Бестрансформаторное зарядное устройство

Зарядные устройства для портативных аккумуляторов

Бестрансформаторные выпрямители для зарядки аккумуляторов . Самые простейшие зарядные устройства выполнены по бестрансформаторным схемам и рассчитаны для зарядки аккумуляторов, используемых в малогабаритных приёмниках. Некоторые зарядные устройства этой группы, предназначенные для питания портативных радиоприёмников с потребляемым током до 20 – 30 мА, содержат стабилизатор выходного напряжения. Недостатком приставок данной группы является наличие гальванической связи между выпрямленным напряжением и сетью переменного тока, что требует строгого соблюдения правил техники безопасности при их эксплуатации. Кроме того данная группа зарядных устройств (ЗУ) не позволяет получить регулируемое стабилизированное напряжение и имеют сравнительно большое выходное сопротивление.

Простейшая схема выпрямителя для зарядки аккумуляторной батареи от сети показана на Рис.1 . Он собран по обычной однополупериодной схеме на диоде VD1. При включении такого выпрямителя в сеть переменного тока через резисторы R1 и R2, диод VD1 и через аккумулятор GB1 протекает ток заряда, величина которого ограничена сопротивлением резисторов R1 и R2. В данном случае номиналы резисторов, указанных на схеме Рис.1 позволяет использовать это устройство для зарядки аккумуляторов типа 7Д-0,1. Переключатель В1 коммутирует питающую сеть 127/220 В.

Большое распространение получили ЗУ, в которых в качестве ограничительного сопротивления используется ёмкость конденсатора ( а точнее реактивное сопротивление ). На Рис.2 приведена схема такого устройства. Среднее значение зарядного тока через аккумулятор GB1 определяется ёмкостью конденсатора С1. Подбирая ёмкость этого конденсатора, можно регулировать величину зарядного тока.
При конструировании такого устройства можно применять только неполярные конденсаторы на рабочее напряжение не ниже 350 В для сети 127 вольт, и 600 в для сети 220 вольт. Это относится также ко всем другим ЗУ, использующим конденсаторы в качестве гасящих резисторов.

На Рис.3 приведена схема ЗУ, которое используется для зарядке аккумуляторов 7Д-0,1. В этом устройстве выпрямитель собран по мостовой схеме на диодах VD1-VD4. Для обеспечении необходимого зарядного тока применяются конденсаторы С1 и С2 сравнительно небольшой ёмкости. При напряжении сети 127 вольт оба конденсатора соединяются параллельно переключателем В1. Резистор R2 образует цепь разряда конденсаторов С1 и и С2 после отключения ЗУ от сети.

На Рис.4 приведена схема ЗУ для зарядки аккумуляторов типа 2Д-0,1. Здесь использован двухполупериодный выпрямитель на диодах VD 1и VD2. Функции гасящих сопротивлений выполняют последовательно включённые конденсаторы С1 и С2. При работе ЗУ от сети напряжением 127 В конденсатор С1 замыкается переключателем В1. Резисторы R2 и R3 ограничивают импульсы тока через аккумулятор по амплитуде и сопротивление этих резисторов определяет среднее значение зарядного тока. Изменяя величину сопротивлений этих резисторов ЗУ ( Рис.4 ) можно использовать для зарядки аккумуляторов Д-0,06; Д-0,1; 2Д-0,06; 2Д-0,1 и 3Д-0,06.

При монтаже ЗУ приведённых выше следует предусматривать вентиляционные отверстия для отвода тепла, а диоды во избежание перегрева необходимо располагать возможно дальше от резисторов. Монтировать схемы необходимо в корпусах из изоляционного материала.

Автоматическое зарядное устройство позволяет производить зарядку аккумулятора 7Д-0,1 током около 12 мА и автоматически отключить аккумулятор по окончании зарядки т.е. по достижении напряжения, равного 9,45 В. Устройство исключает возможность перезарядки аккумулятора и, следовательно, выхода из строя аккумулятора из-за повышения давления газов внутри его элементов, их деформации и нарушения герметичности.
Устройство ( Рис.5 ) состоит из однополупериодного выпрямителя, образованного диодом VD1, гасящими резисторами R1 и R2, стабилитроном VD2, электронного ключа на транзисторе VT1, диоде VD4 и порогового устройства на тринисторе VD3.
При разряженном аккумуляторе GB1, когда напряжение на нём ниже номинального ( 9,53 В ), тринистор VD3 закрыт, так как ток через его управляющий электрод, определяемый падением напряжения на резисторе R5, меньше необходимого. В этом случае транзистор VT1, через который проходит зарядный ток, открыт, так как на его базу поступает положительное напряжение смещения через сигнальную лампу EL1 и резистор R3. Как только напряжение на аккумуляторе GB1 достигнет номинального значения, возрастёт и ток через управляющий электрод тринистора VD3, и он откроется. При этом транзистор VT1 закроется ( так как база транзистора VT1через небольшое сопротивление резистора R3 и открытый тринистор окажется присоединённый к минусу выпрямителя), и зарядка аккумулятора прекратится. Об окончании зарядки будет сигнализировать лампа EL1, так как на неё будет подано почти полное напряжение с выхода выпрямителя.

