Счётчик реактивной энергии

Реактивная энергия в электросети. Учет реактивной энергии

Электрическия система вырабатывает полную энергию, которая делится на полезную, или активную и остаточную под названием реактивная энергия. О том, что это такое и как ведётся её учёт, расскажет статья.

Остаточная энергия: что это такое?

Все электрические машины представлены реактивными и активными элементами. Именно они и потребляют электрическую энергию. К ним относят реактивные соединения кабелей, конденсаторные и трансформаторные обмотки.

В процессе течения переменного тока на этих сопротивлениях индексируются реактивные электродвижущие силы, которые создают реактивный ток.

В установках и приборах, создающих переменный ток, используется реактивная энергия в электросети, которая создает магнитное поле электрического поля.

Влияние индуктивного сопротивления на создание магнитного поля

Все приборы, которые питаются от электросети, имеют индуктивное сопротивление. Именно благодаря ему знаки тока и напряжения противоположны. Например, напряжение имеет отрицательный знак, а ток — положительный, или наоборот.

В это время электроэнергия, создаваемая в индуктивном элементе про запас, колебательными движениями исходит по сети за счёт нагрузки от генератора и обратно. Этот процесс и называется реактивной мощностью, которая создает магнитное поле электрического поля.

Для чего необходима реактивная энергия?

Можно сказать, что она направлена на регулировку изменений, которые вызывает в сети электрический ток. Сюда относят:

  • поддержка магнитного поля во время индуктивности в цепи;
  • при наличии конденсаторов и проводов поддержка их заряда.

Проблемы при выработке реактивной мощности

Если в сети существует большая доля выработки реактивной мощности, то приходится:

  • повышать мощность силовых аппаратов, которые предназначены для преобразования электрической энергии одного значения напряжения в электрическую энергию другого значения напряжения;
  • увеличивать сечение кабелей;
  • бороться с ростом потери мощности в силовых аппаратах и линиях передач;
  • увеличивать плату за потребление электроэнергии;
  • бороться с потерей напряжения в сети.

В чём разница между активной и реактивной энергией?

Люди привыкли платить за ту электроэнергию, которую они потребляют. Они оплачивают энергию, используемую для обогрева помещения, приготовления еды, нагревания воды в ванной комнате (кто пользуется индивидуальными водонагревателями) и другую полезную электрическую энергию. Именно она и называется активной.

Активная и реактивная энергии различны в том, что вторая представляет собой оставшуюся часть энергии, которая не используется в полезной работе. Другими словами, они обе образуют полную мощность. Соответственно, потребителям невыгодно оплачивать помимо активной ещё и реактивную энергию в электросети, а поставщикам выгодно, чтобы они платили за полную мощность. Можно ли как-нибудь урегулировать этот вопрос? Давайте рассмотрим это.

Чем измеряют потребление энергии?

Для замера потребленной энергии используют счетчик активной и реактивной энергии. Всё они делятся на счетчики с одной фазой и тремя фазами. В чем же их различие?

Однофазные счетчики применяют для учета электрической энергии у потребителей, которые используют ее для бытовых нужд. Питание выполняется однофазным током.

Трехфазные счетчики используются для учета полной энергии. Они классифицируются исходя из схемы электроснабжения на трех- и четырехпроводные.

Различая счетчиков по способу включения

По тому, как они включаются, их делят на три группы:

  1. Не используют трансформаторы и напрямую включаются в сеть счетчики прямого включения.
  2. С использованием силовых аппаратов включаются счетчики полукосвенного включения.
  3. Счетчики косвенного включения. Они подключаются к сети не только с использованием силовых аппаратов тока, но и с использованием трансформаторов напряжения.

Различая счетчиков по способу оплаты

По способу начисления платы за электроэнергию принято делить счетчики на следующие группы:

  1. Счетчики, основанные на применении двух тарифов – их действие состоит в том, что тариф за потребляемую энергию меняется в течение суток. То есть в утренние часы и днем он меньше, чем в вечернее время.
  2. Счетчики с предварительной оплатой – их действие основано на том, что потребитель платит за электроэнергию заранее, так как находится в отдаленных местах проживания.
  3. Счетчики с указанием максимальной нагрузки – потребитель платит отдельно за потребленную энергию и за максимальную нагрузку.

Учет полной мощности

Учет полезной энергии направлен на определение:

  1. Электрической энергии, вырабатываемой машинами по производству напряжения на электростанции.
  2. Количества энергии, которая расходуется на собственные потребности подстанции и электростанции.
  3. Электроэнергии, направленной на расходование ее потребителями.
  4. Энергии, переданной для других энергосистем.
  5. Электрической энергии, которая пущена по шинам электростанций к потребителям.

Учитывать реактивную электрическую энергию при передаче потребителям от электростанции необходимо только в том случае, если эти данные подсчитывают и контролируют режим работы устройств, компенсирующих эту энергию.

Где проводят контроль оставшейся энергии?

Счетчик реактивной энергии устанавливают:

  1. Там же, где и счетчики по учету полезной энергии. Устанавливают их для потребителей, которые платят за полную используемую ими мощность.
  2. На источниках присоединения реактивной мощности для потребителей. Это делается, если приходится контролировать процесс работы.

