды. Основываясь на этом и проектируется схема электронного градусника. Так, чаще всего в конструкции применяется термопара. Это электронный прибор, стоящий из двух сваренных между собой металлов. На поверхности каждого из них имеется контактная площадка, подключённая к измерительной схеме. При нагревании или охлаждении контактов возникает термоэлектродвижущая сила, появление и изменение которой регистрируется платой электроники.

В устройствах нового поколения вместо термочувствительного элемента используется кремниевый диод. Полупроводниковый радиоэлемент, у которого наблюдается зависимость вольт-амперной характеристики от температурного воздействия. Иными словами, при прямом включении (направление тока от анода к катоду) значение падения напряжения на переходе изменяется в зависимости от нагрева полупроводника.

Обработанные данные выводятся на дисплей, с которого уже визуально снимаются пользователем. Цифровые градусники позволяют измерять изменения температуры в диапазоне от -50 ° С до 100 ° С.

Всего же в конструкции простого термометра можно выделить пять блоков:

  1. Датчик — устройство, изменяющее свои параметры в зависимости от величины воздействующей на него температуры.
  2. Измерительные провода — используются для выноса датчика и его расположения в различных местах, требующих контроля над температурой. Чаще всего это небольшого сечения в диаметре проводники, даже необязательно экранированные.
  3. Плата электроники — содержит блок анализатора, фиксирующий изменения приходящего от датчика сигнала, а затем передающий его на экран.
  4. Дисплей — монохромный или цветной экран, предназначенный для отображения данных об измеренной температуре.
  5. Блок питания — собирается на типовых для радиоэлектроники интегральных микросхемах. Используется для стабилизации и преобразования питания, подающегося на все узлы платы.

Особенности изготовления

Человеку, увлекающемуся радиолюбительством, сделать электронный термометр своими руками по схеме не доставит трудностей, но в то же время обычному потребителю понадобится иметь хотя бы навыки паяния. Сегодня существует довольно много различных схем, отличающихся как сложностью повторения, так и дефицитностью радиодеталей.

Читайте также  Компания ti представила rs-485 приемопередатчик с быстрой автоматической коррекцией полярности

При выборе схемы учитывают характеристики, которые она сможет обеспечить будущему измерительному устройству. В первую очередь — это диапазон измеряемых температур, а во вторую – погрешность. Конструктивно можно собрать проводную и беспроводную модель. При сборке второго типа используется радиомодуль, значительно удорожающий изделие.

Из-за использования чувствительных специализированных микросхем собирать навесным монтажом схему вряд ли получится. Поэтому предварительно изготавливается печатная плата. Делать её лучше из одностороннего фольгированного стеклотекстолита методом «лазерно-утюжной технологии».

Суть метода заключается в том, что с помощью, например, Sprint Layout, рисуется печатная схема устройства и распечатывается в зеркальном отображении в масштабе 1:1 на лазерном принтере. Затем, приложив отпечатанный рисунок изображением вниз к фольгированному слою, проглаживают чертёж разогретым утюгом. Из-за особенностей тонера изображение линий перенесётся на стеклотекстолит. Далее плата погружается в ванную с реактивом, например, FeCl3.

В качестве индикатора можно использовать светодиодную матрицу, но лучше приобрести любой монохромный экран. Простой экран можно взять буквально за «копейки», например, подойдёт от старых системных блоков, выполненных в форм-факторе АТ. Если планируется конструкция с выносным датчиком, то неплохим вариантом будет использование шлейфа с диаметром проводника от 0,3 мм2, но в принципе подойдёт любой провод. При этом чем вынос датчика больше, тем большего сечения нужен и провод.

В схемотехнике некоторых термометров используются микроконтроллеры. Их применение позволяет упростить электрическую схему и повысить функциональность, но при этом требует навыков программирования и умения загружать прошивку. Для этого понадобится программатор, который можно также спаять самостоятельно, например, для LPT из пяти проводов.

Простой термометр

Конструкция простого термометра состоит всего из трёх деталей и тестера. В качестве датчика температуры в схеме используется LM35. Это интегральный прибор с калиброванным выходом по напряжению. Амплитуда на выходе датчика пропорциональна температуре. Точность измерений составляет 0,75° C. Запитывать интегральную микросхему можно как от однополярного источника, так и двухполярного. Предел измерений от -55 ° до 150° C.

