Пьезоэлектрические преобразователи как источник альтернативной энергии

Пьезогенераторы — новые источники электроэнергии. Фантазии или реальность?

Тонкая пьезоэлектрическая пленка на оконном стекле, поглощающая шум улицы и преобразующая его в энергию для зарядки телефона. Пешеходы на тротуарах, эскалаторах метро, которые заряжают через пьезо преобразователи аккумуляторы автономного освещения. Плотные потоки автомобилей на оживленных трассах, вырабатывающие мегаватты электроэнергии, которой хватает для целых городов и поселков.

Фантастика? К сожалению, пока да, и таковой может остаться. Есть большая вероятность, что скоро закончится ажиотаж вокруг сенсационных сообщений о чудесных перспективах генераторов энергии на пьезоэлементах. А мы будем опять мечтать о безопасной, возобновляемой и, что греха таить, дешевой электрической энергии, полученной с привлечением других явлений. Ведь список физических эффектов замечательно велик.

Явление пьезоэлектричества было открыто братьями Джексоном и Пьером Кюри в 1880 году и с тех пор получило широкое распространение в радиотехнике и измерительной технике. Заключается оно в том, что усилие, приложенное к образцу пьезоэлектрического материала, приводит к появлению на электродах разности потенциалов. Эффект обратим, т.е. наблюдается и обратное явление: прикладывая к электродам напряжение, образец деформируется.

В зависимости от направления преобразования энергии пьезоэлектрики делятся на генераторы (прямое преобразование) и двигатели (обратное). Термин “пьезогенераторы” характеризует не эффективность превращения, а только направление преобразования энергии.

Именно первым явлением, связанным с генерацией электричества при механическом воздействии, заинтересовались в последние годы инженера и изобретатели. Как из рога изобилия, посыпались сообщения о возможностях получения электрической энергии, утилизируя уличный шум, движение волн и ветра, нагрузки от перемещения людей и машин.

Сегодня известно несколько примеров практического использования подобной энергии. На станции метро «Марунучи» в Токио установлены пьезогенераторы в зале для приобретения билетов. Скопления пассажиров хватает для управления турникетами.

В Лондоне, в элитной дискотеке, пьезогенераторы питают несколько ламп, которые стимулируют танцующих и . продажу прохладительных напитков. Стали обыденными пьезоэлектрические зажигалки. Сейчас любой курильщик носит в кармане собственную «электростанцию».

Сравнительно недавно взорвало мировую общественность сообщение об испытаниях систем получения энергии от движущегося автотранспорта. Израильские ученые из небольшой фирмы Innowattech подсчитали, что 1 километр автобана может генерировать электрическую мощность до 5 МВт. Они не только выполнили расчеты, но и вскрыли несколько десятков метров полотна автострады и смонтировали под ним свои пьезогенераторы. Казалось, что наконец наступил прорыв в области альтернативной энергетики. Но в этом возникают серьезные сомнения.

Рассмотрим подробней физику процессов, происходящих в пьезоэлектрике. Для знакомства с принципами генерации энергии пьезоэлектрическими материалами достаточно понимания нескольких базовых механизмов. При механическом воздействии на пьезоэлемент происходит смещение атомов в несимметричной кристаллической решетке материала. Это смещение приводит к возникновению электрического поля, которое индуцирует (наводит) заряды на электродах пьезоэлемента.

В отличие от обычного конденсатора, обкладки которого могут сохранять заряды достаточно долго, индуцированные заряды пьезоэлемента сохраняются только до тех пор, пока действует механическая нагрузка. Именно в это время можно получить от элемента энергию. После снятия нагрузки индуцированные заряды исчезают. По сути, пьезоэлемент является источником тока ничтожной величины, с очень высоким внутренним сопротивлением.

Поскольку специалисты компании Innowattech так и не сочли нужным поделиться с широкой общественностью результатами своего эксперимента, попробуем сами сделать грубые численные прикидки эффективности работы пьезоэлектриков в качестве источника энергии. В качестве объекта для расчетов возьмем обычную бытовую пьезозажигалку – единственное изделие, получившее сейчас широкое распространение.

Из обилия технических характеристик пьезоматериалов нам понадобятся всего несколько. Это значение пьезоэлектрического модуля, которое для распространенных (а иных пока промышленность не выпускает) пьезоэлектриков составляет от 200 до 500 пикокулон (10 в минус 12 степени) на ньютон, и характеризует эффективность генерации заряда под воздействием силы.