Порог срабатывания автоматического зарядного устройства подбирают резистором R4. Чтобы после окончания зарядки не повредить переход эмиттер – база транзистора VT1, к которому напряжение аккумулятора подключается в обратном направлении, последовательно с эмиттером включён диод VD4.
Для увеличении стабильности порога срабатывания автоматики необходимо, чтобы температура внутри корпуса устройства не изменялась. С этой целью целесообразно резисторы R1 и R2 из схемы исключить заменив их одним конденсатором ( С ) Ёмкостью 0,2 мкФ, рассчитанным на рабочее напряжение 500 В. В этом случае конденсатор С , выполняющий роль безваттного реактивного сопротивления, включают вместо резистора R1. Точки «а» и «б» схемы замыкают между собой, а между точками «б» и «в» включают диод VD как показано на схеме.
Диоды Д226Б можно заменить на Д7Ж, стабилитрон Д813 (VD2) – на Д814Д, транзистор КТ315Б – на любой транзистор этой серии с коэффициентом передачи тока не менее 50, тринистор КУ103В – на КУ103А.
Для налаживания устройства необходимо подключить к гнёздам Гн1 и Гн2 аккумулятор и контрольный вольтметр. При зарядке проверяют силу тока и, если она отличается от 12 мА, уточняют сопротивление резистора R3. Проверку зарядного тока производят подключением миллиамперметром со шкалой 15 – 20 мА в разрыв гнезда Гн1 или Гн2. Когда напряжение на аккумуляторе достигнет 9,45 В, подбором резистора R4 ( вместо него временно подключают переменное сопротивление на 100 кОм. ) добиваются зажигания сигнальной лампы EL1. Затем переменный резистор заменяют постоянным нужного сопротивления.
При эксплуатации устройства во избежание поражения электрическим током необходимо соблюдать следующее:
-включать ЗУ в сеть следует только после подключения к нему аккумулятора;
-по окончании зарядки вначале необходимо отключить от сети ЗУ и только потом аккумулятор;
-недопустимо производить подключение ( отключение ) аккумулятора при включённом в сеть ЗУ;
-недопустимо также заземлять один из выводов аккумулятора.
Соблюдение данных правил гарантирует безопасность при использовании ЗУ

И.И Андрианов «ПРИСТАВКИ К РАДИОПРИЁМНЫМ УСТРОЙСТВАМ», Москва издательство ДОСААФ СССР, 1986 г. стр. 101-106.

16. Слаботочные зарядные устройства с бестрансформаторным сетевым питанием

Зарядное устройство с сетевым питанием (рис. 15.1) предназначено для подзаряда элементов СЦ-21 током 2.5. 3 мА (время заряда 8. ..10 часов) или элементов РЦ-31 током 6. ..8 мА [15.1].
Максимальное значение зарядного тока определяется емкостью гасящего конденсатора С1 и составляет 16 мА, его можно уменьшить резистором R1. Как и остальные подобные устройства с сетевым питанием, это зарядное устройство не изолировано от питающей сети, поэтому при работе с ним требуется повышенная осторожность.


Рис. 15.1. Схема зарядного устройства с сетевым питанием


Рис. 15.2. Схема выпрямителя для подзаряда элементов и батарей

Схема, предложенная Е. Гумелей (рис. 15.2), не имеет понижающего трансформатора и питается от сети переменного тока 220 В [15.2]. Конденсаторы С1 и С2 должны выдерживать напряжение 250 6. Они могут быть заменены резисторами с суммарным сопротивлением 24 кОм и мощностью не менее 2 Вт. Схема предназначается для подзарядки батарей, частично разряженных, но не более чем до напряжения 1,1 6 на один элемент, так как подзаряд с помощью такой схемы предусматривает
восстановление только положительного электрода путем окисления МпООН в МпО2. Выпрямитель может быть использован для подзаряда элементов и батарей типа КБС, «Крона» и др. Выход устройства не изолирован от питающей сети.
Выпрямитель Б. М. Плоткина предназначен для заряда герметичных дисковых и цилиндрических никель-кадмиевых аккумуляторов током 12, 25 и 50 мА (рис. 15.3) [15.2].
Изменением емкости гасящего конденсатора можно устанавливать максимальный ток на выходе выпрямителя. Увеличение емкости конденсатора в целое число раз обеспечивает пропорциональное увеличение тока. В выпрямителе не допускается применять электролитические конденсаторы, поскольку они не работают в цепях переменного тока.

Рис. 15.3. Схема выпрямителя для заряда никель-кадмиевых аккумуляторов

Рис. 15.4. Схема бестрансформаторного зарядного устройства

Зарядное устройство (рис. 15.4) содержит выпрямитель с гасящим конденсатором С1 [15.3]. Стабильный зарядный ток через элементы GB1, GB2 обеспечивает лампа накаливания EL1. При напряжении заряда 4. 20 6 зарядный ток поддерживается неизменным на уровне 35 мА. Следует отметить, что для обеспечения такого зарядного тока емкость гасящего конденсатора не должна превышать 0,5 мкФ.
Большим недостатком схемы является ее непосредственная связь с электрической сетью. При работе с устройством необходимо полностью исключить возможность прикосновения к элементам схемы, особенно при смене заряжаемых элементов.
Для заряда батареи аккумуляторного фонарика (три элемента по 1,2. 1,4 6) предназначено устройство (рис. 15.5), которое позволяет исключить их перезаряд [15.4].

