Конструкция линейного источника питания

1.3.Линейные и импульсные источники вторичного электропитания

Как отмечалось выше, стабилизированные ИП по характеру стабилизации напряжения делятся на источники непрерывным (линейным) и импульсным регулированием. Аналогично любые (стабилизированные или нестабилизированные) ИП принято делить на линейные и импульсные [1].

В линейных ИП переменное напряжение питающей сети преобразуется трансформатором, выпрямляется, подвергается низкочастотной фильтрации и стабилизируется(рис.1.3). В нестабилизированных ИП нагрузка подключается непосредственно к выходу фильтра низкой частоты.

В стабилизаторах линейных ИП осуществляется непрерывное регулирование: последовательно или параллельно с нагрузкой включается регулирующий элемент(транзистор), управляемый сигналом обратной связи, засчет чего выходное напряжение поддерживается на постоянном уровне.

Рис. 1.3. Упрощенная функциональная схема линейного стабилизированного источника питания.

Отличительная особенность линейных стабилизаторов напряжения заключается в том, что их выходное напряжение всегда ниже нестабилизированного входного напряжения.

Импульсные ИП непосредственно выпрямляют и фильтруют напряжение питающей сети переменного тока без использования первичного силового трансформатора, который для частоты 50 Гц имеет значительные вес и габариты. Выпрямленный и отфильтрованный постоянный ток коммутируется мощным электронным ключом, затем преобразуется высокочастотным трансформатором, снова выпрямляется и фильтруется (рис.1.4).

Рис 1.4 Упрощенная функциональнаясхема импульсного источника питания: В– выпрямитель; ФНЧ– фильтр низкой частоты; КРЭ– ключевой регулирующий элемент; Т– трансформатор.

Электронный ключ управляется специальным сигналом, формируемым схемой управления. В устройстве может быть обратная связь по напряжению, благодаря которой стабилизируется выходное напряжение(управляющий сигнал формируется в зависимости от разности напряженийвыходного и опорного). Из-за высокой частоты переключения(от20 кГц ивыше), трансформаторы и конденсаторы фильтров имеют намного меньшие размеры, чем их низкочастотные(50 Гц) эквиваленты. Достоинствомимпульсных ИП является высокий КПД– 60 – 98% (КПД линейных ИП,как правило, не превышает40 – 50%).

Для питания РЭА используются три типа импульсных электронных устройств, использующихся в качестве ИП: преобразователь – переменныйток/постоянный ток(AС-DС конверторы), преобразователь– постоянныйток/постоянный ток(DC-DC конвертор) и преобразователь − постоянныйток/переменный ток(DC-AC преобразователь или инвертор). Каждый типустройств имеет собственные определенные области применения.

Импульсные стабилизаторы(DC-DC конверторы), в отличие от аналогичных линейных устройств могут:

1) обеспечивать выходное напряжение, превышающее по величине

2) инвертировать входное напряжение (полярность выходного напряжения становится противоположной полярности входного напряжения).

DC-DC конверторы используют принцип действия импульсных ИП, но применяются для того, чтобы преобразовывать одно постоянное напряжение в другое, обычно хорошо стабилизированное. Такие преобразователи используются, большей частью, там, где РЭА должна питаться от химического источника тока или другого автономного источника постоянного тока.

ИнтегральныеDC-DC конверторы широко используются для преобразования и распределения постоянного напряжения питания, поступающего в систему от сетевого ИП или батареи.

Другое распространенное применение дляDC-DC конверторов, это

преобразование напряжения батареи(1.5, 3.0, 4.5, 9, 12, 24 В) в напряжение другого номинала. При этом выходное напряжение может оставатьсядостаточно стабильным при значительных колебаниях напряжения батареи.

Сравнение импульсных и линейных ИП.Несмотря на то, что линейные ИП имеют много достоинств, таких как простота, малые уровнипульсаций выходного напряжения и шума, отличные значения нестабильности по напряжению и току, малое время восстановления нормативногоуровня выходного напряжения после скачкообразного изменения тока нагрузки, главными их недостатками, ограничивающими их применение являются: низкий КПД, значительные масса и габариты.

Импульсные ИП находят широкое применение главным образом благодаря их значительно большой удельной мощности и большой эффективности. Важным достоинством импульсных ИП является большое время удержания, то есть время, в течение которого выходное напряжение ИПостается в допустимых пределах при пропадании входного напряжения.Особую актуальность это приобретает в цифровых вычислителях и компьютерах.

Обобщенные результаты сравнения линейных и импульсных ИП представлены в табл. 1.1.

Элементная база ИП. В качестве базовых электрорадиоэлементов ИП используются:

1) электровакуумные приборы(диоды, триоды и многосеточные лампы);

2) полупроводниковые диоды, стабилитроны и стабисторы, тиристоры, транзисторы;

3) трансформаторы и дроссели(низкочастотные и высокочастотные);

4) конденсаторы(в основном оксидные, имеющие большую удельную емкость);

5) линейные интегральные микросхемы(операционные усилители,

усилители низкой частоты);

6) интегральные стабилизаторы напряжения и тока(линейные и импульсные);

7) интегральные микросхемы, входящие в состав импульсных ИП (АС-DС иDС-DС конверторы, однотактные и двухтактные ШИМ– контроллеры, корректоры коэффициента мощности, специализированные схемы управления импульсными источниками

8) элементы(устройства) индикации(лампы накаливания и светодиоды, аналоговые и цифровые индикаторы);

9) предохранители(плавкие, биметаллические, электронные).