Если потребителю разрешено пускать оставшуюся энергию в сеть, то ставят 2 счетчика в элементах системы, где идет учет полезной энергии. В других случаях ставят отдельный счетчик для учета реактивной энергии.

Как сэкономить на потреблении электричества?

Большой популярностью в этом направлении пользуется прибор для экономии электричества. Его действие основано на подавлении остаточной электроэнергии.

На современном рынке можно найти много подобных устройств, в основе которых лежит трансформатор, направляющий электроэнергию в нужное русло.

Прибор для экономии электричества направляет эту энергию на разнообразное бытовое оборудование.

Рациональное использование электроэнергии

Для рационального использования электроэнергии применяется компенсация реактивной энергии. Для этого применяют конденсаторные установки, электродвигатели и компенсаторы.

Они помогают уменьшить потери активной энергии, которые обусловлены перетоками реактивной мощности. Это существенно влияет на уровень транспортных технологических потерь распределительных электрических сетей.

Чем выгодна компенсация мощности?

Применение установок для компенсации мощности способно принести большую выгоду в экономическом плане.

Согласно статистическим данным, их применение приносит до 50 % экономии трат за пользование электрической энергией во всех уголках Российской Федерации.

Денежные вложения, которые потрачены на их установку, окупаются в течение первого же года их использования.

Кроме того, там, где проектируются данные установки, кабель приобретается с меньшим сечением, что также очень выгодно.

Преимущества конденсаторных установок

Применение конденсаторных установок имеет следующие положительные стороны:

  1. Небольшая потеря активной энергии.
  2. В конденсаторных установках отсутствуют вращающиеся части.
  3. Они легки в работе и эксплуатации.
  4. Инвестиционные затраты не высоки.
  5. Работают бесшумно.
  6. Их можно установить в любой точке электрической сети.
  7. Можно подобрать любую требуемую мощность.

Отличие конденсаторных установок от компенсаторов и синхронных двигателей состоит в том, что фильтрокомпенсирующие установки синхронно осуществляют компенсацию мощности и частично сдерживают присутствующие в компенсируемой сети гармоники. От того, насколько компенсируется мощность и будет зависеть стоимость за электроэнергию, ну и, соответственно, от действующего тарифа.

Какие виды компенсации существуют?

В процессе применения конденсаторных установок выделяют следующие виды подавляемой мощности:

  1. Индивидуальная.
  2. Групповая.
  3. Централизованная.

Рассмотрим подробнее каждую из них.

Индивидуальная мощность

Конденсаторные установки располагаются прямо у электрических приемников и коммутируются в то же время, что и они.

Недостатками этого вида компенсации считается зависимость времени включения конденсаторной установки от времени начала работы электроприемников. Кроме того, перед проведением работ необходимо согласовывать емкость установки и индуктивность электрического приемника. Это необходимо для предупреждения резонансных перенапряжений.

Групповая мощность

Название говорит само за себя. Эта мощность используется при компенсации мощности нескольких индуктивных нагрузок, которые одновременно присоединены к одному распределительному устройству с общей конденсаторной установкой.

В процессе одновременного включения нагрузки увеличивается коэффициент, что приводит к понижению мощности. Это способствует лучшей работе конденсаторной установки. Остаточная энергия подавляется эффективнее, чем при индивидуальной мощности.

Отрицательной стороной данного процесса является частичная разгрузка реактивной энергии в электросети.

Централизованная мощность

В отличие от индивидуальной и групповой мощности, эта мощность регулируется. Она применяется для обширного диапазона изменения потребления остаточной энергии.

Большую роль в регулировании мощности конденсаторной установки играет функция реактивного тока нагрузки. При этом установка должна быть оснащена автоматическим регулятором, а её полная компенсационная мощность разделена на отдельно коммутируемые ступени.

Какие проблемы решают конденсаторные установки

Конечно, в первую очередь они направлены на подавление реактивной мощности, но на производстве они помогают решать следующие задачи:

  1. В процессе подавления реактивной мощности, соответственно, снижается и полная мощность, что приводит к понижению загрузки силовых трансформаторов.
  2. Питание нагрузки обеспечивается по кабелю с меньшим сечением, при этом не происходит перегрева изоляции.
  3. Возможно подключение дополнительной активной мощности.
  4. Разрешает избежать глубокой просадки напряжения на линиях электроснабжения удаленных потребителей.
  5. Применение мощности автономных дизель-генераторов идёт по максимуму (судовые электроустановки, электроснабжение геологических партий, стройплощадок, установок разведочного бурения и т. д.).
  6. Индивидуальная компенсация позволяет упростить деятельность асинхронных двигателей.
  7. В случае аварийной обстановки конденсаторная установка немедленно отключается.
  8. Автоматически включается обогрев или вентиляция установки.
Читайте также  Монтаж винтажной проводки

Выделяют два варианта конденсаторных установок. Это модульные, применяются на крупных предприятиях, и моноблочные — для малых предприятий.

