Блок индикации источника питания

Блок индикации источника питания

Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Архив статей и поиск
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(500000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
▪ Ваши истории
▪ Викторина онлайн
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Голосования
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

Перевод:
Наталья Кузнецова

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua


сделано в Украине

Блок индикации источника питания


Рис. 1 Принципиальная схема блока индикации (нажмите для увеличения)

Топология печатной платы блока индикации источника питания

Размеры печатной платы даны в натуральную величину. В масштабе 1:1.

Резистор Rh нужен для постоянного свечения сегмента H HG2, а точнее запятой. На вход IN подается через резистор 3,5М (в авторском варианте это два резистора номиналами 2,4М и 1,1М) напряжение с выхода блока питания. Питается блок индикации стабилизированным напряжением 9В. Резистор R5 многооборотный, типа СП5. Его корпус приклеивается к плате клеем «МОМЕНТ» и соединяется гибким проводом с точками R5 на плате. Светодиодные индикаторы типа АЛС321А (с общим катодом).

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

ЛАБОРАТОРНЫЙ БП С ИНДИКАЦИЕЙ НА МИКРОКОНТРОЛЛЕРЕ

Представляю для вашего внимания проверенную схему хорошего лабораторного источника питания, опубликованного в журнале «Радио» №3, с максимальным напряжением 40 В и током до 10 А. Блок питания оснащён цифровым блоком индикации, с микроконтроллерным управлением. Схема БП показана на рисунке:

Описание работы устройства. Оптопара поддерживает падение напряжения на линейном стабилизаторе примерно 1,5 В. Если падение напряжения на микросхеме увеличивается (например, вследствие увеличения входного напряжения), светодиод оптопары и, соответственно, фототранзистор открываются. ШИ-контроллер выключается, закрывая коммутирующий транзистор. Напряжение на входе линейного стабилизатора уменьшится.

Для повышения стабильности резистор R3 размещают как можно ближе к микросхеме стабилизатора DA1. Дроссели L1, L2 — отрезки ферритовых трубок, надетых на выводы затворов полевых транзисторов VT1, VT3. Длина этих трубок равна примерно половине длины вывода. Дроссель L3 наматывают на двух сложенных вместе кольцевых магнитопроводах К36х25х7,5 из пермаллоя МП 140. Его обмотка содержит 45 витков, которые намотаны в два провода ПЭВ-2 диаметром 1 мм, уложенных равномерно по периметру магнитопровода. Транзистор IRF9540 допустимо заменить на IRF4905, а транзистор IRF1010N — на BUZ11, IRF540.

Если потребуется блок питания с выходным током, превышающим 7,5 А, необходимо добавить еще один стабилизатор DA5 параллельно DA1. Тогда максимальный ток нагрузки достигнет 15 А. В этом случае дроссель L3 наматывают жгутом, состоящим из четырех проводов ПЭВ-2 диаметром 1 мм, и увеличивают примерно в два раза емкость конденсаторов С1—СЗ. Резисторы R18, R19 подбирают по одинаковой степени нагрева микросхем DA1, DA5. ШИ-контроллер следует заменить другим, допускающим работу на более высокой частоте, например, КР1156ЕУ2.

Модуль цифрового измерения напряжения и тока лабораторного БП

Основа устройства — микроконтроллер PICI6F873. На микросхеме DA2 собран стабилизатор напряжения, которое используется и как образцовое для встроенного АЦП микроконтроллера DDI. Линии порта RA5 и RA4 запрограммированы как входы АЦП для измерения напряжения и тока соответственно, a RA3 — для управления полевым транзистором. Датчиком тока служит резистор R2, а датчиком напряжения — резистивный делитель R7 R8. Сигнал датчика тока усиливает ОУ DAI. 1. а ОУ DA1.2 использован как буферный усилитель.

  • Измерение напряжения, В — 0..50.
  • Измерение тока, А — 0.05..9,99.
  • Пороги срабатывания защиты:
  • — по току. А — от 0,05 до 9.99.
  • — по напряжению. В — от 0,1 до 50.
  • Напряжение питания, В — 9. 40.
  • Максимальный потребляемый ток, мА — 50.