Современная тенденция развития ИП такова, что они строятся в основном с применением интегральных микросхем, а доля дискретных активных элементов в них постоянно уменьшается.

Сравнение импульсных и линейных ИП

Отечественной и зарубежной промышленностью выпускается большое число линейных интегральных стабилизаторов, рассчитанных как нафиксированное значение напряжения, так и предназначенных для регулирования величины, выходного напряжения в достаточно широких пределах. Например, выходное напряжение отечественной микро-схемы КР142ЕН12А может изменяться в пределах от+1, 25 до+36 В. Приэтом она может отдавать ток в нагрузку до 1,5 А.

Ряд линейных стабилизаторов, помимо своей основной функции, способны:

1) следить за значением входного напряжения и формировать контрольный сигнал, предназначенный для предупреждения об аварий-ной просадке напряжения на входе;

2) изменять выходное напряжение и выходной ток под действием управляющего сигнала;

3) совместно с резервным источником питания (аккумулятором или батареей) обеспечивать бесперебойное питание устройства, что особенно важно для микропроцессорных систем.

Интегральные АС-DС преобразователи представляют собой, по сутидела, готовые источники питания. Например, преобразовательHV-2405EфирмыHarris semiconductor осуществляет прямое преобразование переменного тока(18 – 264 В) в постоянный(5 – 24 В). Выходной токHV-2405E может достигать50 мА. Для превращения микросхемы в компактный, легкий, дешевый и эффективный ИП необходимо только несколько недорогих внешних компонентов (не требуется никаких дополнительных трансформаторов и дросселей).

Мощные АС-DС конверторы способны отдавать ток в нагрузку значительно больший. Так отечественная микросхема 1182ЕМ3 обеспечивает выходной ток до 1,7 А и имеет встроенную защиту по току и встроеннуюзащиту от перегрева. Правда для работы такой микросхемы потребуетсяподключение внешнего трансформатора или дросселя.

1. В чем отличие вторичных источников электропитания от первичных?

2. Какой вид энергии преобразуется в электрическую в гальванических элементах ?

3. Для чего гальванические элементы объединяют в батареи?

4. Какие преобразователи используют в солнечных батареях?

5. Какие функции выполняют источники вторичного электропитания (ИВЭП)?

6. Какие источники первичного электропитания (ИПЭП) и ИВЭП используются в автомобилях?

7. Какие ИПЭП чаще всего используются в ИВЭП аппаратуры устанавливаемой в офисах и жилых помещениях?

8. Какие ИПЭП и ИВЭП используются в носимой аппаратуре мобильной связи?

9. Как определяется относительная нестабильность питающего напряжения?

10. Как определяется уровень пульсаций питающего напряжения?

11. Как и в каких единицах измерения определяется полная мощность источников питания с выходом на переменном токе?

12. Как определяется коэффициент мощности источника питания?

13. Как определяется коэффициент полезного действия источника питания?

14. Как определяется внутреннее сопротивление источника питания?

15. Как определяется уровень пульсаций источника питания с выходом на постоянном токе?

16. В чем отличие линейных ИВЭП от импульсных?

17. Перечислите особенности линейных стабилизаторов напряжения.

18. Перечислите преобразования энергии в импульсных ИВЭП?

19. Какие функции импульсных стабилизаторов напряжения невозможно реализовать в линейных стабилизаторах?

20. Перечислите достоинства и недостатки линейных ИВЭП.

21. Перечислите достоинства и недостатки импульсных ИВЭП.

22. Перечислите достоинства и недостатки линейных ИВЭП.

23. Перечислите достоинства и недостатки импульсных ИВЭП.

1. Линейные источники питания.

ЛИНЕЙНЫЕ ИСТОЧНИКИ ПИТАНИЯ

В настоящее время традиционные линейные источники питания все больше вытесняются импульсными. Однако, несмотря на это, они продолжают оставаться весьма удобным и практичным решением в большинстве случаев радиолюбительского конструирования (иногда и в промышленных устройствах). Причин тому несколько: во-первых, линейные источники питания конструктивно достаточно просты и легко настраиваются, во-вторых, они не требуют применения дорогостоящих высоковольтных компонентов и, наконец, они значительно надежнее импульсных ИП.

Типичный линейный ИП содержит в своем составе: сетевой понижающий трансформатор, диодный мост с фильтром и стабилизатор, который преобразует нестабилизированное напряжение, получаемое со вторичной обмотки трансформатора через диодный мост и фильтр, в выходное стабилизированное напряжение, причем, это выходное напряжение всегда ниже нестабилизированного входного напряжения стабилизатора. Основным недостатком такой схемы является низкий КПД и необходимость резервирования мощности практически во всех элементах устройства (т.е. требуется установка компонентов допускающих большие нагрузки, чем предполагаемые для ИП в целом, например, для ИП мощностью 10 Вт требуется трансформатор мощностью не менее 15 Вт и т.п.). Причиной этого является принцип по которому функционируют стабилизаторы линейных ИП. Он заключается в рассеивании на регулирующем элементе некоторой мощности Ppac = Iнагр * (Uвх — Uвых) .Из формулы следует, что чем больше разница между входным и выходным напряжением стабилизатора, тем большую мощность необходимо рассеивать на регулирующем элементе. С другой стороны, чем более нестабильно входное напряжение стабилизатора, и чем больше оно зависит от изменения тока нагрузки, тем более высоким оно должно быть по отношению к выходному напряжению. Таким образом видно, что стабилизаторы линейных ИП функционируют в достаточно узких рамках допустимых входных напряжений, причем эти рамки еще сужаются при предъявлении жестких требований к КПД устройства. Зато достигаемые в линейных ИП степень стабилизации и подавление импульсных помех намного превосходят другие схемы. Рассмотрим несколько подробнее применяемые в линейных ИП стабилизаторы.