В качестве мультиметра можно использовать стрелочный или цифровой прибор. К датчику согласно схеме подключают источник питания. Например, КРОНу или три соединённых последовательно пальчиковых батарейки. Измеритель же подключают к клеммам V и COM и переводят в режим измерения температуры. Потребление датчика при работе не превышает 10 мкА.

Диапазон измерения мультиметра устанавливается на два вольта. Отображённый на экране результат и будет соответствовать измеряемой температуре. Последняя цифра в числе обозначает десятые доли градуса.

При желании устройство можно сделать двухканальным. Для этого дополнительно необходимо будет изготовить механический или электронный переключатель.

Цифровая схема

Одна из самых простых схем состоит всего из нескольких элементов. В основе конструкции лежит использование датчика, выдающего значение температуры в цифровом коде. Стоимость термодатчика LM 335 не превышает 50 центов, при этом после калибровки его точность измерения составляет от 0,3 ° до 1,5° C. Датчик может измерять температуру от — 40 ° до 100° C. Выпускается он в двух корпусах — TO-92 и SOIC. В качестве аналога можно использовать отечественную микросхему К1019ЕМ1.

При монтаже длина соединительных проводов может достигать пяти метров. Калибровка схемы осуществляется изменением напряжения, подаваемым на вывод один. Необходимое значение рассчитывается по формуле:

Uвых = Vвых1 * T / To, где:

  • Uвых – напряжение на выходе микросхемы;
  • Uвых1 – напряжение на выходе при эталонной температуре;
  • T и To – измеряемая и эталонная температура.

Напряжение, формирующее выходной сигнал, зависит от температуры, поэтому питание, подающееся на датчик, должно осуществляться от источника тока. Собирается он на двух транзисторах КТ209 и не требует дополнительных настроек. Максимальный ток питания не превышает 5 мА. Увеличение выходного напряжения на 10 мВ соответствует приросту температуры на один градус.

Использование микроконтроллера

Применение в схеме самодельного термометра микроконтроллера подразумевает использование программы, управляющей его работой. В качестве микросхемы применяется ATmega8, а датчика температуры — DS18B20.

В схеме используется небольшое число радиодеталей. Она несложная и не нуждается после сборки в какой-либо наладке. Напряжение питания микроконтроллера составляет пять вольт. Для его стабилизации используется микросхема L7805. Транзисторы можно использовать любые с NPN структурой. В качестве индикатора подойдёт трёхразрядный сегментный дисплей с общим катодом.

Температура устройством может изменяться в интервале от -55 ° до 125º С с шагом в 0,1º С. Погрешность измерения не превышает 0,5º С. Обмен данными между датчиком и микроконтроллером происходит по шине 1-Wire. При большом расстоянии выноса измерительной микросхемы DS18B20 от ATmega8 необходимо подобрать подтягивающее сопротивление. Распаять его лучше непосредственно на вывод датчика.

При программировании все установки микроконтроллера оставляются заводскими, и фьюзы не изменяются. Затем к собранному термометру можно добавить ещё один датчик, а также часы. Но для этого необходимо будет обладать знаниями в программировании, чтобы дописать программный код.

Точный термометр

Применение в качестве датчиков полупроводниковых диодов и транзисторов характеризуется сложностью калибровки показаний, что в итоге приводит к погрешности результата измерений. Поэтому для получения точного результата в качестве измерителя применяется бифилярно намотанная катушка из тонкого проводника, размещённая в цилиндре, имеющем размеры порядка 4х20 мм.

Основой конструкции является микросхема ICL707 и светящийся индикатор. Питание можно подавать от любого источника с выходной амплитудой 12 В. На DA3 собран нормирующий преобразователь, изменяющий своё выходное напряжение в зависимости от сигнала, поступаемого с датчика.

Настройка заключается в выставлении на 36 ноге микросхемы напряжения, равного одному вольту. Делается это с помощью резисторов R3 и R4. Вместо датчика подключают резистор на 100 Ом. Изменением сопротивления R14 устанавливают нули на цифровом индикаторе. После чего устройство готово к измерениям.