Рис. 15.5. Схема зарядного устройства для батареи аккумуляторного фонарика с защитой от перезаряда

Стабилитрон VD5 типа КС156 ограничивает предельное напряжение на батарее. Светодиод HL1 гасит на себе избыток напряжения и одновременно служит индикатором конца зарядки -начинает неярко светиться.
Разделительный конденсатор С1 типа К73-17 при емкости 0,47 мкФ обеспечивает зарядный ток 30. 35 мА; при емкости 0,22мкФ —до 15 мА.
В качестве диодов VD1 — VD4 можно использовать более доступные элементы, например, типа КД102Б.
Зарядное устройство-автомат (рис. 15.6) прекращает процесс заряда аккумулятора по достижении на его выводах напряжения 9,45 Б [15.5].
Устройство состоит из однополупериодного выпрямителя на диоде VD1, электронного ключа на транзисторе VT1 и диоде VD3 и порогового устройства на тиристоре VS1.
Пока аккумулятор заряжается, и напряжение на нем ниже номинального, тиристор VS1 закрыт. Как только напряжение на аккумуляторе возрастает до номинального, тиристор открывается. Зажигается сигнальная лампа и одновременно закрывается транзистор VT1. Зарядка аккумулятора прекращается. Порог срабатывания автомата зависит от сопротивления резистора R4.

Читайте также  Управление irobot create с помощью беспроводного геймпада через arduino

Рис. 15.6. Схема автоматического зарядного устройства для аккумулятора 7Д-01

Налаживают устройство при подключенном аккумуляторе и контрольном вольтметре постоянного тока. При напряжении 9,45 В на выводах аккумулятора подбором резистора R4 добиваются зажигания сигнальной лампы.
Резисторы R1 и R2, которые греются в процессе работы, можно заменить последовательной цепочкой из гасящего конденсатора емкостью 0,22 (0,25) мкФ на 300 В и резистора сопротивлением 51 . 100 Ом. Конденсатор включают вместо резистора R1, а между точкой его соединения с диодом VD1 и анодом стабилитрона VD2 включают дополнительный диод Д226Б (анодом к аноду стабилитрона).
Бестрансформаторные источники питания с гасящим конденсатором позволяют обеспечить достаточно высокую мощность и напряжение в нагрузке, однако они не лишены одного, но очень существенного недостатка: их выход электрически не изолирован от питающей сети, а потому работа с такими устройствами сопряжена с повышенной опасностью.
Довольно оригинально разрешить проблему создания бестрансформаторного источника питания с применением гасящего
конденсатора удалось И. А. Нечаеву [15.6], который использовал оптоэлектронный преобразователь напряжения для развязки входных и выходных цепей (рис. 15.7).

Рис. 15.7. Схема оптоэлектронного преобразователя с сетевым питанием

Преобразователь может быть использован для питания электронно-механических или электронно-кварцевых часов, быть дублером их штатного источника питания — батареи или аккумулятора, а также использоваться для их подзарядки. Четырехэле-ментный оптронный преобразователь напряжения на аналогах оптронов (парах АЛ107Б-ФД256) способен обеспечить выходное напряжение порядка 0,5 В при токе нагрузки до 0,4. 0,5 мА. Для этого емкость конденсатора С1, рассчитанного на напряжение не ниже 400 В, должна быть не менее 0,75. 1,0 мкФ.
Аналогом первичной обмотки трансформатора является цепочка последовательно включенных светодиодов оптронных пар. В качестве аналога вторичной (выходной) обмотки трансформатора выступает цепочка последовательно включенных фотодиодов. Они работают в режиме генерации фото-ЭДС. Стоит отметить, что КПД устройства невелик, поскольку КПД оптронной пары редко достигает 1%. Повысить выходное напряжение преобразователя можно за счет наращивания числа оптронных пар в цепочке. Увеличить выходной ток устройства можно за счет параллельного включения нескольких цепочек оптронов.
Фотодиоды подключены параллельно накопительному коненсатору С2. На первый взгляд может показаться, что конденса-ор разрядится на эти фотодиоды, поскольку они подключены в онденсатору в «прямом» направлении. Однако это не так: для ого чтобы через фотодиоды протекал заметный ток, необходимо, тобы падение напряжения на его полупроводниковом переходе оставляло доли вольта. Легко заметить, что для цепочки из ескольких последовательно включенных диодов для этого необ-одимо напряжение, также в несколько раз большее, т.е. уже не-колько вольт.
Взамен диодных оптронов могут быть использованы дис-ретные элементы: обычные светодиоды и фотодиоды.
Дополнив устройство, питаемое от батареи, например при-мник «Селга», разъемом для соединения с сетевым ЗУ и пере-лючателем SA1 «Радиоприем — Заряд», аккумулятор 7Д

0,125Д южно подзаряжать, не извлекая из корпуса приемника [15.7].
Сетевое ЗУ промышленного производства было доработа-о Н. Ващенко (рис. 15.8) с использованием резисторов R1, R2 и ,иода VD1.