Работа цифрового измерения напряжения и тока: при нажатии на кнопку SB3 «Авто в режиме установки выполняется выход на рабочий режим, а в рабочем режиме — автоматическая установка защиты. В последнем случае значения тока и напряжения, при которых срабатывает защита, автоматически устанавливаются больше текущих значений напряжения и потребляемого тока на две единицы младшего разряда. Подробнее о работе модуля читайте на форуме.

Светодиодные семиэлементные индикаторы могут быть любые с общим катодом, кнопки — малогабаритные с самовозвратом, например DTST-6, постоянные резисторы — МЛТ, С2-22. Резистор R2 изготовлен из отрезка высокоомного провода, в авторском варианте использован резистор от вышедшего из строя мультиметра М-830. Полевой транзистор — мощный переключательный с n-каналом, желательно с буквой L в первой части названия, так как для его открывания достаточно напряжения 4-5 В. При токах нагрузки более 5 А сопротивление открытого канала должно быть не более 0,01 Ом. Необходимо обратить внимание на то, чтобы максимально допустимый ток стока был больше тока нагрузки.

Налаживание блока индикации начинают с установки подстроенным резистором R4 выходного напряжения (5,12 В) стабилизатора на микросхеме DA2. при этом предварительно микроконтроллер удаляют. Затем его устанавливают и подают на вход напряжение 10. 15 В. Измеряя это напряжение цифровым вольтметром, сравнивают его показания с показаниями индикатора устройства и при небольших отличиях добиваются их совпадения резистором R4. При этом следует учесть, что напряжение питания микроконтроллера не должно превышать 5,5 В. В случае необходимости подбирают резистор R7.

Для налаживания измерителя тока к выходу устройства подключают нагрузку с последовательно включенным амперметром. При токе 100мА сравнивают показания и добиваются их совпадения подбором резистора R5. Затем проверяют точность показаний при токе в несколько ампер. Плата и прошивка индикатора — в архиве.

Читайте также  И холодно и жарко

После срабатывания защиты устраняют причину, ее вызвавшую. Возвращают устройство в исходное состояние, отключив и включив источник или включив режим «Установка», а затем нажимая на кнопку SB3 «Авто».

Необходимо отметить, что устройство реагирует на нажатие кнопок после их отпускания. Если присутствует дребезг контактов, то параллельно кнопкам следует установить конденсаторы емкостью 0.047. 0,22 мкФ. Питать устройство желательно от отдельного источника. Конструкцию собрал и испытал: Romick_Калуга.

Блок питания с индикацией напряжения и тока

Параметры питания электрической цепи зависят от множества факторов. Конечно, производители бытовой техники и аппаратуры стараются стандартизировать процессы. Но в быту и в самодельных схемах всегда находятся нестандартные задачи.

Так, в качестве простейшего примера – блок питания для лабораторных работ. Во-первых, здесь могут потребоваться разные параметры выходного тока (сила тока и напряжение), то есть пользователям должна быть доступна их регулировка; а, во-вторых, отдаваемый ток необходимо измерять, выдавая наглядную информацию о его силе и уровне напряжения.

Другой пример – ремонтные мастерские бытовой и цифровой техники. Здесь тоже удобно совмещать БП с индикацией напряжения и тока.

Ниже рассмотрим несколько наиболее популярных схем блоков питания, систем организации индикации и их включения в БП.

Типы блоков питания

В зависимости от стоящих задач, требуемых параметров выходного напряжения и силы тока, и других критериев создаются и различные блоки питания.

В бытовом применении нашли наибольшее распространение два основных класса вторичных источников питания:

Линейные БП строятся на базе силовых трансформаторов, выполняющих роль гальванической развязки (это значит, что подключаемая к нему цепь будет нечувствительна к высокочастотным помехам, поступающим из основного источника тока). Однако, такой подход имеет явный недостаток – большие габариты и вес БП.

Типовая схема линейного БП выглядит следующим образом.

После трансформатора стоит диодный мост с простейшим фильтром из конденсатора.

Импульсные БП, в отличие от линейных, обеспечивают не постоянное напряжение/ток на выходе, а переменное (импульсный, пульсирующий).

На этом типе БП мы останавливаться не будем, так как в радиоаппаратуре они применяются крайне редко, и только для очень специфичных задач.