Подведём итоги

Реактивная энергия в электросети негативно сказывается на работе всей электрической системы. Это приводит к таким последствиям, как потеря напряжения в сети и увеличение затрат на топливо.

В связи с этим активно применяются компенсаторы данной мощности. Их выгода состоит не только в хорошей экономии денежных средств, но и в следующем:

  1. Увеличивается срок службы силовых аппаратов.
  2. Улучшается качество электрической энергии.
  3. Экономятся деньги на покупку кабелей малого сечения.
  4. Снижается потребление электрической энергии.

Счётчик реактивной энергии

Многие слышали о реактивной электрической энергии. Учитывая сложность понимания этого термина, сначала необходимо детально разобрать отличия между активной и реактивной энергиями. Приступить необходимо с осознания того факта, что реактивная энергия проявляет себя только в сетях переменного тока. В цепях, где течёт постоянный ток, реактивной энергии не существует. Это обусловлено самой природой её появления.

Переменный ток поступает к потребителю от генерирующих мощностей через ряд понижающих трансформаторов, конструкция которых предусматривает разделение обмоток высокого и низкого напряжения. То есть, в трансформаторе нет прямого физического контакта между обмотками, а ток, тем не менее, течёт. Объяснение этому довольно простое. Электрическая энергия передаётся через воздух, являющийся хорошим диэлектриком, с помощью электромагнитного поля. Его составляющая — переменное магнитное поле, появляющееся в одной из обмоток трансформатора, постоянно пересекает другую обмотку, не имеющей с первой прямого электрического контакта, наводя в её витках электродвижущую силу.

КПД современных трансформаторов очень велик, поэтому потери электроэнергии составляют незначительную величину и вся мощность переменного тока, протекающего в первичной обмотке, переходит в цепь вторичной обмотки. Такая же картина повторяется в конденсаторе. Только за счёт электрического поля. И индуктивность, и емкость порождают реактивную энергию, периодически возвращая источнику переменного тока часть энергии. Запасание и возврат энергии (реактивной её части) мешают течению активной энергии, которая и выполняет всю полезную работу в сетях — она преобразуется в механическую, тепловую и иные виды работы.

Для компенсации противодействия реактивной энергии потребители, у которых много индуктивной нагрузки применяют специально устанавливаемые емкости (конденсаторы). Это позволяет минимизировать негативное влияние появляющейся реактивной энергии. Как уже отмечено, реактивная мощность оказывает существенное влияние на величину потерь электрической энергии в сети. Помимо этого, большой объём реактивной энергии может снизить уровень электромагнитной совместимости оборудования. Из-за этого величину этой негативной энергии необходимо постоянно контролировать и лучший способ для этого – организация её учёта.

Промышленные предприятия (где, в основном, озабочены проблемой реактивной энергии) часто ставят отдельные приборы учёта для реактивной и активной энергии. Счётчики реактивной энергии ведут её учёт в трёхфазных сетях по двум составляющим (индуктивной и емкостной) в вольт-амперах реактивных часов. Как правило, счётчик реактивной энергии — это аналого-цифровое устройство, преобразующее мощность в аналоговый сигнал, который потом превращается в частоту следования электрических импульсов, сложение которых позволяет судить о величине потребляемой энергии. Конструкция счётчика предусматривает пластмассовый корпус, в котором установлены три трансформатора тока и печатная плата с блоком учёта. На внешней стороне прибора размещены светодиоды и (или) жидкокристаллический экран.

Учитывая растущую конкуренцию, промышленные предприятия всё чаще устанавливают универсальные приборы учёта электрической энергии, способные измерять количество активной и реактивной энергии. Кроме того, что приборы совмещают в себе функции двух и более устройств, потребитель снижает затраты на обслуживание системы учёта (вместо двух счётчиков содержится один) и может сэкономить на цене покупки. Эти устройства на базе микропроцессоров способны измерять мгновенные значения напряжений и токов и вычислять реактивную и активную мощности. Прибор фиксирует уровень потребления энергии и отражает информацию на дисплее тремя сменяющимися кадрами (объём активной энергии, индуктивная составляющая реактивной энергии и её ёмкостная составляющая). Новые модели могут учитывать энергию в двух направлениях, предавать полученные данные по инфракрасному цифровому каналу, лучше защищены от воздействия магнитных полей и от хищений энергии. Высокая точность измерений и малое энергопотребление также выгодно отличают их от предшественников.

Счетчики активной и реактивной электрической энергии

Самым массовым видом электроизмерительных приборов явля­ется счетчики активной и реактивной энергии.

Различают однофазные и трехфазные счетчики. Однофазные счетчики применяются для учета электроэнергии у потребителей, питание которых осуществляется однофазным током. Для учета электроэнергии трехфазного тока применяются трехфазные счетчики. Трехфазные счетчики можно классифицировать следующим образом.

По роду измеряемой энергии — на счетчики активной и реактивной энергии.

В зависимости от схемы электроснабжения, для которой они предназначены, — на трехпроводные счетчики, работающие в сети без нулевого провода. И четырёхпроводные, работающие в сети с нулевым проводом.