Простейшие (т.н. параметрические) стабилизаторы основаны на использовании особенностей вольт-амперных характеристик некоторых полупроводниковых приборов — в основном, стабилитронов. Их отличает высокое выходное сопротивление. невысокий уровень стабилизации и низкий КПД. Такие стабилизаторы применяются только при малых нагрузках, обычно — как элементы схем (например, в качестве источников опорного напряжения). Примеры параметрических стабилизаторов и формулы для расчета приведены на рис. 3.3-1.

Читайте также  Микроконтроллеры avr для начинающих - 3

Последовательные проходные линейные стабилизаторы отличаются следующими характеристиками: напряжение на нагрузке не зависит от входного напряжения и тока нагрузки, допускаются высокие значения тока нагрузки, обеспечивается высокий коэффициент стабилизации и малое выходное сопротивление. Структурная схема типового линейного стабилизатора представлена на рис. 3.3-2. Основной принцип на котором основана его работа — сравнение выходного напряжения с некоторым стабилизированным

опорным напряжением и управление на основе результатов этого сравнения главным силовым элементом стабилизатора (на структурной схеме—т.н. проходной транзистор VT1, работающий в линейном режиме, но это может быть и группа компонентов), на котором и рассеивается избыточная мощность (см. приведенную выше формулу).

В большинстве случаев радиолюбительского конструирования в качестве источников питания устройств могут применяться линейные ИП на основе микросхем линейных стабилизаторов серии К(КР)142. Они обладают очень хорошими параметрами, имеют встроенные цепи защиты от перегрузок, цепи термоком-пенсации и т.п., легко доступны и просты в применении (большинство стабилизаторов этой серии полностью реализованы внутри ИС, которые(имеют всего три вывода). Однако при конструировании линейных ИП большой мощности (25-100 Вт) требуется более тонкий подход, а именно: применение специальных трансформаторов с броневыми сердечниками (имеющих больший КДП), прямое использование только интегральных стабилизаторов невозможно ввиду недостаточности их мощности, т.е. нужны дополнительные силовые компоненты и, как следствие, дополнительные цепочки защиты от перегрузки, перегрева и перенапряжения. Такие ИП выделяют много тепла, предполагают установку многих компонентов на больших радиаторах и, соответственно, достаточно габаритны; для достижения высокого коэффициента стабилизации выходного напряжения требуются специальные схемные решения.

Линейные блоки питания: простота конструкции и ремонта

Линейные блоки питания — это источник питания, не содержащий никаких коммутационных или цифровых компонентов. Он обладает некоторыми замечательными характеристиками по сравнению с импульсными блоками питания, такими как очень низкий уровень шума и пульсаций, невосприимчивость к помехам от сети, простота, надежность, простота конструкции, расчета и ремонта.

БП также могут генерировать как очень высокие напряжения (тысячи вольт), так и очень низкие напряжения (менее 1V). Линейные блоки питания могут легко генерировать несколько выходных напряжений. С другой стороны, они большие по размеру, тяжелые и требуют большего теплоотвода. Линейные источники питания существуют уже несколько десятилетий, были созданы задолго до появления полупроводников.

Что такое линейные блоки питания

Линейные блоки питания могут быть фиксированными, например, как источник питания 5V, который может потребоваться для логической схемы, или несколько фиксированных блоков питания, необходимых для ПК (+5, +12 или -12V). На настольном лабораторном блоке питания вы можете использовать источник переменного тока. В дополнение к одиночным источникам вы также можете получить двойные схемы питания, например, для схем операционного усилителя ±15V, и даже БП двойного контроля, которые синхронизированы по напряжению друг с другом.

Некоторые примеры:

  • +5V логические и микропроцессорные схемы
  • +12V LED освещение, общая электроника
  • Схемы операционного усилителя ±15V
  • Стендовое испытательное питание 0-30V
  • +14,5V зарядное устройство

В этой статье мы рассмотрим отдельные компоненты блока питания, а затем с нуля разработаем небольшой блок питания 12V и регулируемый двойной блок питания 1–30V.