Простой цифровой термометр своими руками с датчиком на LM35

Для изготовления этого простого цифрового термометра необходим температурный датчик LM35, цифровой вольтметр (любой недорогой китайский цифровой мультиметр), два маломощных диода, один резистор и несколько батареек (либо элемент типа «Крона»). Из этих компонентов можно быстро собрать простой цифровой многофункциональный термометр с диапазоном температур от -40 до +150 градусов Цельсия. Для измерения только положительных температур диоды и резистор не нужны.

Точность измерения температуры 0,1 градуса Цельсия, т.е. термодатчик для многих применений можно назвать прецизионным. Для этого универсального цифрового термометра использованы полупроводниковые датчики температуры LM35DZ/NOPB для температуры от 0 до +100°C и LM35CZ/NOPB для температуры от -40 до +110°С в корпусах TO-92. В datasheets некоторых производителей LM35 указана верхняя измеряемая температура +150 градусов Цельсия.

Такой электронный измеритель температуры можно быстро сделать своими руками. Достаточно подключить Крону (или три пальчиковые батарейки, соединенные последовательно) к датчику, а датчик к вольтметру, как показано на рисунке – и термометр готов. Датчик потребляет от источника питания ток не более 10 мкА, поэтому батарейку можно не отключать длительное время.

Диапазон использования такого цифрового датчика очень широк:
— термометр комнатный
— термометр уличный
— термометр для воды и других жидкостей
— термометр для инкубатора
— термометр для бани и сауны
— термометр для аквариума
-термометр для холодильника
— термометр для автомобиля
— цифровой многоканальный термометр и т.д.

Схема цифрового термометра для измерения температуры от минус 40 до плюс 110 градусов Цельсия с однополярным источником питания. Диоды маломощные кремниевые – КД509, КД521 и т.д. Диапазон измерения тестера надо устанавливать на 2 вольта (2000 мВ), последняя цифра будет показывать десятые доли градуса, ее следует отделить точкой.

Для воды и других жидкостей датчик термометра следует сделать герметичным, для этого его можно залить силиконовым герметиком, либо поместить в медную трубку с внутренним диаметром 6 мм со сплющенным и запаянным концом. Запаянный конец трубки надо заполнить термопастой. Затем припаять к датчику провода, изолировать контакты и вставить датчик в трубку – протолкнуть до упора, чтобы он находился в теплопроводящей пасте. Таким образом получаем щуп-термометр. Если инерционность термометра не является критичной, датчик можно вставить в пластиковую трубку и загерметизировать ее концы.

Термометр легко сделать многоканальным. Для этого можно использовать как механические, так и электронные аналоговые переключатели. Ниже, для примера приведена схема двухканального термометра для плюсовых температур с использованием «перекидного» тумблера.

Этот прибор показывает уличную температуру, датчик висит за закрытой форточкой. Время на сборку заняло 30-40 минут.

Так выглядит прибор сзади. Собран градусник по схеме с одним источником питания, двумя диодами и резистором. Поскольку отрицательное смещение на диодах составляет порядка 2-х вольт, а минимальное напряжение питания датчика 4 вольта, в качестве БП использованы спаянные последовательно 5 батареек ААА. Датчики припаяны к неэкранированным проводам длиной 2,5 метра.

На этом фото показаны два термометра. Датчик первого размещен в холодильной камере, а второго — в морозильной камере этого же холодильника. Точка на индикаторе мультиметра нарисована черным маркером.

Измерил температуру своего тела – полный порядок. Подключил точно такой же другой прибор (без точки на индикаторе) к этому же датчику и огорчился, прибор «врет» в большую сторону на 0,2 градуса. В кипящей воде не пробовал: не готовы герметичные щупы. Перед замерами батарейки в обоих приборах заменил на одинаковые новые.

На основе этого термодатчика можно сделать простой регулятор температуры, добавив компаратор с регулируемым или фиксированным порогом срабатывания и силовой ключ (оптосимистор, реле …), который будет включать нагреватель. Для построения термостата (инкубатора, например) такая схема не пойдет, LM35 необходимо подключать к устройству с функцией ПИД-регулятора, например, ТРМ210.

Простой термометр из самодельной термопары.

Предлагаю всем, кто любит что-то делать своими руками, изготовить для домашней лаборатории простой термометр из самодельной термопары, с верхним пределом измерения температуры до 500-700 градусов о С.