По способу включения счетчики можно разделить на 3 группы:

— Счетчики непосредственного включения (прямого включения), включаются в сеть без измерительных трансформаторов. Такие счетчики выпускаются для сетей 0,4/0,23 кВ на токи до 100 А.

— Счетчики полукосвенного включения, своими токовыми обмотками включаются через трансформаторы тока. Обмотки напряжения включаются непосредственно в сеть. Область применения — сети до 1 кВ.

— Счетчики косвенного включения, включаются в сеть через трансформаторы тока и трансформаторы напряжения. Область применения — сети выше 0,4 кВ. Изготовляются двух типов.

Трансформаторные счетчики — предназначенные для включения через измерительные трансформаторы.

Трансформаторные универсальные счетчики — предназначены для включения через измерительные трансформаторы, имеющие любые коэффициенты трансформации. Для универсальных счетчиков пересчетный коэффициент определяется по коэффициентам трансформации установленных измерительных, трансформаторов.

В зависимости от назначения счетчику присваивается условное обозначение. В обозначениях счетчиков буквы и цифры означают: С — счетчик; О — однофазный; А — активной энергии; Р — реактивной энергии; У — универсальный; 3 или 4 для трех или четырех проводной сети.

Пример обозначения: СА4У — трехфазный трансформаторный универсальный четырех проводный счетчик активной энергии. Если на табличке счетчика поставлена буква М, это значит, что счетчик предназначен для работы и при отрицательных температурах (-150 — +250 С).Счетчики активной и реактивной энергии, снабженные дополнительными устройствами, относятся к счетчикам специального назначения.

Двухтарифные счетчики — применяются для учета электроэнергии, тариф на которую изменяется в зависимости от времени суток.

Счетчики с предварительной оплатой — применяются для учета электроэнергии бытовых потребителей, живущих в отдаленных и труднодоступных населенных пунктах.

Счетчики с указателем максимальной нагрузки — применяются для расчетов с потребителями по двухставочному тарифу (за израсходованную электроэнергию и максимальную нагрузку).

Телеизмерительные счетчики — служат для учета электроэнергии и дистанционной передачи показаний. К счетчикам специального назначения относятся и образцовые счетчики, предназначенные для поверки счетчиков общего назначения. Техническая характеристика счетчика определяется следующими основными параметрами.

Номинальное напряжение и номинальный ток — у трехфазных счетчиков указываются в виде произведения числа фаз на номинальные значения тока и напряжения, у четырехпроводных счетчиков указываются линейные и фазные напряжения, например: 3 5 А; З 380/220В.

У трансформаторных счетчиков вместо номинальных тока и. напряжения указываются номинальные коэффициенты трансформации измерительных трансформаторов, для работы с которыми счетчик предназначен, например: 3 150/5 А, 3 6000/100 В. На счетчиках, называемых перегрузочными, указывается значение максимального тока непосредственно после номинального, например 5-20А. Номинальное напряжение счетчиков, прямого и полукосвенного включения, должно соответствовать номинальному напряжению сети, а счетчиков косвенного включения — вторичному номинальному напряжению ТН.

Точно так же номинальный ток должен соответствовать вторичному номинальному току трансформатора тока (5 или 1 А). Счетчики допускают длительную перегрузку по току без нарушения правильности учета: трансформаторные и трансформаторные универсальные — 120%; счетчики прямого включения — 200% и более (в зависимости от типа).

Класс точности счетчика — это его наибольшая допустимая относительная погрешность, выраженная в процентах (отношение абсолютной погрешности к действительным показаниям счетчика; абсолютная погрешность – разность между действительными показаниями счетчика и показаниями эталонного образца). В соответствии с ГОСТ 6570-75* счетчики активной энергии должны изготавливаться классов точности; 0,5; 1,0; 2,0; 2,5; счетчики реактивной энергии классов точности 1,5; 2,0; 3,0.

Трансформаторные и трансформаторные универсальные счетчики учета активной и реактивной энергии должны быть класса точности 2,0 и более точные.

Класс точности устанавливается для условий работы, называемых нормальными.

К ним откосятся:

— прямое чередование фаз;

— равномерность и симметричность нагрузок по фазам;

— синусоидальность тока и напряжения (коэффициент линейных искажений не более. 5%);

— номинальная частота (50 Гц±0,5%);

— номинальное напряжение (±1%);

Читайте также  Модернизация ноутбука. жёсткий диск вместо оптического привода

— cos = l (для счетчиков активной энергии) и sin =l (для счетчиков реактивной энергии);

— температура окружающего воздуха 20°±3° С (для счетчиков внутренней установки);

— отсутствие внешних магнитных полей (индукция не более 0,5 мТл);

— вертикальное положение счетчика.

Счетчик ватт-часов (счетчик активной энергии) представляет собой прибор, предназначенный для измерения активной энергии путем интегрирования активной мощности в зависимости от времени.

Счетчик вар-часов (счетчик реактивной энергии) представляет собой интегрирующий прибор, который измеряет реактивную энергию в вар-часах или кратных им единицах.

Счетчики могут предназначаться для двухпроводных однофазных сетей, трехпроводных трехфазных сетей без нулевого провода и четырехпроводных трехфазных сетей с нулевым проводом.