Компоненты линейного блока питания

  • Секция ввода сети содержит компоненты подключения к электросети, обычно выключатель, предохранитель и контрольную лампочку. Используйте хорошее заземление и изолируйте все силовые части внутренней проводки изоляционным материалом для защиты от случайного контакта.
  • Трансформатор выбирают в соответствии с требуемым выходным напряжением и эффективно изолирует все другие цепи от сетевых контактов. Трансформатор может иметь несколько отводов первичной обмотки, чтобы обеспечить различное входное напряжение сети, и несколько отводов вторичной обмотки, соответствующих требуемому выходному напряжению. Кроме того, между отводами первичной и вторичной обмоток имеется экран из медной фольги, который способствует уменьшению емкостной связи с высокочастотным сетевым шумом.
  • Выпрямитель может быть таким же простым, как одинарный диод (не подходит), двухполупериодный мост с центральным ответвлением или двухполупериодный мост. Следует использовать выпрямительные диоды более мощные, чем рассчитывалось. По моему опыту ремонта многих неисправных блоков питания, проблемы обычно возникают из-за выхода из строя диода, которые горят либо из-за слишком большого тока, либо из-за скачков напряжения в сети.
  • Учитывая это, выберите диод с высоким PIV (пиковое обратное напряжение). При установке диодов держите выводы на длинной стороне, так как именно здесь рассеивается большая часть их тепла. В высоковольтных источниках питания часто встречаются небольшие конденсаторы, подключенные параллельно диодам, чтобы помочь им быстрее восстанавливаться.
  • Конденсатор является постоянно работающим компонентом и должен заряжаться до пика вторичного напряжения (Vsec*1,414), а затем быстро отдавать накопленную энергию в нагрузку. Конденсаторы из алюминиевой фольги представляют собой рулон бумаги из алюминия, заполненный маслом. Однако, они имеют свойство со временем высыхать и, как следствие, терять свою емкость. Если возможно, разместите их подальше от источников тепла при компоновке.
  • Танталовые конденсаторы имеют гораздо более низкое последовательное сопротивление (эквивалентное последовательное сопротивление), поэтому лучше справляются с пульсациями. Вы можете использовать их в цепи регулятора. При разводке схемы, старайтесь свести все заземления в одну точку. Регулятор также должен иметь небольшой выходной ток, когда он не находится под нагрузкой; 1кОм будет достаточно.
  • На рисунке ниже зеленая кривая представляет собой то, как форма волны выглядела бы без конденсатора, а красная форма волны — это «заряд» конденсатора на каждом полупериоде, а затем разряд из-за тока нагрузки. Результирующая форма волны — это пульсирующее напряжение.

  • Регулятор бывает разных типов: последовательный, шунтирующий, простой и сложный. Будет отдельная статья о регуляторах, но в этом руководстве мы сосредоточимся на разработке двух простых регуляторов на основе интегральной микросхеме с фиксированным регулятором 7812 и регулируемым регулятором LM317.
  • Линейные блоки питания — проектирование

    Разработка линейного блока питания похожа на чтение на иврите: вы начинаете с конца и продвигаетесь к началу. Ключевая спецификация — это напряжение на выходе, которое мы хотим иметь, и какую величину тока мы можем получить от него без падения напряжения. В этом проекте давайте нацелимся на 12V при токе 1 А и 3V на регуляторе. У любого регулятора должна быть определенная необходимая разница между входным и выходным напряжениями для правильной работы. Если не указано иное, предположите, что это минимум 3V. Некоторые из используемых здесь регуляторов рассчитаны только на 2V.

    Если на выходе нам нужно 12V, то на конденсаторе нужно 12 + 3 = 15V. Теперь, когда этот конденсатор заряжается и разряжается, в нем должна присутствовать переменная составляющая, то есть пульсация напряжения. Чем больше ток, потребляемый конденсатором, тем хуже пульсации, и это тоже нужно учитывать. При выборе значения 10%, т.е. 1,2V (размах), ограничение рассчитывается следующим образом:

    где f равно 50 или 60 в зависимости от частоты вашей сети. Следовательно, нам необходимы:

    Это возвращает нас к диодам. Поскольку диоды подают не только ток нагрузки, но и ток заряда конденсатора, они будут использовать больший ток.

    В двухполупериодном мосту ток составляет 1,8*I нагрузки. На центральном отводе, это 1,2*I нагрузки. Учитывая это, мы должны использовать диоды не менее 2 А.

    Теперь мы переходим обратно к вторичной обмотке трансформатора и ее удельному напряжению. В любой надежной системе мы должны учитывать допуски. Если мы будем следовать только минимальным требованиям к конструкции, вход регулятора может упасть ниже уровня падения напряжения, что окажет значительное влияние на сеть. В коммерческих проектах обычно указывается ± 10%, поэтому, если у нас напряжение 230 В, это означает, что оно может упасть до 207V.

    Таким образом, необходимое напряжение на вторичной обмотке будет следующим:

    где 0,92 — КПД трансформатора, а 0,707 — 1/√2.

    Vreg — падение напряжения регулятора, Vrect — падение напряжения на 2 диодах, которое составляет 2*0,7 для цепи центрального отвода и 4*0,7 для полного моста. Пульсации напряжения V было указано как 10% от 12V или 1,2V, поэтому:

    Это означает, что готового трансформатора на 15V должно хватить. Бывает, что вы не можете найти подходящий трансформатор, но есть в наличии другой, с более высоким напряжением. Обратной стороной этого является то, что на стабилизаторе будет более высокое напряжение и, как следствие, большая мощность, рассеиваемая его радиатором.

    Последнее, что нужно сейчас указать, — это габаритная мощность трансформатора в ВА. Это простая и распространенная ошибка — думать, что ВА будет Vsec*Iload, т.е. 15*1 = 15VA. Но мы не должны забывать, что трансформатор также заряжает конденсатор, поэтому в зависимости от конфигурации, нагрузка 1,2 или 1,8*I означает большую разницу, то есть 1,8*1*15 = 27 ВА.