Рис. 15.8. Схема зарядного устройства с сетевым питанием

Когда доработанное ЗУ соединяют с приемником, зеленое вечение светодиода HL2 (переключатель SA1 — — в положении Заряд») указывает, что цепь заряда исправна, а при подключе-ии ЗУ к сети красное свечение дополнительного светодиода HL1 видетельствует, что аккумуляторная батарея заряжается. Когда се есть зеленое свечение, а красного нет, — напряжение в сети тсутствует. Такой режим заряда батареи 7Д-0,125Д крайне неже-ателен, но там где он неизбежен — следует предусмотреть защиту от перезаряда. Для этого параллельно батарее включают стабилитрон VD2 с напряжением стабилизации 9,9 6 при токе 10. 12 мА. Подзаряжать батарею нужно через каждые 3. 4 ч работы приемника (при средней громкости). Продолжительность заряда батареи — в 2. 3 раза больше.
Резистор R4 подбирают по минимальной яркости свечения светодиода HL2. Вместо Д810 допустимо применить стабилитроны Д814Б или Д814Г, их аналоги, а также цепочки КС133А+КС162А или 2хКС147А, подбирая их на указанное напряжение.
Для автоматической зарядки аккумуляторов резервного питания или освещения во время отключения сети 220 6 предназначено устройство (рис. 15.9) [15.8], которое позволяет поддерживать аккумуляторы постоянно заряженными.

Рис. 15.9. Схема автоматического зарядного устройства

При наличии напряжения в сети 220 В устройство постоянно подключено параллельно аккумулятору и представляет собой ключевой стабилизатор напряжения со стабильным током на выходе. Ток заряда (I3) зависит от емкости конденсатора С1 и при 10 мкФ равен 0,7 А. Ток выбирается из условия: I3 (24 часа) > 2lntn, где ln — ток потребления, A; tn — количество часов в сутки работы потребителя от аккумуляторов.
Если ток заряда из этого условия больше, чем максимальный зарядный для конкретного аккумулятора, его нужно заменить на аккумулятор большей емкости.
При токе заряда больше 1 А диоды VD1 — VD4 следует заменить на более мощные, a VD5 и VS1 установить на теплоот-воды и пропорционально скорректировать сопротивление резистора R4.
Если скорость переключения на резервное питание не актуальна, например, при освещении комнаты, реле можно исключить, а на выходе установить переключатель.
Настройка устройства сводится к установке конечного напряжения заряда на аккумуляторе резистором R6 таким образом, чтобы на протяжении месяца не приходилось доливать воду в электролит, а его плотность соответствовала степени заряженно-сти не менее 70% емкости. Это напряжение можно определить для конкретного аккумулятора следующим образом. Заряжают аккумулятор до полной емкости любым способом, дают ему постоять около 1 ч для выравнивания потенциала на электродах. После этого замеряют напряжение на клеммах без нагрузки. Это и есть напряжение, которое устанавливают резистором R6 с отключенным от устройства аккумулятором. Подключают аккумулятор к устройству, и оно готово к работе.
Конденсатор С1 бумажный или металлобумажный на напряжение не ниже 400 В. Реле К1 — РПУ, МКУ-48 или аналогичное на 220 В. Светодиод HL1 индицирует окончание заряда, HL2 -наличие тока заряда.

Бестрансформаторное зарядное устройство

Предлагаю маломощное зарядное устройство (ЗУ) с гасящим конденсатором (рис.1). Оно предназначено для зарядки аккумуляторов с максимальным выходным током 140 мА и напряжением до 20 В. Транзисторная пороговая схема позволяет установить зарядное напряжение 13,8. 14,4 В (для аккумуляторов — 12,6 В), при котором происходит отключение зарядного тока, т.е. предотвращается перезаряд аккумулятора. Этому способствует и постепенное снижение зарядного тока при увеличении напряжения на аккумуляторе.


Рис.1. Принципиальная схема зарядного устройства

В схеме ЗУ особое внимание уделено безопасности. Фазовый провод «Ф» сети 220 В присоединен через предохранитель и ограничитель пусковых токов R1 к гасящему конденсатору С1, другой вывод которого и нулевой провод сети «0» присоединены к конденсаторному делителю напряжения.

Через диодный мост VD1. VD4 напряжение с конденсаторов С2, СЗ подведено к ключевой схеме на VT1. VT3. Резистор R7 — шунт индикатора тока заряда VD5. Зарядный ток в виде широких импульсов частотой 100 Гц поступает через ключ VT1 и диод VD7 в аккумулятор. В паузах между зарядными импульсами аккумулятор разряжается для десульфатации через пороговую схему на VT3 и VD6.

Резистором R12 устанавливают максимальное напряжение заряда аккумулятора. При его достижении открывается транзистор VT3, a VT2, VT1 закрываются, ток заряда прекращается, и гаснет зеленый светодиод VD5, индицирующий заряд. Через некоторое время из-за саморазряда напряжение на аккумуляторе уменьшается, и пороговый триггер на VT2, VT3 вновь включает зарядный ток, открывая VT1. Мигание VD5 с периодом около 5 с показывает заряженное состояние аккумулятора. В таком режиме аккумулятор может питать звонковую цепь или люминесцентную лампу дежурного освещения. При теперешних «веерных» отключениях это немаловажное свойство ЗУ.

Наиболее ответственная деталь ЗУ — конденсатор С1. Здесь можно использовать 2 конденсатора типа К73-14 (1 мкФ х 400 В) или 4 К73-17 (0,47 мкФ х 630 В), соединенных параллельно. Электролитические конденсаторы С2, СЗ — К50-35 (22 мкФ х 63 В). Импортные «электролиты» применять нежелательно, т.к. они обладают большими потерями при перезарядке.