Учет активной энергии должен обеспечивать определение количества электроэнергии:

— выработанной генераторами электростанции;

— потребленной на собственные и хозяйственные нужды электростанции и подстанций;

— отпущенной электропотребителям по линиям, отходящим от шин электростанций непосредственно к электропотребителям;

— переданной в другие энергосистемы;

— отпущенной электропотребителям из электрической сети.

Кроме того, учет активной энергии должен обеспечить возможность:

— учета электроэнергии, поступающей в электрические сети разных уровней напряжения энергосистемы;

— составления баланса энергии для хозрасчетных подразделений энергосистемы;

— контроль за соблюдением электропотребителями заданных им режимов потребления и баланса электроэнергии.

Учет реактивной электроэнергии должен обеспечивать возможность определения количества реактивной электроэнергии, полученной потребителем от электроснабжающей организации или переданной ей, только в том случае, если по этим данным производятся расчеты или контроль соблюдения заданного режима работы компенсирующих устройств.

Счетчики реактивной электроэнергии должны устанавливаться:

1) на тех же элементах схемы, на которых установлены счетчики активной электроэнергии для потребителей, рассчитывающихся за электроэнергию с учетом разрешенной к использованию реактивной мощности;

2) на присоединениях источников реактивной мощности потребителей, если по ним производится расчет за электроэнергию, выданную в сеть энергосистемы, или осуществляется контроль заданного режима работы.

Если со стороны предприятия с согласия энергосистемы производится выдача реактивной электроэнергии в сеть энергосистемы, необходимо устанавливать два счетчика реактивной электроэнергии со стопорами в тех элементах схемы, где установлен расчетный счетчик активной электроэнергии. Во всех других случаях должен устанавливаться один счетчик реактивной электроэнергии со стопором.

Для предприятия, рассчитывающегося с энергоснабжающей организацией по максимуму разрешенной реактивной мощности, следует предусматривать установку счетчика с указателем максимума нагрузки, при наличии двух или более пунктов учета — применение автоматизированной системы учета электроэнергии.

Реактивная электрическая энергия – вызванная электромагнитной несбалансированностью электроустановок технологически вредная циркуляция электроэнергии между источниками электроснабжения и приемниками переменного электрического тока.

Реактивная мощность – составная полной мощности, которая в зависимости от параметров, схемы и режима работы электрической сети служит причиной дополнительных потерь активной электроэнергии и ухудшения показателей качества электрической энергии.

Что такое активная и реактивная электроэнергия на счетчике

Комплектность

Комплектность средства измерений приведены в таблице 5

Таблица 5 — Комплектность счетчика

Наименование Обозначение Комплектность
Счетчик 1 шт.
Паспорт СПТА.431232.004 ПС 1 экз.
Руководство по эксплуатации
Методика поверки* QU 13.132-1:2019 МП 1 экз.
Упаковочная коробка 1 шт.

*Методика поверки поставляется по требованию заказчика

Учет полной мощности

Учет полезной энергии направлен на определение:

  1. Электрической энергии, вырабатываемой машинами по производству напряжения на электростанции.
  2. Количества энергии, которая расходуется на собственные потребности подстанции и электростанции.
  3. Электроэнергии, направленной на расходование ее потребителями.
  4. Энергии, переданной для других энергосистем.
  5. Электрической энергии, которая пущена по шинам электростанций к потребителям.

Учитывать реактивную электрическую энергию при передаче потребителям от электростанции необходимо только в том случае, если эти данные подсчитывают и контролируют режим работы устройств, компенсирующих эту энергию.

Программное обеспечение

Встраиваемое ПО записывается в память микроконтроллера, с установкой бита защиты от считывания, до его монтажа на печатную плату. После установки бита защиты чтение и копирование ПО невозможно.

Корректировка метрологических коэффициентов, отвечающих за точность измерений, возможна только в процессе производства при снятом кожухе и установленной аппаратной перемычке. Без удаления аппаратной перемычки и снятия опломбировании корпуса изменение метрологических коэффициентов невозможно.

Изменение параметров пользователя, таких как тарифные расписания, исключительные дни, даты начала сезонов, текущие время и дата, интервалы усреднения мощности, набор параметров выводимых на индикацию в автоматическом режиме, время фиксации энергии на конец месяца, а так же обнуление журналов событий, графиков нагрузки, значений энергетических параметров на конец месяца и конец суток возможно только после удаления пломбы энергоснабжающей организации, при наличии соответствующего ПО и знании паролей доступа к изменяемым параметрам.