    На этом конструирование завершается. А как насчет предохранителя? Это целая наука, но для этого простого блока питания я бы оценил его в 2 раза больше первичного входного тока. Таким образом, в данном случае ВА равно 27, а напряжение сети составляет 230V, а I=2*27/230 = 250 мА.

    Теперь мы можем добавить в регулятор последние несколько компонентов:

    Для C1 мы рассчитали его на 4200 мкФ. Но поскольку регулятор удалит большую часть пульсации, она может быть меньше или вдвое меньше той, что составляет 2200 мкФ. Назначение C2 и C3 — обеспечение стабильности и помехоустойчивости регулятора. Конденсаторы C2 10 мкФ и C1 1 мкФ. В идеале эти емкости должны быть танталового типа, но если вы вынуждены использовать алюминий, вам следует удвоить значение.

    Шунтирующим диодом D3 часто пренебрегают, но он важен. Если произойдет короткое замыкание на входе регулятора, любая накопленная емкость в нагрузке Vcc, включая C3, разрядится на заднюю часть регулятора и, возможно, спалит его. Но D3 спасает от такой ситуации.

    Теперь давайте заменим фиксированный регулятор на регулируемый на основе популярного и простого в использовании LM317 и добавим дополнительную отрицательную версию LM337, чтобы сформировать двойной регулируемый блок питания. Обратите внимание, что мы использовали трансформатор с центральным отводом, а также полный мостовой выпрямитель. Следующие примечания в равной степени относятся к отрицательной половине блока питания. Единственное, что осталось рассчитать — это R6 и R7.

    Если вы сделаете R6 = 220, тогда для любого напряжения между Vmax и Vmin, R7 = (176*Vout) — 220. Итак, если вы хотите 9V, R7 будет 176*9 — 220 = 1k4. Вы также можете использовать двойной подстроечный резистор от 5 до 10kОм (линейный) для одновременной регулировки обеих сторон. Трансформатор с вторичной обмоткой 25/0/25 подойдет. C8 и C9 обеспечивают помехоустойчивость и могут составлять 10 мкФ. C10 и C11 — 1 мкФ, а C4 и C7 — 1000 мкФ. Минимальное выходное напряжение составляет около 1,25V.

    Лабораторный блок питания: импульсный или линейный какой выбрать? Устройство, схемы и их сравнение.

    Лабораторный блок питания представляет собой востребованное среди профессионалов оборудование, которое активно используется инженерами, занимающимися разработкой и ремонтом различных электронных устройств. В настоящий момент существует огромное количество лабораторных источников питания. Число самых разных вариаций столь велико, что новичку будет непросто сориентироваться в таком многообразии оборудование. Чтобы выбрать оптимальный источник питания для определенных целей, рекомендуется разобраться в особенностях различных типов блоков, а уже после принимать решение о покупке.

    Классификация лабораторных источников питания

    Лабораторные источники питания можно классифицировать по самым разным параметрам. Наиболее популярный метод классификации – по принципу действия, в соответствии с которым все источники питания можно разделить на импульсные и линейные. Последние также называют трансформаторными.

    Каждый из типов блоков имеет свои преимущества. Так, к примеру, импульсный блок питания характеризуется высоким коэффициентом полезного действия и значительно большей мощностью по сравнению с трансформаторными агрегатами. В тоже время линейный источник питания обладает такими достоинствами как простота и надежность конструкции, а также низкая стоимость ремонта и ценовая доступность запчастей.

    Линейный блок питания

    Традиционным блоком питания является линейный блок. Его конструкция состоит из автотрансформатора и понижающего трансформатора. Также имеется выпрямитель, который преобразует переменное напряжение в постоянное. Преимущественное большинство моделей укомплектовано выпрямителем, состоящим из одного или четырёх диодов, составляющих так называемые диодный мост. При этом есть и другие конструкционные схемы, но они используются гораздо реже. В некоторых моделях после выпрямителя может быть инсталлирован специальный фильтр, который стабилизирует колебания в сети. Как правило, эту функцию выполняет высокоемкостный конденсатор. В некоторых моделях предусмотрены фильтры высокочастотных помех, стабилизаторы тока и напряжения и многое другое. Простейший линейный блок питания, возможно, сделать своими руками, при этом, основным и самым дорогим компонентом является понижающий трансформатор – Т1.

    Схема линейного блока питания

    Среди мастеров, которые специализируются на ремонте и обслуживании электроники и радиотехники, самым востребованным линейным блоком питания считается модель с выходными характеристиками напряжения в регулируемом диапазоне 0-30 В и тока в диапазоне 0-5А, например — источник питания постоянного тока YIHUA-305D. Этот блок представляет собой высокоточный агрегат, с помощью которого можно легко и тонко настраивать параметры переменного тока и напряжения в установленных номинальных рамках. Оборудование функционирует в двойном режиме – цифровой индикатор одновременно показывает актуальные показатели напряжение и выходного тока. Кроме того, данная модель имеет режим защиты от короткого замыкания (кз), перегрузки по току и функцию самовосстановления.

    Импульсный блок питания

    В наши дни преимущественное большинство используемых блоков питания – это агрегаты импульсного типа. Эти блоки представляют собой фактически инверторную систему. Принцип их работы прост – происходит предварительное выпрямление входного напряжения, после чего оно преобразуется в импульсы с увеличенной частотой и необходимыми параметрами скважности. В импульсных блоках питания используются небольшие трансформаторы, которых более чем достаточно, поскольку увеличение частоты повышает эффективность трансформатора, а значит нет необходимости в больших габаритах. Нередко сердечник трансформатора изготавливается из ферромагнитных материалов, что, помимо всего прочего, существенно облегчает конструкцию.