Для большинства задач применяются следующие системы индикации уровня напряжения или силы тока:

1. Шкальные (с классической шкалой и указывающей стрелкой);

2. Пиковые (люминесцентные или светодиодные, аналоговые, на логических элементах или специализированных микросхемах).

Самый простой и доступный всем способ отображения уровня силы тока или напряжения – шкала со стрелкой.

Включение в схему такого индикатора самое элементарное.

Вольтметр (строится на базе амперметра с применением множителя, включается в цепь параллельно измеряемому участку цепи):

Амперметр (включается последовательно):

Самое сложное в стрелочных приборах измерения – калибровка и прорисовка шкалы.

Отдельно стоит упомянуть «растяжение». Для увеличения точности измерения в заданном диапазоне значений, например, у шкальных вольтметров, применяют туннельные диоды, которые фактически отсекают часть неиспользуемого диапазона.

Цифровая индикация намного сложнее в реализации, но гораздо более наглядна. Начинающие радиолюбители могут столкнуться не столько с проблемой составления принципиальной схемы (готовых схем предостаточно), сколько с ее физической реализацией (создание печатной платы и пайка).

Аналоговые индикаторы на светодиодах предполагают наличие компараторов, где напряжения делятся на условные группы срабатывания.

Вот один из примеров реализации индикации из столбика светодиодов (чем выше столбик, тем выше напряжение).

Наиболее быстрый и доступный начинающим способ пиковой индикации – использование специальных готовых микросхем.

БП с индикацией напряжения и тока

В качестве основного примера мы выбрали блок питания, состоящий из самых доступных радиоэлементов, имеющий возможность изменения выходных параметров и оснащенный современной цифровой индикацией. Он предполагает выходное напряжение – до 30 В, силу тока – 5 А.

Итак, непосредственно схема БП.

Все использованные основные элементы указаны на самой схеме.

В данном БП предусмотрен стабилизатор напряжения и тока.

Трансформатор Т1 лучше всего взять мощностью не менее 100 Вт (до 150 Вт), выходные обмотки должны быть рассчитаны на токи:

II-обмотка – 4-6 А,

III-обмотка – 1-2 А.

Ввиду того, что транзистор VT1 будет сильно греться на высоких нагрузках, он требует установки на теплоотвод общей площадью около 1500 см 2 .

Печатная плата БП.

Принципиальная схема блока индикации выглядит следующим образом.

Семисегментные светодиоды — KINGBRIGT DA 56 – 11 SRWA, могут быть заменены на АЛС324Б.

Если вам требуется большая разрядность – можно рассмотреть применение микросхемы КР572ПВ6.

Использованная выше КР572ПВ2А, легко заменяется на ICL7107CPL.

Печатная плата для блока индикации.

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Блок индикации источника питания

Блок питания 0…30в/5А с цифровой индикацией напряжения и тока

Описываемый блок питания предназначен для использования в радиолюбительской лаборатории. Несмотря на то, что в радиолюбительской литературе печаталось множество схем подобных устройств, данный блок питания не требователен к специализированным микросхемам и импортным элементам. В настоящее время вопрос приобретения микросхем по-прежнему актуален и в некоторых регионах, доставать их проблематично. Данный блок питания является модернизацией блока питания, описанным в ( II ). Блок питания собран только из доступных деталей.

Характеристики блока питания:
Выходное напряжение регулируется от 0 до 30 В.
Выходной ток 5 А.
Падение напряжения при токе от 1 А до 6 А ничтожно мало и на выходных показателях не отражается.

Схема блока питания показана на рис.1 ниже

Данный блок питания содержит три основных узла: внутренний сетевой узел питания VD 1- VD 4, C 1- C 7, DA 1, DA 2, узел защиты от перегрузки и КЗ VS 1, R 1- R 4, VD 3 и основной узел – регулируемый стабилизатор напряжения VT 2- VT 7, VD 4- VD 5, R 4- R 14, C 8.

А так же к блоку питания добавляется цифровая панель, т.е. блок индикации, который показан на рис.5.

Внутренний сетевой узел питания построен по традиционной схеме с сетевым трансформатором Т1.

Узел защиты особенностей не имеет. Датчик тока рассчитывался на ток 3А, но можно его рассчитать и на 5А. Длительное время блок питания эксплуатировался с током 5А. Никаких сбоев в его работе не наблюдалось. Диод HL 1 индицирует перегрузку по току или КЗ в нагрузке.