Идентификационные данные (признаки) Значение
230 В; 5(100)A
Идентификационное наименование ПО UZTZY231N23010[100]1000m1.00 .hex
Номер версии (идентификационный номер) ПО UZTZY231N2310[100]100m 1.00
Цифровой идентификатор ПО E67B7B77
Алгоритм вычисления цифрового идентификатора ПО CRC32
230 В; 5(10)A
Идентификационное наименование ПО UZTZY231N2305[10]100m1.00 .hex
Номер версии (идентификационный номер) ПО UZTZY231N2305[10]100m1.00
Цифровой идентификатор ПО E67C7B36
Алгоритм вычисления цифрового идентификатора ПО CRC32
57.7 В; 5(10)A
Идентификационное наименование ПО UZTZY231W5775[10]1000m1.00 .hex
Номер версии (идентификационный номер) ПО UZTZY231W5775[10]1001V1.00
Цифровой идентификатор ПО E73C7B11
Алгоритм вычисления цифрового идентификатора ПО CRC32
230 В; 1(6; )A
Идентификационное наименование ПО EVTZY231N2301[6]100В1.04 .hex
Номер версии (идентификационный номер) ПО EVTZY231N2301[6]100В 1.04
Цифровой идентификатор ПО A63A7B37
Алгоритм вычисления цифрового идентификатора ПО CRC32
57.7 В; 1(6)A
Идентификационное наименование ПО EVTZY23FN5771[6]100В1.04 .hex
Номер версии (идентификационный номер) ПО EVTZY23FN5771[6]100В1.04
Цифровой идентификатор ПО D67C7B87
Алгоритм вычисления цифрового идентификатора ПО CRC32

Чем выгодна компенсация мощности?

Применение установок для компенсации мощности способно принести большую выгоду в экономическом плане.

Согласно статистическим данным, их применение приносит до 50 % экономии трат за пользование электрической энергией во всех уголках Российской Федерации.

Денежные вложения, которые потрачены на их установку, окупаются в течение первого же года их использования.

Кроме того, там, где проектируются данные установки, кабель приобретается с меньшим сечением, что также очень выгодно.

Преимущества конденсаторных установок

Применение конденсаторных установок имеет следующие положительные стороны:

  1. Небольшая потеря активной энергии.
  2. В конденсаторных установках отсутствуют вращающиеся части.
  3. Они легки в работе и эксплуатации.
  4. Инвестиционные затраты не высоки.
  5. Работают бесшумно.
  6. Их можно установить в любой точке электрической сети.
  7. Можно подобрать любую требуемую мощность.

Отличие конденсаторных установок от компенсаторов и синхронных двигателей состоит в том, что фильтрокомпенсирующие установки синхронно осуществляют компенсацию мощности и частично сдерживают присутствующие в компенсируемой сети гармоники. От того, насколько компенсируется мощность и будет зависеть стоимость за электроэнергию, ну и, соответственно, от действующего тарифа.

Проблемы при выработке реактивной мощности

Если в сети существует большая доля выработки реактивной мощности, то приходится:

  • повышать мощность силовых аппаратов, которые предназначены для преобразования электрической энергии одного значения напряжения в электрическую энергию другого значения напряжения;
  • увеличивать сечение кабелей;
  • бороться с ростом потери мощности в силовых аппаратах и линиях передач;
  • увеличивать плату за потребление электроэнергии;
  • бороться с потерей напряжения в сети.

Немного о поверке счетчиков

Электрический счетчик, как и многие измерительные приборы, нуждается в периодической поверке (калибровке). Правильнее было бы сказать – подлежит обязательной поверке. Основная цель такой процедуры – подтверждение правильности (достоверности) измерений и возможности дальнейшего использования прибора по назначению. Поверка осуществляется в аккредитованной государством метрологической организации в установленные сроки.

Существует такая характеристика электросчетчика как межповерочный интервал (МПИ) – это интервал времени, после окончания которого требуется очередная поверка счетчика. Теоретически — чем больше интервал, тем выше качество прибора. Начальная (первичная) поверка проводится на заводе-изготовителе и указывается в паспорте электросчетчика – с этой даты начинается отсчет МПИ.

  • Индукционный однофазный счетчик – 16 лет
  • Электронный – от 8 до 16 лет
  • Трехфазный счетчик – от 6 до 8 лет, современные электронные модели могут иметь МПИ 16 лет
  • Счетчики с классом точности 0,5 – 4 года

На этом пока все. Следующая статья будет продолжением темы, и там мы разберемся со схемами подключения электросчетчиков.

Смотрите также по этой теме:

Схемы подключения счетчиков электроэнергии.

Электронные счетчики и система АСКУЭ. Дистанционный учет электроэнергии.

Класс точности

Класс точности электрического счетчика — это его погрешность измерения. Если сказать точнее – наибольшая допустимая относительная погрешность, выражаемая в процентах. Сейчас повсеместно происходит замена устаревших счетчиков на более современные модели. В первую очередь это связано именно с неудовлетворительным классом точности старых электросчетчиков, а также с возросшими электрическими нагрузками. В связи с этим все счетчики с классом точности 2,5 должны быть заменены на счетчики с классом точности 2,0 (или 1,0).

Существующие классы точности:

  • Счетчики активной энергии — 0,2; 0,5; 1,0; 2,0
  • Счетчики реактивной энергии — 1,5; 2,0 и 3,0

Групповая мощность

Название говорит само за себя. Эта мощность используется при компенсации мощности нескольких индуктивных нагрузок, которые одновременно присоединены к одному распределительному устройству с общей конденсаторной установкой.