Собственно говоря, весь термометр — это термопара (датчик), и средство отображения температуры (индикатор), в качестве которого можно использовать и стрелочный индикатор (микроамперметр) и цифровой мультиметр.
Начнём с изготовления термопары. Для этого нам понадобятся проволоки из разных металлов. Самые доступные — это проволоки из меди и константана. Термо-ЭДС получаемая из такой пары от пламени зажигалки, около 50-ти милливольт.
Так где же можно найти константан? Очень просто. Константан в основном применяется при изготовлении проволочных резисторов, из которых мы его и будем добывать.

Для этого лучше брать проволочные резисторы бОльшей мощности, или резисторы с меньшим сопротивлением (единицы Ом). В этих резистора проволока диаметром больше. Ну может и можно использовать проволоку и меньшего диаметра, но по моему мнению удобней работать с проволокой диаметром от 0,3 мм, а если из термопар собирать батарею, то желательно брать проволоку 0,8 и выше, чтобы внутреннее сопротивление батареи было меньше.

И так резисторы мы нашли, а что дальше? Дальше нужно аккуратно постукивая по резистору отбить у резистора эмаль, стараясь не повредить константановую проволоку и попытаться её отделить от резистора и смотать. Эту проволоку мы и будем использовать для изготовления термопар.

Читайте также  Игровой автомат "ловкость рук"

Изготовление термопары.

Изготовление термопары труда большого не представляет. Для этого берём два отрезка проволоки, добытую ранее константановую и любую медную, желательно близких по диаметру, скручиваем их вместе с одного конца на расстояние 0,5 — 1,0 см. Именно эту скрученную часть проволок мы и будем сваривать.

Сваривать термопары в домашних условиях удобно способом, который был описан ранее вот в этой статье. Для лучшего контакта проволок термопары со сварочным крокодилом, можно обмотать элементы будущей термопары проводом, чуть ниже скрутки, прижать к проводу от трансформатора плоскогубцами, и коснуться самой скрутки угольным электродом. Напряжение для надёжной сварки подобрать опытным путём.

У нас должен получиться на конце скрученных вместе проводов, оплавленный шарик (или подобие его), который и есть термопара.

Скрученные ранее провода нужно будет аккуратно раскрутить до места сварки, это на всякий случай, чтобы исключить их замыкание между собой, и надеть на них изоляционные трубочки, в качестве которых можно использовать фторопластовую оболочку от проводов.

Применение термопары.

Полученные таким способом термопары в пламени обычной зажигалки выдают напряжение, где-то в районе 50-ти милливольт.
Для изготовления термометра у меня были две измерительные головки, микроамперметры на 100 мкА. Одна головка с сопротивлением рамки 370 Ом, вторая (тоже на 100 мкА) с сопротивлением рамки 280 Ом.
Так вот, первая головка отклонялась от пламени зажигалки на всю шкалу, вторая, имеющая меньшее сопротивление рамки, зашкаливала.

То есть получается, что предпочтение нужно отдавать головкам, имеющим меньшее сопротивление рамки, так как термопара вырабатывает напряжение (милливольты) и ток отклонения у головок получается больше, если её активное сопротивление рамки меньше, то есть головка получается более чувствительная.
Нашёл у себя в загашниках головку миллиамперметра на 30 мА, с сопротивлением рамки где-то 1,5 — 1,6 Ом (замерил приблизительно). Каково было удивление, когда стрелка этой головки от термопары и зажигалки отклонилась на всю шкалу.

Ну в принципе так и получается по закону Ома. При 45-50 мВ напряжения и 1,5 Ома нагрузки, ток и будет около 30-ти мА. Да, ещё забыл сказать, что медный провод термопары даёт «плюс», а константановый «минус». Так что к головкам нужно подключать термопару в такой полярности.
Вернёмся к термометру. Как уже было сказано выше, термометр — это термопара и средство индикации. Из двух микроамперметров, о которых говорилось выше, были изготовлены термометры. Из первого микроамперметра, имеющего сопротивление рамки 370 Ом — термометр с верхним пределом измерения температуры 700 градусов о С, из второго с меньшим сопротивлением рамки (280 Ом) — термометр с верхним пределом измерения температуры 550 градусов о С. Так как эта головка оказалась более чувствительная, то и верхний предел температуры ниже.
Да, выше 700 — 800 градусов особого смысла делать термометр нет, так как температура плавления меди и константана где-то в районе 1000 градусов о С.
Калибровать таким способом изготовленные термометры, можно термофеном с индикацией температуры воздуха. Нижний предел лучше начинать от 100 градусов о С. Шкала получается почти линейной. Может чуть сжата в начале шкалы. Максимальная температура воздуха у моего фена 450 градусов о С. Отметки на шкале микроамперметров ставились через 50 градусов. Дальше (выше 450 градусов) пришлось ставить отметки на расстояние, вычисленное по предыдущим меткам на шкале. Точность шкалы для домашней лаборатории будет вполне приемлема.