Основной узел – регулируемый стабилизатор напряжения компенсационного типа. Он содержит входную дифференциальную ступень на транзисторах VT 5, VT 7, две ступени усиления на транзисторах VT 3 и VT 2, и регулирующий транзистор VT 1. Элементы VT 4, VT 6, VD 4, VD 5, R 5 — R 8, R 10 образуют стабилизаторы тока. Конденсатор С8 предотвращает самовозбуждение блока. Т.к. транзисторы VT 5 и VT 7 не подбирались одинаковыми, то имеется определенное «смещение нуля» этого каскада, которое и является минимальным напряжением блока питания. В небольших пределах оно регулируется с помощью подстроечного резистора R 7 и, в авторском варианте достигало на выходе блока питания приблизительно 47 m V . Выходное напряжение регулируется резистором R 13. Верхняя граница напряжения – подстроечным резистором R 14.

Читайте также  Электронный балласт компактной люминесцентной лампы дневного света фирмы delux

Конструкция и детали. Мощность трансформатора Т1 должна быть не менее 100 – 160вт, ток обмотки II – не менее 4 – 6А. Ток обмотки III – не менее 1…2А. Диодную сборку RS 602 можно заменить на сборку RS 603 или диодами, рассчитанными на ток 10А. Диодный мост VD 2 можно заменить на любой из серии КЦ402 – КЦ405, которые приклеиваются со стороны печатных дорожек, зеркально конденсатору С1 и соединяются гибкими проводниками с контактными площадками VD 2 на плате. Транзистор VT 1 следует устанавливать на теплоотводе площадью не менее 1500см 2 . Площадь радиатора рассчитывается по формуле S = 10 I n ( U вх. – U вых. ), где S – площадь поверхности радиатора (см 2 ); I n – максимальный ток, потребляемый нагрузкой; U вх. – входное напряжение (В); U вых. – выходное напряжение (В).

Транзистор КТ825А – составной. Его можно заменить парой транзисторов, как показано на рисунке 2.

Данные транзисторы, соединенные по схеме Дарлингтона. Резистор R 4 подбирают экспериментально, по току срабатывания защиты. Резисторы R 7 и R 14 – многооборотные СП5-2. Резистор — R 13 любой переменный с линейной функциональной характеристикой (А). В авторском варианте применен переменный резистор ППБ-3А на 2,2К — 5% . Микросхемы DA 1 и DA 2 можно заменить аналогичными отечественными КР142ЕН5А и КР1162ЕН5А. Их мощность позволяет стабилизированное напряжение ± 5 В для питания внешних нагрузок с током потребления до 1А. Данной нагрузкой является цифровая панель, которая используется для цифровой индикации напряжения и тока в блоках питания. Если не использовать цифровую панель, то микросхемы DA 1 и DA 2 можно заменить микросхемами 78 L 05 и 79 L 05.

Печатная плата блока питания показана на рис.3 и рис.4.

Налаживание. Так как конструкция расположена на двух печатных платах, сначала настраивают блок питания, затем блок цифровой индикации.

Блок питания. При исправных деталях и отсутствие ошибок в монтаже устройство начинает работать сразу после включения. Его налаживание заключается в установлении необходимых пределов изменения выходного напряжения и тока срабатывания защиты. Движки резисторов R 7 и R 13 должны находиться в среднем положении. Резистором R 14 по вольтметру добиваются показания 15 вольт. Затем движок резистора R 13 переводят в минимальное положение и по вольтметру резистором R 7 устанавливают 0 вольт. Теперь движок резистора R 13 переводят в максимальное положение и резистором R 14 по вольтметру устанавливают напряжение 30 вольт. Резистор R 14 можно заменить постоянным, для этого в плате предусмотрено место – резистор R 15. В авторском варианте это резистор 360 Ом. Размер печатной платы блока питания 110 х 75 мм . Диоды VD 3 – VD 5 можно заменить на диоды КД522Б.