Диоды VD1. VD4 можно применить любые с Uoбp > 100 В и Imax > 200 мА. Неплохо работают КД103А и 1N4007. Транзисторы — с Uкэ > 80 В.

Читайте также  7-элементная логопериодическая антенна

При первом включении ЗУ нужно установить движок регулятора R12 в нижнее по схеме положение. Должен светиться зеленый светодиод VD5. В процессе работы стоит проверить отсутствие нагрева VT1. Устранить перегрев можно уменьшением сопротивления R9 или заменой VT1, VT2 на транзисторы с большим β.

При достижении U = 13,8 В вращением R12 нужно выключить зарядный ток.

Подключать ЗУ к сети 220 В следует с применением индикаторной отвертки или неоновой лампочки ТН-0,2 с резистором 240 кОм (0,5 Вт) для определения фазного провода в розетке.

Для зарядки 6-вольтовых аккумуляторов стабилитрон VD6 нужно заменить на КС133 или КС147.

При отключении аккумулятора от ЗУ напряжение на выходе ЗУ (катод VD7) равно нулю. Относительно нулевого провода сети оба выходных провода ЗУ имеют потенциал около 30 В. Замыкание выходных проводов ЗУ не выводит его из строя, т.к. максимальный ток ограничен С1 на уровне 140 мА.

Источники:

  1. О.Ховайко. Источники питания с конденсаторным делителем напряжения. — Радио, 1997, N11, С.56.
  2. А.Сорокин. Зарядно-десульфатирующий автомат. — Радиолюбитель, 1998, N10, С.30.
  3. А.Трифонов. Выбор балластного конденсатора. — Радио, 1999, N4, С.44.
  4. С.Бирюков. Расчет сетевого источника питания с гасящим конденсатором. — Радио, 1997, N5, С.48.
  5. С.Бирюков. Цифровые устройства на ИМС, 1999.
  6. Р.Левицкий. Об использовании конденсаторов в цепях переменного тока. — Радио, 1969, N8, С.49.
  7. Импульсное зарядное устройство. — Радио, 1995, N8, С.61.

Автоматическое зарядное устройство с бестрансформаторным питанием.
Универсальный блок повышенной мощности для широкого спектра аккумуляторных батарей 3-27В (3-100Ач). Как правильно зарядить автомобильный аккумулятор: одноэтапная и трёхэтапная зарядки.

Начну необычно!
Шедевральностью приведённая бестрансформаторная схема не блещет! Не блещет родная ни мрамором, ни златом, ни светом звёзд. Мало того, с лёгкость может долбануть зазевавшегося гражданина электрическим разрядом, посредством чего привести его организм в состояние глубокой печали, беспокойства и хаотичности мыслей.

Теперь о хорошем.
Простота, подкупающий функционал и радующие глаз массогабаритные показатели электроизделий, обозначенных в заголовке, погрузили меня в размышления о целесообразности поиметь в хозяйстве именно бестрансформаторное зарядное устройство. Мотивом погружения предшествовала ниоткуда вдруг выросшая разовая потребность срочно оживить довольно мощный АКБ.

Результатом мыслительного процесса явилось универсальное автоматическое зарядное устройство для мощных аккумуляторов напряжением 3-27 В и собственной ёмкостью 3-100 Ач.

Рис.1

Основой устройства является ёмкостный балластный элемент, образованный конденсаторами С1-С5, включение и выключение которых производится соответствующими тумблерами.
Реактивные сопротивления этих конденсаторов и мостовой выпрямитель Br2 образуют источник стабильного и неизменного постоянного тока, величина которого выбирается исходя из рекомендаций производителя АКБ. Значения этих токов могут выбираться любыми из диапазона 0,3-9,3А с шагом 0,3А.

Для предохранения диодов выпрямителя от резкого скачка тока в момент включения прибора, в него введено устройство мягкого пуска, состоящего из резистора R1 и реле Rel1, закорачивающего данный резистор через некоторое время после окончания переходных процессов.
Важный момент! Переключатель S1 — это тумблер без фиксации, алгоритм работы (on)-off-(on), количество контактных групп — 2.
Резистор R3 предназначен для разряда балластных конденсаторов после выключения зарядного устройства.

А всё-таки, каким током следует заряжать аккумулятор?

Оптимальным током является величина, равная 1/10 (± 10%) от полной ёмкости АКБ — это стандартные рекомендации производителей на обслуживаемые автомобильные аккумуляторные батареи.
При меньшем токе заряда процесс будет пропорционально замедляться, при большем — начнёт плохеть пациенту.
Для необслуживаемых изделий некоторые производители настоятельно рекомендуют использовать номинальный ток заряда не более 1/20 от ёмкости аккумулятора.

Ясен пипидастр, что в определённый момент АКБ наберёт полный заряд и на продолжающееся воздействие извне начнёт реагировать бурным химическим негодованием с неприятным выделением газа. Этот неловкий момент следует предотвратить и отключить зарядное устройство в момент 20%-го превышения значения напряжения на клеммах от паспортной величины характеристики аккумулятора.
Таким образом, для 12В батарей процесс заряда следует стопорнуть при напряжении на выводах АКБ 14,4 В, для 24 вольтовых — при 28,8 В и т.д.