Подобные термопары можно применять в терморегуляторах для любых паяльников не имеющих термодатчики, термофенов и других радиолюбительских конструкциях.
Попробовал я использовать подобную термопару вместо штатного датчика для термометра от цифрового мультиметра. Результатом более, чем доволен.

При измерениях температуры по нескольким разным точкам, отклонения от показаний индикатора на термофене, различались на плюс-минус несколько градусов. Фотография с другой температурой фена ещё есть в начале этой статьи.

Кому ещё интересно, то можно попробовать собрать термогенератор. То есть соединить последовательно множество термопар и попытаться сделать зарядку для телефона от пламени костра. Соединять термопары между собой тоже нужно сваркой (надёжно).

Для получения напряжения такой батареи в 1,5 вольта, необходимо соединить последовательно 20 термопар. Соответственно при выходном напряжении 5,0 вольт (для зарядки мобильника) нужно соединить последовательно не менее 70-80 термопар.
Кстати раньше выпускался советской промышленностью термогенератор, который использовался для питания батарейных ламповых радиоприёмников. Надевался он на горловину керосиновой лампы и вся эта конструкция подвешивалась в удобном месте. И свет был и радио играло.

Вырабатывал он анодное напряжение и напряжение для накала ламп. Ещё статья, как сделать термогенератор, была опубликована в журнале «Юный техник». Кому интересно, то можете попытаться найти её самостоятельно. Называлась вроде как «Напряжение из двух проволок» или как-то похоже. Могу найти её, вернее найду и потом в комментариях укажу номер ЮТ, где была эта публикация.

Да, ещё в качестве положительного электрода, вместо медной проволоки можно (даже желательно) использовать стальную проволоку. Термо-ЭДС такой пары должна даже быть выше, чем с медной. Лично я не пробовал, не оказалось в этот момент под руками стальной проволоки.
Попробуйте сами.
Удачи Вам в творчестве!

Простой цифровой термометр

Разрабатывая цифровой термометр, сейчас обычно пользуются методом, при котором терморезистор — датчик температуры входит в состав источника тока или напряжения, например, в части делителя напряжения. Получается зависимость тока или напряжения от температуры, так как сопротивление терморезистора, естественно, изменяется с изменением температуры. Дальше идет схема цифрового вольтметра, омметра или амперметра, с помощью которого и происходит индикация температуры.

Данный термометр интересен тем, что в нем использован другой метод. Полупроводниковый терморезистор, являющийся датчиком температуры, включен в частотно-задающую цепь RC-мультивибратора. Как мы знаем, у полупроводникового терморезистора зависимость сопротивления от температуры обратная, поэтому, при увеличении температуры, частота генерируемая этим мультивибратором возрастает, а при понижении температуры частота уменьшается.

Получается, что температуру можно измерять при помощи частотомера. Но здесь возникают сложности, связанные с тем, что все частотомеры предназначены для измерения частоты и индикации её в единицах частоты, а не температуры. С этим возникает проблема, так как нужно делать какое-то устройство, переводящее «Герцы» в «Цельсии». Все это сложно.

А если, сделать специализированный частотомер, который будет настроен так, что его показания будут численно равны температуре? Нужно только правильно подогнать время измерения.

На рисунке показана схема простого цифрового термометра для измерения температуры в жилом помещении. Прибор достаточно точно может измерять температуру в пределах от +10°С до +60°С, при этом погрешность не превышает 1°С. За этими пределами погрешность сильно увеличивается из-за неравномерности зависимости частоты мультивибратора от температуры датчика — терморезистора. В первую очередь это связано со сложностями индикации 0°C и величин отрицательных и около нуля. Однако следует учитывать, что если сделать шкалу прибора в градусах по Кельвину, то точность в интервале от 270К до 350К будет очень неплохой. Но нужно будет организовать третий старший разряд.