    Что же обеспечивает стабилизацию напряжения? Эту функцию берёт на себя отрицательная обратная связь, которая поддерживает выходное напряжение на одном уровне. При этом не учитывается величина нагрузки и колебания входного напряжения. Импульсный блок питания, также возможно сделать, своими руками, но в этом случае основными компонентами являются, линейный регулятор — LM7809, либо ШИМ контроллер TL494, а также импульсный трансформатор Т1.

    Схема простого импульсного блока питания

    Наиболее востребованным среди профессионалов импульсным агрегатом, который пользуется спросом и среди любителей, и среди профессионалов, считается импульсный блок питания MAISHENG MS305D – эталон компактности и удобства. Этот лабораторный источник импульсного типа идеально подходит для стабильной работы самых разных электронных схем и устройств. Конструкцией предусмотрена возможность настраивать параметры переменного тока в диапазоне от 0 до 5 А и напряжения от 0 до 30 В, защита от кз, перегрева и перегрузки по току. Данная модель укомплектована плавными регуляторами, которые облегчают точный подбор напряжения и тока. Прибор оснащен удобным цифровым дисплеем, на котором в реальном времени отображаются параметры напряжения и переменного тока.

    Что же выбрать? Преимущества и недостатки линейных и импульсных блоков питания.

    К достоинствам импульсных агрегатов нужно отнести:
    • Высокий коэффициент стабилизации;
    • Высокий коэффициент полезного действия;
    • Более широкий диапазон входных напряжений;
    • Более высокая мощность по сравнению с линейными устройствами.
    • Отсутствие чувствительности к качеству электропитания и частоте входного напряжения;
    • Небольшие габариты и достойная транспортабельность;
    • Доступная цена.

    К явным недостаткам импульсных источников питания стоит отнести:
    • Наличие импульсных помех;
    • Сложность схем, что негативно сказывается на надежности;
    • Ремонт далеко не всегда удается произвести своими руками.

    Трансформаторные блоки питания также имеют ряд плюсов, среди которых:
    • Простота и надежность конструкции;
    • Высокая ремонтопригодность и дешевизна запчастей;
    • Отсутствие радиопомех;

    Как вы понимаете, у трансформаторных блоков питания есть и недостатки, среди которых:
    • Большой вес и габариты, что часто делает транспортировку очень неудобной;
    • Обратная зависимость между КПД и стабильностью выходного напряжения;
    • Металлоемкость конструкции.

    Лабораторные блоки питания на сегодняшний день представлены огромным ассортиментом агрегатов. Спросом пользуются и импульсные, и трансформаторные блоки. Удачный выбор оборудования напрямую зависит от того, какие цели вы преследуете, приобретая блок питания. Если вы хотите всегда иметь под рукой надежный агрегат с отсутствием радиопомех, который редко ломается и легко поддается ремонту, тогда стоит обратить внимание на трансформаторные блоки питания. Если же для вас важна мощность и коэффициент полезного действия, тогда вам стоит подробнее изучить импульсные устройства.

    Наиболее мощные лабораторный блоки питания представлены импульсными моделями:

    Как работает блок питания компьютера

    Содержание

    Содержание

    Большинство рассказов про блоки питания начинается с подчеркивания их важнейшей и чуть ли не главенствующей роли в составе компьютера. Это не так. БП — просто один из компонентов системы, без которого она не будет работать. Он обеспечивает преобразование переменного напряжения из сети в необходимые для работы ПК стабилизированные напряжения. Все блоки можно разделить на импульсные и линейные. Современные компьютерные блоки выполнены по импульсной схеме.

    Линейные блоки питания

    Сетевое напряжение поступает на первичную обмотку трансформатора, а со вторичной мы снимаем уже пониженное до нужных пределов переменное напряжение. Далее оно выпрямляется, следом стоит фильтр (в данном случае нарисован обычный электролитический конденсатор) и схема стабилизации. Схема стабилизации необходима, так как напряжение на вторичной обмотке напрямую зависит от входного напряжения, а оно только по ГОСТу может меняться в пределах ±10 %, а в реальности — и больше.

    Основные достоинства линейных блоков питания — простая конструкция и низкий уровень помех (поэтому аудиофилы часто используют их в усилителях). Недостаток таких БП — габариты и невысокий КПД. Собрать БП мощностью 400 и более Вт по такой схеме возможно, но он будет иметь устрашающие размеры, вес и стоимость (медь нынче дорогая).

    Импульсные блоки питания

    Далее в тексте сократим название «импульсный источник питания» до ИИП. Такие блоки питания более сложны, но гораздо более компактны. Для примера на фото ниже показана пара трансформаторов.

    Слева — отечественный сетевой с номинальной мощностью 17 Вт, справа — выпаянный из компьютерного БП мощностью 450 Вт. Кстати, отечественный еще и весит раз в 5 больше.

    В ИИП сетевое напряжение сначала выпрямляется и сглаживается фильтром, а потом опять преобразуется в переменное, но уже гораздо более высокой частоты (несколько десятков килогерц). А затем оно понижается трансформатором.