Цифровая панель состоит из входного делителя напряжения и тока, микросхемы КР572ПВ2А и индикации из четырех семисегментных светодиодных индикаторов, показанных на рис 5. Резистор R 4 цифровой панели состоит из двух отрезков константанового провода ? =1мм и длиной 50мм. Разница в номинале резистора должна превышать 15 — 20%. Резисторы R 2 и R 6 марки СП5-2 и СП5-16ВА. Переключатель режимов индикации напряжения и тока типа П2К. Микросхема КР572ПВ2А представляет собой преобразователь на 3,5 десятичных разрядов, работающий по принципу последовательного счета с двойным интегрированием, с автоматической коррекцией нуля и определением полярности входного сигнала.

Для индикации использовались импортные светодиодные семисегментные индикаторы KINGBRIGT DA 56 – 11 SRWA с общим анодом. Конденсаторы С2 – С4 желательно применять пленочные типа К73-17. Вместо импортных семисегментных светодиодов можно применить отечественные с общим анодом типа АЛС324Б.

Цифровая панель индикации напряжения и тока. После включения питания и безошибочном монтаже, при исправных деталях должны засветиться сегменты индикации HG 1- HG 3. По вольтметру резистором R 2 на ножке 36 микросхемы КР572ПВ2 выставляется напряжение 1 вольт. К ножкам (а) и ( b ) подключают блок питания. На выходе блока питания устанавливают напряжение 5 … 15 вольт и подбирают резистор R 10 (грубо), заменив его, на время, переменным. С помощью резистора R8 устанавливают более точное показание напряжения. После чего, к выходу блока питания подсоединяют переменный резистор мощностью 10 … 30 ватт, по амперметру выставляют ток равным 1А и резистором R 6 выставляют значение на индикаторе. Показание должно быть 1,00. При токе 500 мА – 0,50, при токе 50мА – 0,05. Таким образом, индикатор может индицировать ток от 10мА, т.е. 0,01. Максимальное значение индикации тока 9,99А.

Для большей разрядности индикации можно применить схему на КР572ПВ6. Размер печатной платы цифровой панели 80 х 50 мм ., рис.6 и рис.7. Контактные площадки U и I на печатной плате цифровой панели, с помощью гибких проводников подключаются к точкам соответствующих индикаторов HG 2 и HG 1. Микросхему КР572ПВ2А можно заменить на импортную микросхему ICL7107CPL.

Литература:

• Стабилизированный выпрямитель тока типа ТЭС 12 – 3 – НТ. г Горце Делчев. Болгария. 1984г.
• А.Патрин Лабораторный блок питания 0…30 В. РАДИО №10 2004г., стр.31.
• Импульсный блок питания на базе ПК. С.Митюрев. РАДИО №10 2004г. стр.33.
• Ануфриев А. Сетевой блок пита­ ния для домашней лаборатории. — Радио, 1992, N 5, С.39-40.
• Стабилизатор напряжения с двойной защитой Ю. КУРБАКОВ , РАДИО февраль 2004г. стр.39.
• Бирюков С. Портативный цифровой мультиметр. — В помощь радиолюбителю, вып. 100 — ДОСААФ, 1988. с. 71-90.
• Бирюков С. Цифровые устройства на МОП интегральных микросхемах. — М.: Радио и связь, 1990:1996 (второе издание).
• Радио N 8 1998г. с.61-65

BRIGHT LED ELECTRONICS CORP.

©2000 BRIGHT LED ELECTRONICS CORP. Specifications subject to change without notice. www.brightled.com.tw

XI . С.Митюрев Импульсный блок питания на базе БП ПК.

Радио №10 2004г. с.33

Автор: А.Патрин г.Кирсанов Тамбовской обл.

Блок питания для лаборатории радиолюбителя


Данный блок питания имеет цифровой вольтметр, для контроля выходного напряжения и амперметр, для контроля тока нагрузки. Прежде чем написать данную статью, блок питания был повторен несколькими радиолюбителями и, нареканий в работе не было. Выходное напряжение плавно регулируется от 0 до 30в. Блок питания имеет плавную регулировку ограничения по току. Максимальный выходной ток был рассчитан на 3А. Схемотехническое решение несложно и данный блок питания может изготовить начинающий радиолюбитель. При наличии исправных компонентов конструкция запускается сразу.

Схема блока питания представлена на рисунке (схема в высоком качестве прилагается — см. список файлов в конце статьи).