Читайте также  Плетеная проводка в деревянном доме

В процессе одновременного включения нагрузки увеличивается коэффициент, что приводит к понижению мощности. Это способствует лучшей работе конденсаторной установки. Остаточная энергия подавляется эффективнее, чем при индивидуальной мощности.

Отрицательной стороной данного процесса является частичная разгрузка реактивной энергии в электросети.

Централизованная мощность

В отличие от индивидуальной и групповой мощности, эта мощность регулируется. Она применяется для обширного диапазона изменения потребления остаточной энергии.

Большую роль в регулировании мощности конденсаторной установки играет функция реактивного тока нагрузки. При этом установка должна быть оснащена автоматическим регулятором, а её полная компенсационная мощность разделена на отдельно коммутируемые ступени.

ГОСТ 6570-96Счетчики электрические активной и реактивной энергии индукционные. Общие технические условия

Подключение счётчика

Прибор должен устанавливать и подключать квалифицированный электрик в составе специализированной организации. При выполнении работ обязательно соблюдение правил установки, указанных в руководстве изготовителя.


Обозначение контактов

Предварительно отключается подача энергии. Провода подсоединяются согласно схеме, указанной в руководстве или на крышке клеммного отсека.

После подключения, подачи тока и настройки, накладываются защитные пломбы. Запись в соответствующем разделе формуляра подтверждает пуск изделия в работу.

Снятие показаний

Чтобы снять показания, необходимо учитывать целое количество киловатт-часов на экране, отдельно по каждому тарифу, исключив дробную составляющую.


Назначение символов на индикаторе

  1. Дождаться появления необходимого тарифа в автоматическом режиме или переключить кнопкой “КАДР”.
  2. Записать значение на дисплее.
  3. Вычесть из него число, записанное в прошлом месяце.
  4. Умножить разницу на величину тарифа.
  5. Аналогичным способом просчитать расход по остальным тарифам.
  6. Сложить полученные результаты.

В чём разница между активной и реактивной энергией?

Люди привыкли платить за ту электроэнергию, которую они потребляют. Они оплачивают энергию, используемую для обогрева помещения, приготовления еды, нагревания воды в ванной комнате (кто пользуется индивидуальными водонагревателями) и другую полезную электрическую энергию. Именно она и называется активной.

Активная и реактивная энергии различны в том, что вторая представляет собой оставшуюся часть энергии, которая не используется в полезной работе. Другими словами, они обе образуют полную мощность. Соответственно, потребителям невыгодно оплачивать помимо активной ещё и реактивную энергию в электросети, а поставщикам выгодно, чтобы они платили за полную мощность. Можно ли как-нибудь урегулировать этот вопрос? Давайте рассмотрим это.

Технические характеристики

Характеристики Величина
Класс точности 0,5S/0.5 или 1/1
Диапазон входных сигналов:
сила тока, А напряжение, В коэффициент активной мощности коэффициент реактивной мощности 0,01Iн — Iмакс или 0,02Iн — Iмакс или 0,05Iб — Iмакс 0,75Uном — 1,15Uном 0,8емк.; 1,0; 0,5инд. 0,25емк.; 1,0; 0,25инд.
Номинальный или базовый ток, А 5 или 10
Максимальный ток, А 10, 60, 80 или 100
Номинальное напряжение, В 3×57,7/100 или 3×230/400
Диапазон рабочих температур окружающего воздуха, °С -40… +60
Диапазон значений постоянной счетчика, имп/(кВт*ч) от 450 до 8000
Стартовый ток (чувствительность), мА:
для счетчиков с непосредственным подключением для счетчиков с трансформаторным подключением 0,002Iб 0,001Iном или 0,002Iном
Полная мощность, потребляемая каждой цепью тока, при базовом токе, В*А, не более 0,1
Полная мощность, потребляемая цепью тока со встроенным реле в токовой цепи (для исполнения «Q»), при базовом токе, В*А, не более 1
Полная (активная) мощность, потребляемая цепью напряжения (без учета модулей связи), В*А (Вт) 9 (0,8)
Полная (активная) мощность (с учетом потребления модулей связи), потребляемая каждой цепью напряжения, В*А (Вт) 15 (3)
Длительность хранения информации при отключении питания, лет 10
Число тарифов 4
Число временных зон в сутках до 12
Масса, кг, не более 3,0
Способ крепления Рейка ТН35, винты
Габаритные размеры, мм:
для R33 для S31 для S34 152×143×73,5 210,5×175×71,5 280×175×85
Средняя наработка до отказа, час 220000
Срок службы, лет не менее 30
Межповерочный интервал, лет 16
Цена, рос. руб. от 4100


R33


S31


S34

Централизованная мощность

В отличие от индивидуальной и групповой мощности, эта мощность регулируется. Она применяется для обширного диапазона изменения потребления остаточной энергии.

Большую роль в регулировании мощности конденсаторной установки играет функция реактивного тока нагрузки. При этом установка должна быть оснащена автоматическим регулятором, а её полная компенсационная мощность разделена на отдельно коммутируемые ступени.

Остаточная энергия: что это такое?

Все электрические машины представлены реактивными и активными элементами. Именно они и потребляют электрическую энергию. К ним относят реактивные соединения кабелей, конденсаторные и трансформаторные обмотки.