Однако вернёмся к схеме.
Ответственным за состоянием здоровья аккумулятора назначен компаратор DA1, который сравнивает напряжение на АКБ с уровнем, установленным переменным резистором R5.
В момент совпадения этих величин, на выходе компаратора появляется высокий уровень напряжения, который посредством транзисторного аналога тиристора (транзисторы T1, T2) замыкает реле Rel1 на землю, что в свою очередь приводит к отключению блока от сети и, соответственно, к прекращению процесса заряда.
Аналогичный процесс происходит и при желании вручную отключить зарядное устройство от сети. В этом случае высокий уровень напряжения подаётся на аналог тиристора посредством замыкания контактов переключателя S1.2.

Интегральный регулируемый стабилизатор Vr1 формирует стабильное напряжение в диапазоне 3-27В. Его низкое выходное сопротивление позволяет исключить влияние входного сопротивления вольтметра на формируемые уровни напряжения при желании сделать этот прибор внешним и отключаемым после установки необходимого значения напряжения.

Стабилитроны D1, D2 поддерживают напряжение питания микросхем Vr1 и DA1 на уровне 30В, диод D3 не позволяет выйти напряжению на входе компаратора за допустимые пределы, светодиод Led1 служит для индикации включённого состояния устройства.

С1-С5 выполнены в виде батарей из параллельно соединённых неполярных конденсаторов экзотического номинала 4,7мкФ x 400в: С1 — 1шт, С2 — 2шт, С3 — 4шт и т.д. Всего 31 штука, не больше, не меньше — хоть из-под земли достань, да выложи!
На самом деле не так уж всё и грустно. Изделия, заказанные у наших китайских друзей, уложатся в небольшую коробчёнку и не сильно обременительную сумму, не превышающую 1000 российских тугриков.

Диодный мост Br2 следует выбирать с некоторым запасом по максимальному току. Я остановил свой выбор на 15-ти амперном экземпляре. При необходимости работать с высокими токами заряда этот элемент необходимо снабдить радиатором, исходя из рассеиваемой мощности Pрас ≈ Iзар x 1,5 .
Рассчитать размер радиатора можно по ссылке Ссылка на страницу.

Реле должно выдерживать необходимый максимальный коммутируемый ток и не гнушаться работой с сетевым напряжением. Ток срабатывания должен находиться в районе 20мА, как правило, в документации такие реле называются — High Sensitive. При наших мощностях таким током срабатывания обладают реле с номинальным рабочим напряжением 24 вольта.

Тумблеры: S1 должен быть рассчитан на максимальный ток — не менее 10А, S2-S6 — не менее 5А.

Компаратор DA1 может быть любым, поддерживающим однополярное 30-вольтовое питание и имеющим входные токи — не более 100nA.

А какие условия безопасности надо выполнять при работе с бестрансформаторными источниками питания мы довольно подробно обсудили на странице Ссылка на страницу.

И под занавес приведу более долгий, но продвинутый способ зарядить АКБ за несколько этапов.
К преимуществам этого способа следует отнести то, что аккумулятор получает полный заряд и восстанавливает свою ёмкость практически на 100 процентов. Недостаток заключается в увеличении времени процесса и необходимости нескольких подходов к заряжаемому.

1. Сначала устанавливаем ток, равным 0,1 от номинальной ёмкости АКБ. Для батареи 55 А-ч это составит 5,5 ампер (в нашем случае — 5,4). В таком режиме заряжаем до напряжения на выводах АКБ 14,4 вольта. Устанавливаем это напряжение регулятором, далее ждём, пока зарядник вырубится;

2. Снижаем ток заряда в два раза (до 2,7 ампер), заряжаем до напряжения на выводах АКБ 15 вольт, ждём, пока зарядник вырубится;

3. Снижаем ток заряда ещё в два раза (до 1,2 ампера), заряжаем до напряжения на выводах АКБ 15,5 вольт, ждём, пока зарядник вырубится, если через 5-6 часов этого не произошло, вырубаем устройство вручную.

А теперь — о самом важном.
Безтрансформаторные источники питания являются устройствами, не обладающими гальванической развязкой от сети, поэтому все подключения проводов к аккумулятору необходимо провести до втыкания вилки в розетку.

В процессе зарядки блудить шаловливыми ручонками по оголённым проводам и клеммам АКБ не следует — есть шанс словить переменку (не слишком большой, но весьма неприятный. ).

По окончании процесса, точно также — сначала выдернуть штепсель из розетки, а уже потом отсоединять аккумулятор.

Итак. Подсоединили АКБ, воткнули вилку, установили ток заряда, повернули R5 в нижнее по схеме положение — теперь можно нажать включатор и начинать зарядку. После этого следует установить переменный резистор в положение, соответствующее необходимому уровню отключения зарядного устройства, контролируя эту величину по показаниям вольтметра.
Если аккумулятор не будет подключён к зарядному устройству, или отвалится какой-либо провод, сработает схема защиты, что приведёт к отключению блока от сети.

Бестрансформаторные Схемы Питания

Без трансформаторная Концепция Электропитания

Без трансформаторная концепция работает с использованием высоковольтного конденсатора для снижения переменного тока сети до требуемого более низкого уровня, необходимого для подключенной электронной схемы или нагрузки.
Спецификация этого конденсатора выбрана с запасом. Пример конденсатора, который обычно используется в схемах без трансформаторного питания, показан ниже:

Этот конденсатор соединен последовательно с одним из входных сигналов переменного напряжения АС.
Когда сетевой переменный ток входит в этот конденсатор, в зависимости от величины конденсатора, реактивное сопротивление конденсатора вступает в действие и ограничивает переменный ток сети от превышения заданного уровня, указанным значением конденсатора.