    Так выглядит плата вживую:

    Фильтр

    Фильтр в блоке питания двунаправленный: он поглощает разного рода помехи: как созданные самим БП, так и приходящие из сети. В самых бюджетных БП предприимчивые китайцы вместо дросселей распаивали перемычки (или, как их называют ремонтники, «пофигисторы»), а конденсаторы не ставили вообще. Чем это плохо: помехи будут влиять на другую аппаратуру, подключенную к данной сети, а напряжение на выходе получится с «мусором». Сейчас таких блоков уже немного. Встречается также экономия на размерах: фильтр как бы есть, но работать он будет кое-как.

    Фильтр работает эффективнее, когда он находится как можно ближе к источнику помех. Поэтому часть фильтра зачастую располагают прямо на сетевой розетке.

    На картинке изображен фильтр в минимальной комплектации. F1 — предохранитель, VDR1 — варистор, N1 — термистор, Х2 — Х-конденсатор, Y1 — Y-конденсаторы, L1 — синфазный дроссель. Резистор R1 служит для разряда конденсатора Х2.

    Еще одна опасная для жизни пользователей экономия — когда вместо специальных Х- и Y-конденсаторов ставят обычные. Впрочем, встречается она редко. Автор видел такое всего один раз и очень давно. Экономия очень незначительна, а риск для пользователей очень велик, так как, например, Y-конденсаторы подключаются одной «ногой» на фазу, а другой — на корпус. В случае пробоя конденсатора можно получить опасное для жизни напряжение на корпусе.

    Корректор коэффициента мощности

    Не будем вдаваться в подробности, поскольку статьи на эту тему уже были: раз и два. Скажем только, что корректор коэффициента мощности должен быть во всех компьютерных БП, желательно активного типа (A-PFC).

    Плюсы корректора:
    1) Снижается нагрузка на сеть.
    2) Повышенный диапазон входного напряжения (чаще всего, но не всегда).
    3) Улучшение работы инвертора.

    Минусы:
    1) Увеличивается сложность конструкции, соответственно, снижается надежность.
    2) Возможны проблемы при работе с UPS.

    Преобразователь

    Обычно используется мостовая или полумостовая схема. Чаще всего встречается полумост. На картинке ниже он изображен в упрощенном виде.

    Как видно по схеме, транзисторы открываются поочередно с небольшой задержкой, чтобы не случилось ситуации, когда оба окажутся открыты. В таком случае получаем на первичной обмотке переменный ток высокой частоты, а на вторичной — уже пониженный до нужной величины.

    В топовых блоках применяются резонансные преобразователи (LLC), которые имеют более высокий КПД, но они технически сложнее.

    Выпрямление и стабилизация выходных напряжений

    На выходе БП имеется четыре напряжения:
    1) 12 В — отвечает за питание процессора, видеокарты, HDD, вентиляторов.
    2) 5 В — питание логики материнской платы, накопителей, USB.
    3) 3,3 В — питание оперативной памяти.
    4) -12 В — считается атавизмом и не используется в современных компьютерах.

    По способу выпрямления и стабилизации блоки можно поделить на четыре группы:

    1) Выпрямление с помощью диодов Шоттки (полупроводниковый прибор, у которого при прямом включении падение напряжения будет в три-четыре раза меньше, чем у обычных кремниевых), групповая стабилизация.

    Внешне их можно определить по двум крупным дросселям. На одном — три обмотки (12 В, 5 В и тонкий провод -12 В).

    Второй имеет меньший размер. Это отдельная стабилизация канала 3,3 В. Сейчас такие БП часто встречаются в основном в бюджетном сегменте. Например:

    Вот, например, фото такого блока. Очень бюджетно:

    2) Выпрямление с помощью диодов Шоттки, раздельная стабилизация на магнитных усилителях. Внешне их можно отличить по наличию в выходных цепях трех крупных дросселей. Данная схема в современных БП не используется: ее вытеснили более производительные решения. Пик такой схемотехники — начало 2000-х годов.

    3) Выпрямление канала 12 В с помощью диодов Шоттки. Напряжения 5 В и 3,3 В получают из 12 В с помощью преобразователей DC-DC. Развитие электроники позволило производить недорогие и эффективные преобразователи такого рода. БП будет ненамного эффективнее обычных с групповой стабилизацией (так как нагрузка на низковольтные каналы небольшая), но стабильность напряжений выше.

    4) Канал 12 В — синхронный выпрямитель на MOSFET (полевой транзистор с изолированным затвором), остальные напряжения получают при помощи преобразователей DC-DC.

    Это наиболее эффективная и точная, но и более сложная схемотехника. В соответствии с ней делают все топовые блоки питания. Отклонения выходных напряжений у таких блоков укладываются в один-два процента при допустимых 5 %.

    Дежурный источник питания

    Представляет из себя маломощный ИИП с напряжением на выходе 5 В. Он работает все время, пока БП подключен к сети. Обеспечивает питание микросхем внутри блока и питание логики на материнской плате, а также подает питание на порты USB при выключенном компьютере.

    Супервизор

    Микросхема обеспечивает функционирование основных защит в блоке (превышения выходных напряжений, превышение выходного тока и прочее), управляет включением и выключением блока по сигналам с материнской платы.