Выпрямленное напряжение +38В, после конденсатора С1, подается на регулирующий транзистор VT2 и транзистор VT1. На транзисторе VT1, стабилитроне VD3, конденсаторе С2 и резисторах R1 собран стабилизатор, который используется для питания микросхемы DA1. На выходе стабилизатора напряжение +33в. В блоке питания используется микросхема KIA324P, питание которой составляет +36в. при однополярном источнике. На микросхеме DA2.3, резисторах R9, R10, R13, DA1 собран источник опорного напряжения +5в. Данное напряжение подается на регулятор выходного напряжения (резистор R25) и на резистор R7, максимальный ток защиты блока питания. В данном случае, для максимального тока защиты 3А оно равно 1,66в. На микросхеме DA2.4 собран узел защиты устройства по току, датчиком которого является резистор R3. Резистором R4 регулируется порог срабатывания защиты. Для индикации порога срабатывания защиты используется двухцветный диод (красный и зеленый) фирмы Kingbright L-59SRSGC-CC с общим катодом диаметром линзы 5мм. Если устройство работает нормально светодиод светится зеленым цветом, при перегрузке по току или коротком замыкании в нагрузке, светодиод загорается красным цветом. Если нет такой модели или подобной, то можно вместо одного светодиода использовать два светодиода красного и зеленого свечения, или с цветом по желанию пользователя.

Читайте также  Многофункциональный ваттметр с гальванической развязкой

Резистором R23 устанавливается верхняя граница выходного напряжения источника питания.

На микросхеме DA2.4, резисторах R2R4, R7, R14 собран узел защиты и ограничения по току. С выхода (8) DA2.3 на резистор R7 подается опорное напряжение +5в. Резистором R7 устанавливается порог срабатывания при максимальном токе нагрузки. Как только появилась перегрузка напряжение с выхода (14) DA2.4 через диод VD5 подается на не инвертирующий вход микросхемы DA2.2 ножка (3) транзистор VT2 начинает запираться и напряжение на выходе блока питания начинает уменьшаться.

Налаживание блока питания сводится к следующим операциям.

При включении питания микросхемы DA2 не должно быть в панельке. Транзистор VT1 не должен нагреваться. Вместо резистора R1 впаивают подстроечный резистор. Подстроечным резистором на положительном выводе C2 устанавливают напряжение +33 вольта. После чего, значение переменного резистора замеряют омметром и в схему (при выключенном питании) впаивают постоянный резистор с полученным значением. Выводим резисторы R23 и R25 в среднее положение, резистор R7 на максимальный уровень, а резистор R4 на минимальный. Вставляем в панельку микросхему и включаем блок питания. На ножке (4) DA2 должно быть напряжение, заданное на выходе VT1. На выходе (8) DA2.3 должно быть напряжение +5вольт. Затем замеряем напряжение на выходе блока питания и резисторами R23 и R25 убеждаемся, что оно регулируется. Следующий этап. Выводим движок резистора R25 на максимум, а подстроечным резистором R23 устанавливаем на выходе напряжение +30 вольт. Затем переводим плавно движок резистора R25 в положение минимум и убеждаемся, что напряжение плавно уменьшается до 0 вольт.

Индикатор напряжения и тока собран на контроллере ATtiny26L , схема которого представлена на рисунке.


Клеммы X1, X2, X4, X5, X6, X7 подключаются к аналогичным клеммам блока питания.

Настройка блока индикации сводится к установке резисторами R28 и R31 значений выходного напряжения и тока нагрузки. Сумма резисторов R28 и R29 должна составлять 10ком, а сумма резисторов R30 и R31 должна составлять 22 ком. Изначально блок индикации показывает выходное напряжение. При нажатии на кнопку SA1 индицируется ток, при этом десятичная точка переносится в первый разряд. Например: индикация напряжения 22,7 В., а индикация тока 2,58 А. Подключение блока индикации к блоку питания осуществляется по следующей схеме:


На следующих рисунках показаны печатные платы блока питания и блока индикации.


Печатные платы блока питания и блока индикации собраны на фольгированном одностороннем стеклотекстолите. Размер платы блока питания 120 х 60 мм, блока индикации 57 х 58 мм. В конструкции применены резисторы МЛТ-0,125, электролитические конденсаторы типа серии LP jamicon и конденсаторы серии К-73.