Читайте также  Понижающий dc-dc преобразователь max16961 с током нагрузки до 3a

Однако, хотя ток ограничен, напряжение не ограниченно, поэтому, при измерении выпрямленного выхода без трансформаторного источника питания, обнаруживаем, что напряжение равно пиковому значению сети переменного тока , это около 310 В.

Но поскольку ток достаточно понижен конденсатором, это высокое пиковое напряжение стабилизируется с помощью стабилитрона на выходе мостового выпрямителя.

Мощность стабилитрона должна быть выбрана в соответствии с допустимым уровнем тока конденсатора.

Преимущества использования без трансформаторной схемы питания

Дешевизна и при этом эффективность схемы для маломощных устройств.
Без трансформаторная схема питания, описанная здесь, очень эффективно заменяет обычный трансформатор для устройств, мощностью тока ниже 100 мА.

Здесь высоковольтный металлизированный конденсатор использован на входном сигнале для понижения тока сети
Схема показанная выше может быть использована как источник электропитания DC 12 В для большинства электронных схем.
Однако, обсудив преимущества вышеописанной конструкции, стоит остановиться на нескольких серьезных недостатках, которые может включать в себя данная концепция.

Недостатки без трансформаторной схемы питания

Во-первых, цепь неспособна произвести сильнотоковые выходы, что не критично для большинства конструкций.
Другим недостатком, который, безусловно, требует некоторого рассмотрения, является то, что концепция не изолирует цепь от опасных потенциалов сети переменного тока.

Этот недостаток может иметь серьезные последствия для конструкций связанных с металлическими шкафами, но не будет иметь значения для блоков, которые имеют все покрыты в непроводящем корпусе.

И последнее, но не менее важное: вышеупомянутая схема позволяет скачкам напряжения проникать через нее, что может привести к серьезному повреждению цепи питания и самой схемы питания.

Однако в предложенной простой без трансформаторной схеме питания этот недостаток был разумно устранен путем введения различных типов стабилизирующих ступеней после мостового выпрямителя.

Этот конденсатор основывает мгновенные высоковольтные пульсации, таким образом эффективно защищая связанную электронику с ним.

Как схема работает
1. Когда сетевой вход сети переменного тока включен, конденсатор C1 блокирует вход сетевого тока и ограничивает его до более низкого уровня, определенного значением реактивного сопротивления C1. Здесь можно примерно предположить, что он составляет около 50 мА.
2. Однако напряжение тока не ограничено, и поэтому 220V может находиться на входном сигнале позволяя достигнуть последующий этап выпрямителя тока .
3. Выпрямитель тока моста выпрямляет 220V к более высокому DC 310V, к пиковому преобразованию формы волны AC.
4. DC 310V быстро уменьшен к низкоуровневому DC стабилитроном, который шунтирует его к значение согласно номинала стабилитрона. Если используется 12V стабилитрон, то и на выходе будет 12 вольт.
5. C2 окончательно фильтрует DC 12V с пульсациями, в относительно чистый DC 12V.

Цепь драйвера показанная ниже управляет лентой менее 100 светодиодов (при входном сигнале 220В), каждый светодиод рассчитан на 20мА, 3.3 В 5мм:

Здесь входной конденсатор 0.33 uF / 400V выдает около 17 ма, что примерно правильно для выбранной светодиодной ленты.
Если драйвер использовать для большего числа подобных светодиодных лент 60/70 параллельно, то просто значение конденсатора пропорционально увеличить для поддержания оптимального освещения светодиодов.

Поэтому для 2 лент включенных в параллель требуемое значение будет 0.68 uF/400V, для 3 лент заменить на 1uF / 400V. Аналогично для 4 лент должно быть обновлено до 1.33 uF / 400V, и так далее.

Важно: хотя не показан ограничивающий резистор в схеме, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой светодиодной лентой, для дополнительной безопасности. Можно вставить в любом месте последовательно с отдельными лентами.

ПРЕДУПРЕЖДЕНИЕ: ВСЕ ЦЕПИ, УПОМЯНУТЫЕ В ЭТОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ЧРЕЗВЫЧАЙНО ОПАСНЫ ДЛЯ ПРИКОСНОВЕНИЯ ПРИ ПОДКЛЮЧЕНИИ К СЕТИ ПЕРЕМЕННОГО ТОКА.

Особенности, элементы и требования к бестрансформаторным зарядным устройствам

Бестрансформаторное зарядное устройство используют как альтернативу обычным ЗУ автомобиля. Механизм не занимает много места и не требует больших финансовых затрат. Отличается надежностью. Можно собрать самостоятельно из простых элементов. Подобный принцип работы применяется давно в фонариках.

  1. Предназначение
  2. Преимущества и недостатки
  3. Основные элементы
  4. Основные требования к компонентам механизма
  5. Настройка ЗУ

Предназначение

До запуска бортовой сети машины, энергия поступает от батареи аккумулятора, которая не вырабатывает электричество.