В процессе течения переменного тока на этих сопротивлениях индексируются реактивные электродвижущие силы, которые создают реактивный ток.

В установках и приборах, создающих переменный ток, используется реактивная энергия в электросети, которая создает магнитное поле электрического поля.

Чем измеряют потребление энергии?

Для замера потребленной энергии используют счетчик активной и реактивной энергии. Всё они делятся на счетчики с одной фазой и тремя фазами. В чем же их различие?

Однофазные счетчики применяют для учета электрической энергии у потребителей, которые используют ее для бытовых нужд. Питание выполняется однофазным током.

Трехфазные счетчики используются для учета полной энергии. Они классифицируются исходя из схемы электроснабжения на трех- и четырехпроводные.

Рациональное использование электроэнергии

Для рационального использования электроэнергии применяется компенсация реактивной энергии. Для этого применяют конденсаторные установки, электродвигатели и компенсаторы.

Они помогают уменьшить потери активной энергии, которые обусловлены перетоками реактивной мощности. Это существенно влияет на уровень транспортных технологических потерь распределительных электрических сетей.

Счетчики активной и реактивной электрической энергии трехфазные многофункциональные ТЕ73

  • Сводка
  • Описание типа

Счетчики активной и реактивной электрической энергии трехфазные многофункциональные типа ТЕ73 (далее по тексту- счетчик) предназначены для измерения активной и реактивной электрической энергии. Счетчики также могут использоваться в автоматизированной системе контроля и учета, сбора и дистанционной передачи учетных данных для проведения учетных данных, с целью контроля потребления электроэнергии и подготовки данных для проведения коммерческих расчетов за потребляемую энергию.

Скачать

Информация по Госреестру

Основные данные
Номер по Госреестру 77025-19
Наименование Счетчики активной и реактивной электрической энергии трехфазные многофункциональные
Модель ТЕ73
Межповерочный интервал / Периодичность поверки 4 года
Страна-производитель УЗБЕКИСТАН
Срок свидетельства (Или заводской номер) 18.02.2024
Производитель / Заявитель

ИП ООО «Toshelectroapparat», Узбекистан, г.Ташкент

Назначение

Счетчики активной и реактивной электрической энергии трехфазные многофункциональные типа ТЕ73 (далее по тексту- счетчик) предназначены для измерения активной и реактивной электрической энергии. Счетчики также могут использоваться в автоматизированной системе контроля и учета, сбора и дистанционной передачи учетных данных для проведения учетных данных, с целью контроля потребления электроэнергии и подготовки данных для проведения коммерческих расчетов за потребляемую энергию.

Описание

Принцип действия счетчика основан на аналого-цифровом преобразовании входных сигналов тока и напряжения с последующим их перемножением. Для получения количества потребляемой энергии производится вычисление мощности с последующим интегрированием ее значения по времени. Также производится преобразование полученного сигнала в частоту следования импульсов, пропорциональную входной мощности.

Во входных измерительных цепях напряжения счетчика используются прецизионные делители напряжения, а во входных измерительных цепях токов фаз и тока нейтрали -трансформаторы тока.

Питание электронной схемы счетчика производится от контролируемой сети. Для поддержания хода часов счетчика и сохранности накопленных данных при отсутствии напряжения в контролируемой сети предусмотрена работа счетчика от встроенного литиевого гальванического элемента с напряжением 3 В. В счетчике реализовано несколько рабочих и сервисных функций: контроля вскрытия крышки счетчика/зажимной платы, температуры, магнитного поля, дифференциального тока, дополнительные реле управления нагрузкой.

В состав счетчика могут входить дополнительные устройства — коммуникационные модули, которые устанавливаются под крышку зажимной платы.

Основной коммуникационный канал счетчика — PLC, опционально поддерживаются дополнительные коммуникационные каналы GSM/GPRS, M-bus.

Счетчик оснащен сигнальными светодиодами (для активной и реактивной энергии), расположенными на его передней панели.

Жидкокристаллический дисплей может быть символьным, кодовым, кодовосимвольным.

Оптический порт, расположенный на лицевой панели счетчика предназначен для связи со счетчиком во время его обслуживания после продажи, для прямого обмена данными и параметризации счетчика.

Типы исполнения счетчика, имеют условное обозначение на щитке (шильдике) и паспорте счетчика конкретной модификации в виде буквенно-цифровой комбинации, определяемой при заказе счетчика.

В случае отсутствия съёмного модуля связи соответствующий символ не указывается. Встроенный цифровой интерфейс RS-485 и оптопорт присутствуют в счетчике вне зависимости от установленного или отсутствующего съемного модуля связи.

Модификации счетчиков: ТЕ73 S-1-0; ТЕ73 S-1-3; ТЕ73 S-2-3; ТЕ73 S-0-1; ТЕ73 S-0-0; ТЕ73 S-0-2; ТЕ73 SP-2-3; ТЕ73 SI-1-1; ТЕ73 SR-2-3.

Общий вид счетчика приведен на рисунке 1.

Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки представлены на рисунке 2.