Индикаторы и блоке индикации любого цвета свечения с общим анодом.

Обмотка III и IV трансформатора Т1 изначально рассчитывалась на питание блока индикации на микросхеме КР572ПВ2. Я думаю, подключить ее для питания индикации на контроллере не представит никакой сложности для радиолюбителя.

Успехов в повторении конструкции.

P.S.Ниже я привожу слова одного из первых, а если точнее, одной из первых женщин, повторивших данную конструкцию:

«Мне доводилось повторять многие схемы подобных устройств, но считаю новую разработку А.Н. Патрина довольно успешной, легко повторяемой, и поэтому, такой БП будет полезным многим радиолюбителям. Сама использую его уже более полутора лет – работает безотказно. Что касается индикации выходного напряжения и тока, то можно применить, как цифровой вариант – авторский, так и стрелочные приборы. Все зависит от желания и возможностей радиолюбителей. Желаю всем успехов в повторении».

Гусева Светлана Михайловна специалист по КИП и А

Блок индикации источника питания

Резистором R23 устанавливается верхняя граница выходного напряжения источника питания.

На микросхеме DA2.4, резисторах R2R4, R7, R14 собран узел защиты и ограничения по току. С выхода (8) DA2.3 на резистор R7 подается опорное напряжение +5в. Резистором R7устанавливается порог срабатывания при максимальном токе нагрузки. Как только появилась перегрузка напряжение с выхода (14) DA2.4 через диод VD5 подается на не инвертирующий вход микросхемы DA2.2 ножка (3) транзистор VT2 начинает запираться и напряжение на выходе блока питания начинает уменьшаться.

Налаживание блока питания сводится к следующим операциям.

При включении питания микросхемы DA2 не должно быть в панельке. Транзистор VT1 не должен нагреваться. Вместо резистора R1 впаивают подстроечный резистор. Подстроечным резистором на положительном выводе C2 устанавливают напряжение +33 вольта. После чего, значение переменного резистора замеряют омметром и в схему (при выключенном питании) впаивают постоянный резистор с полученным значением. Выводим резисторы R23 и R25 в среднее положение, резистор R7 на максимальный уровень, а резистор R4 на минимальный. Вставляем в панельку микросхему и включаем блок питания. На ножке (4) DA2 должно быть напряжение, заданное на выходе VT1. На выходе (8) DA2.3 должно быть напряжение +5вольт. Затем замеряем напряжение на выходе блока питания и резисторами R23 и R25 убеждаемся, что оно регулируется. Следующий этап. Выводим движок резистора R25 на максимум, а подстроечным резистором R23 устанавливаем на выходе напряжение +30 вольт. Затем переводим плавно движок резистора R25 в положение минимум и убеждаемся, что напряжение плавно уменьшается до 0 вольт.

Индикатор напряжения и тока собран на контроллере ATtiny26L , схема которого представлена на рисунке.

Клеммы X1 , X2 , X4 , X5 , X6 , X7 подключаются к аналогичным клеммам блока питания.

Настройка блока индикации сводится к установке резисторами R28 и R31 значений выходного напряжения и тока нагрузки. Сумма резисторов R28 и R29 должна составлять 10ком, а сумма резисторов R30 и R31 должна составлять 22 ком. Изначально блок индикации показывает выходное напряжение. При нажатии на кнопку SA1 индицируется ток, при этом десятичная точка переносится в первый разряд. Например: индикация напряжения 22,7 В., а индикация тока 2,58 А. Подключение блока индикации к блоку питания осуществляется по следующей схеме:

На следующих рисунках показаны печатные платы блока питания и блока индикации.

Печатные платы блока питания и блока индикации собраны на фольгированном одностороннем стеклотекстолите. Размер платы блока питания 120 х 60 мм, блока индикации 57 х 58 мм. В конструкции применены резисторы МЛТ-0,125, электролитические конденсаторы типа серии LP jamicon и конденсаторы серии К-73.

Индикаторы и блоке индикации любого цвета свечения с общим анодом.

Обмотка III и IV трансформатора Т1 изначально рассчитывалась на питание блока индикации на микросхеме КР572ПВ2. Я думаю, подключить ее для питания индикации на контроллере не представит никакой сложности для радиолюбителя.