Аккумулятор представляет собой источник электрической энергии, необходимый для питания автомобиля. Потраченный потенциал возобновляется благодаря генератору.

Использованную энергию в полной мере не компенсирует даже постоянно работающий АКБ. Поэтому иногда возникает потребность в применении других накопительных видов энергии.

Бестрансформаторное ЗУ используют для зарядки аккумуляторов типа АА и ААА.

Преимущества и недостатки

При отсутствии трансформаторов напряжения удобно использовать специальное зарядное устройство. Плюсы такого механизма:

  • при долгосрочной эксплуатации не перегревается;
  • можно использовать для всех видов аккумуляторов разной мощности (при этом увеличивают или уменьшают номинал конденсаторов);
  • можно подключать совершенно разряженную батарею без первичного уменьшения напряжения;
  • система защищена на выходе от короткого замыкания;
  • водителю необязательно следить за процессом подзарядки;
  • легкая схема с использованием незначительного количества элементов;
  • небольшой размер.

Главный минус установки – отсутствие гальванической развязки. Зарядка осуществляется непосредственно от сети, блок конденсаторов выступает проводником напряжения.

Основные элементы

Чтобы постоянно не искать трансформатор, лучше пользоваться несложным устройством без понижающих элементов. В состав схемы бестрансформаторного зарядного устройства входят такие детали:

  • конденсаторы(не меньше четырех);
  • светодиод;
  • резистор;
  • диодный мост.

Внимание! Конденсаторы заменяют трансформатор. Размещаются параллельно. Рекомендуется использовать оксидные конденсаторы одного вида.

Если применять импортные модели, размеры данной системы можно сократить. Диоды устройства можно выбрать разные, которые рассчитаны на определенную величину тока и обратное напряжение. Для блока подходят диоды Д7Ж и Д226Б, только вес и размеры механизма вырастут.

Резистор необходим для ликвидации напряжения, которое остается после отсоединения механизма от основного источника питания. Диодный мост размещают сразу за конденсатором. Он эксплуатируется при значении электрического тока до 6 Ампер. К выводам присоединяются провода, которые тянутся на АКБ для питания. В целях безопасности, чтобы исключить удар током, нельзя касаться этих проводов во время эксплуатации зарядного устройства.

Основные требования к компонентам механизма

Необходим обязательно выпрямитель, так как аккумулятор заряжается от стабильного электрического тока, а напряжение в сети изменяется. В устройстве применяют готовый диодный мост или делают самостоятельно из выпрямительных диодов. В первом варианте, следует найти мост с напряжением больше 400 В и значением тока не меньше 3 А.

Общая емкость приспособления конденсаторов 8 мкФ. На выходе ток достигает значения 1А. Уровень напряжения составляет от 180 до 200 Вольт.

Внимание! Нельзя касаться выходных клемм и проводов при включении с сетевым напряжением 220 Вольт.

Что касается короткого замыкания, то система не выходит из строя, лишь происходит незначительное выделение тепла в зоне диодов.

Конденсаторы рекомендуется выбирать со значением 400 Вольт. Напряжение в электрической сети изменяется, происходят большие перепады.

После выключения устройства, на конденсаторах остается напряжение. Поэтому устанавливают также конденсатор (8-10 мкФ) или резистор мощностью от 210 до 810 кОм, чтобы происходил процесс разрядки. Размеры системы позволяют хранить ее в небольшой коробке.

Настройка ЗУ

Использовать механизм можно, когда есть сетевые предохранители. До первого включения рекомендуется проверить правильность сборки и креплений. Даже незначительные погрешности могут спровоцировать поломку многих компонентов, взрыв конденсаторов. Поэтому устройство желательно накрыть картонной коробкой. Правильно составленный механизм начинает работать сразу.

Главное, необходимо подобрать резисторы R6, R8 с целью регулировки границ колебаний тока во время зарядки. Поэтому к выходу системы подсоединяют батарею аккумуляторов в разряженном состоянии. С помощью вышеуказанных элементов устанавливают амперметром РА1 границы управления тока резистором R7.

В случае, когда первоначальное состояние движка детали марки R7, показатель тока не равняется нулю, нужно снизить сопротивление в звене R8. При нулевом токе заряда, в условиях, когда двигатель R7 находится не в крайней точке, сопротивление такого резистора необходимо повысить. Потом движок резистора R7 фиксируют в максимальном состоянии. При величине заряженного тока ниже максимального, сопротивление в резисторе R6 нужно убавить, а когда выше – усилить.

Переключатель устанавливают в позицию ручного режима. До конца заряжают автомобильную батарею, не забывая измерять специальным прибором напряжение тока.

На следующем этапе отключают тумблер и переводят в положение «Авт.», а регистор R11 – в режим наибольшего сопротивления. Опять подсоединяют механизм к электрической сети, снижают сопротивление в звене R11. Установку можно эксплуатировать, когда начнет работать реле К1.

Важно! Во время наладки в применении ЗУ, нужно не забывать о том, что от сети нет гальванической развязки. Поэтому включать и выключать механизм от батареи аккумулятора рекомендуется лишь, когда вилка с проводами не включена в электрическую сеть.

Бестрансформаторное зарядное устройство для автомобильного аккумулятора отличается простой схемой. Его применение помогает автолюбителям сократить финансовые затраты. При правильном использовании установки, гарантирована безопасность.