И так, на рисунке показана схема цифрового термометра, предназначенного для измерения температуры от +10°С до +60°С. В схеме всего три цифровых микросхемы. На элементах D1.1 и D1.2 сделан измерительный мультивибратор. Датчик — терморезистор R2 с отрицательным ТКС. Номинальное сопротивление R2 100 кОм. При температуре 25°С мультивибратор генерирует импульсы частотой около 8000 Гц. Чтобы определить температуру служит простой частотомер на двух десятичных счетчиках D2 и D3 с выходами на семисегментный индикатор, и устройстве управления на двух элементах D1.3 и D1.4.

Устройство управления представляет собой мультивибратор, который генерирует короткие положительные импульсы с частотой повторения около 2 секунд. Работает все это следующим образом. В промежутке между импульсами, то есть, когда на выходе D1.4 логический ноль, элемент D1.2 зафиксирован и измерительный мультивибратор не работает. В это время (2 секунды) происходит отображение результата измерения. Затем, по фронту положительного импульса на выходе D1.4 происходит формирование цепью C3R5VD2 очень короткого импульса, который обнуляет счетчики. Одновременно с этим запускается мультивибратор D1.1-D1.2 и генерирует импульсы, частота которых зависит от температуры. Эти импульсы поступают на вход счетчика D2-D3 и подсчитываются. Затем, по спаду положительного импульса на выходе D1.4 измерительный мультивибратор блокируется и в течение следующих 2 секунд прибор будет показывать измеренное значение температуры.

Таким образом, показания индикатора с периодом в 2 секунды вздрагивают и обновляются. Сначала, была сделана схема гашения индикаторов на двух ключевых транзисторах, но потом стало ясно что никакой необходимости в этом нет. Подсчет происходит быстро, время счета мало, так что это зрительно воспринимается как вздрагивание и обновление показаний.

Питается термометр от электросети через трансформаторный источник питания. Автор использовал трансформатор кадровой развертки ТВК110Л от старого лампового черно-белого телевизора. Можно применить любой маломощный трансформатор с напряжением на вторичной обмотке 9-13 В при токе до 100 мА. Стабилизатор A1 стабилизирует напряжение питания на уровне 8 В.

Цель изготовления данного термометра была в изучении возможности создания цифрового термометра, пусть даже посредственной точности, но работающего на принципе измерения частоты мультивибратора, с терморезистором в частотозадающей цепи. Поэтому, печатная плата к нему не разрабатывалась, так как все было собрано на макетной плате. Был так же сделан и второй вариант, с трехразрядным индикатором и показаниями в шкале Кельвина. Им можно было измерять и достаточно низкие температуры, но показания были возможны только в абсолютной величине. Точность прибора, как уже было сказано, не высока, и годится только в качестве термометра для измерения температуры в жилом помещении.

Микросхему К176ЛА7 можно заменить на К561ЛА7 или импортную CD4011. Микросхемы К176ИЕ4 прямых аналогов не имеют, но можно подобрать что-то похожее из импортных микросхем, или собрать счетчик на двух двоично-десятичных счетчиках и двух семисегментных дешифраторах.

Индикаторы HL1 и HL2 — это семисегментные светодиодные индикаторы с общим анодом. Здесь можно использовать практически любые аналогичные индикаторы. И даже индикаторы с общим катодом. Но в этом случае нужно, во-первых, их общий вывод, теперь катод, соединить с минусом питания, а во-вторых выводы 6 микросхем D2 и D3 отключить от плюса и подключить к минусу питания.

Диоды 1N4148 можно заменить на КД521, КЦ522. Диоды 1N4004 можно заменить любыми маломощными выпрямительными. О возможной замене трансформатора сказано выше.

Градуируют термометр подстроечным резистором R4, по температуре +20°С. Нужно, пользуясь образцовым термометром, нагреть воду до такой температуры и погрузить в неё терморезистор R2, поместив его в тонкий целлофановый пакет, так чтобы он максимально прилегал к нему. Затем, подстроить R4 так чтобы показания образцового и этого термометра совпадали.