    Теперь вы представляете, как обстоит дело со схемотехникой в наши дни. А что нас ждет в будущем? В мае 2020 года компания Интел выпустила новый ATX12VO (12 V Only) Desktop Power Supply Disign Guide в котором описывает совершенно новые БП: у блока осталось только одно напряжение — 12 В. Нужные напряжения будет преобразовывать материнская плата. Дежурный источник питания с напряжения 5 В перейдет на 12 В. При этом размеры блоков АТХ остаются такими же. Это сделано для того, чтобы сохранить совместимость со старыми корпусами. Правда, пока производители не торопятся переходить на этот формфактор.

    Выбрать источник питания — импульсный или линейный?

    Импульсный или линейный блок питания: отличия, характеристики. Что лучше?

    Наверное ни для кого не секрет, что большинство специалистов, радиолюбителей и просто технически грамотных покупателей блоков питания с опаской относятся к импульсным источникам питания, оставляя предпочтение линейным.

    Причина проста и понятна. Репутация импульсных блоков питания серьезно подорвана еще в 80-х годах, во времена массовых отказов отечественных цветных телевизоров, низкокачественной импортной видеотехники, оснащенных первыми импульсными модулями питания.

    Что мы имеем на сегодняшний день? Практически во всех современных телевизорах, видеоаппаратуре, бытовой технике, компьютерах используются импульсные источники питания. Все меньше и меньше сфер применения линейных (аналоговых, параметрических) источников питания. Линейный источник питания сегодня в бытовой аппаратуре практически не найдешь. А стереотип остался. И это не консерватизм, несмотря на бурный прогресс электроники, преодоление стереотипов происходит очень медленно.

    Недостатки источников питания

    Давайте попробуем объективно посмотреть на сегодняшнее положение и попробуем изменить мнение специалистов. Рассмотрим «стереотипные» и присущие импульсным источникам питания недостатки: сложность, ненадежность, помехи.

    Недостатки источников питания — Сложность

    Да, они сложные, точнее сказать сложнее аналоговых, но намного проще компьютера или телевизора. Вам не нужно разбираться в их схемотехнике, так же как и в схемотехнике цветного телевизора. Оставьте это профессионалам. Для профессионалов там нет ничего сложного.

    Недостатки источников питания — Ненадежность

    Элементная база импульсных источников питания не стоит на месте. Современная комплектация, применяемая в источниках питания, позволяет сегодня с уверенностью сказать: ненадежность – это миф. В основном надежность блоков питания, как и любого другого оборудования, зависит от качества применяемой элементной базы. Чем дороже блок питания, тем дороже элементная база в нем. Высокая интеграция позволяет реализовать большое количество встроенных защит, которые порой недоступны в линейных источниках.

    Недостатки источников питания — Помехи

    В схемотехнике импульсных источников питания заложено формирование мощных импульсов и затухающих колебаний в обмотках трансформатора. Эти коммутационные процессы предопределяют широкий спектр паразитного излучения.
    Поэтому корпус и соединительные провода источника могут стать антенной для излучения радиопомех. Но если конструкция источника тщательно проработана, о помехах можно забыть.

    Кроме этого, благодаря современным технологиям импульсные источники позволяют существенно сгладить пульсации сетевого напряжения.

    А какие достоинства источников питания?

    Достоинства источников питания — Высокий КПД (вплоть до 90-98%)

    Высокий КПД связан с особенностью схемотехники. Основные потери в аналоговом источнике это сетевой трансформатор и аналоговый стабилизатор (регулятор). В импульсном источнике нет ни того ни другого. Вместо сетевого трансформатора используется высокочастотный, а вместо стабилизатора – ключевой элемент. Поскольку основную часть времени ключевые элементы либо включены, либо выключены, потери энергии минимальны.

    КПД аналогового источника может быть порядка 50%, то есть половина его энергии (и ваших денег) уходит на нагрев окружающего воздуха, проще говоря, улетают на ветер.

    Достоинства источников питания — Небольшой вес

    Меньший вес за счет того, что с повышением частоты можно использовать трансформаторы меньших размеров при той же передаваемой мощности. Масса импульсного источника питания в разы меньше аналогового.

    Достоинства источников питания — Меньшая стоимость

    Спрос рождает предложение. Благодаря массовому выпуску унифицированной элементной базы и разработке ключевых транзисторов высокой мощности сегодня мы имеем низкие цены силовой базы импульсных источников питания. Чем больше выходная мощность импульсного источника питания, тем дешевле стоит источник по сравнению со стоимостью аналогичного линейного источника.

    Кроме того, главные компоненты аналогового источника (медь, железо трансформатора, радиаторы из алюминия) постоянно дорожают.

    Достоинства источников питания — Надежность

    Вы не ослышались, надежность. На сегодняшний момент импульсные источники питания надежнее линейных за счет наличия в современных блоках питаниях встроенных цепей защиты от различных непредвиденных ситуаций, например от короткого замыкания, перегрузки, скачков напряжения, переполюсовки выходных цепей. Высокий КПД обуславливает меньшие теплопотери, что в свою очередь обуславливает меньший перегрев элементной базы источника, что так же является показателем надежности.

    Достоинства источников питания — Требования к сетевому напряжению

    Что творится в отечественных электросетях, вы наверно знаете не понаслышке. 220 Вольт в розетке скорее редкость, чем норма. А импульсные источники питания допускают широчайший диапазон питающего напряжения, недостижимого для линейного.

    Типовой нижний порог сетевого напряжения для импульсного источника 90-110 Вольт, любой аналоговый источник при таком напряжении в лучшем случае «сорвется в пульсации» или просто отключиться.