Эта характеристика не зависит от размеров пьезоэлемента, а полностью определяется свойствами материала. Поэтому пытаться делать более мощные преобразователи за счет увеличения геометрических размеров бессмысленно. Емкость обкладок пьезоэлемента зажигалок известна и составляет около 40 пикофарад.

Рычажная система передачи усилия на пьезоэлемент создает нагрузку приблизительно 1000 ньютонов. Зазор, в котором проскакивает искра — 5 мм. Диэлектрическую прочность воздуха принимаем 1 кВ/мм. При таких исходных данных зажигалка генерирует искры мощностью от 0,9 до 2,2 мегаватта!

Но не стоит пугаться. Длительность разряда составляет всего 0,08 наносекунды, отсюда такие огромные значения мощности. Подсчет же суммарной энергии, генерируемой зажигалкой, дает значение всего 600 микроджоулей. При этом КПД зажигалки, с учетом того, что механическое усилие через рычажную систему полностью передается пьезоэлектрику, составляет всего . 0,12%.

Предлагаемые в разных проектах схемы извлечения энергии близки к режимам работы зажигалок. Отдельные пьезоэлементы генерируют высокое напряжение, которое пробивает разрядный промежуток, и ток поступает на выпрямитель, а затем в накопительное устройство, например, ионистор. Дальнейшее преобразование энергии стандартно и интереса не представляет.

От зажигалок перейдем к задаче получения энергии в промышленных масштабах. Пусть будут использованы наиболее эффективные элементы, генерирующие 10 милливатт на элемент. Собранные в кластеры (группы) по 100-200 элементов, они помещаются под полотно дороги. Тогда для получения заявленной величины мощности порядка 1 МВт на километр дороги потребуется всего. 100 миллионов отдельных элементов с индивидуальными схемами съема энергии. Остается еще задача ее суммирования, преобразования и передачи потребителю. При этом токи элементов, учитывая изменяющуюся нагрузку на дорожное полотно, будут лежать в диапазоне нано или даже пикоампер.

Знакомясь с подобными проектами получения энергии от пьезоэффекта, невольно напрашивается аналогия с гидроэлектростанцией, в которой турбины работают от влаги утренней росы, бережно собранной с окрестных полей.

А как же с экспериментом израильской компании? Отчет о результатах «вредительства» на полотне автострады так и не появился. А ведь впереди выполнение контракта на получении энергии с автострады Венеция – Триест, который заключила фирма Innowattech.

По этому поводу есть одна версия: это компания типа «стартап», т.е. с высоким риском инвестиционного капитала. Получив более чем скромные предварительные результаты исследователей, ее основатели решили оправдать затраченные деньги инвесторов и провернули великолепный маркетинговый ход – провели эффектное испытание с участием прессы. И весь мир заговорил о маленькой компании. И в этом шуме потерялся основной вопрос: где же мегаватты дешевой энергии?

Подводя итоги, можно сделать только один вывод: пьезоэлементы никогда не станут альтернативными источниками электроэнергии в промышленных масштабах. Круг их применений ограничится маломощными (микромощными) источниками питания и датчиками. А жаль, такая красивая была идея!

Пьезогенератор. Обзор альтернативного источника чистой энергии.

Тонкая пьезоэлектрическая пленка на оконном стекле, поглощающая шум улицы и преобразующая его в энергию для зарядки телефона. Пешеход на тротуаре, эскалаторе метро, который заряжает через пьезогенератор аккумулятор автономного освещения. Плотные потоки автомобилей на оживленных трассах, вырабатывающие мегаватты электроэнергии, которой хватает для целых городов и поселков.

Фантастика? К сожалению, пока да, и таковой может остаться. Есть большая вероятность, что скоро закончится ажиотаж вокруг сенсационных сообщений о чудесных перспективах генераторов энергии на пьезоэлементах. А мы будем опять мечтать о безопасной, возобновляемой и, что греха таить, дешевой электрической энергии, полученной с привлечением других явлений. Ведь список физических эффектов замечательно велик.

От куда взялось пьезоэлектричество и где применяется в наши дни

Явление пьезоэлектричества было открыто братьями Джексоном и Пьером Кюри в 1880 году и с тех пор получило широкое распространение в радиотехнике и измерительной технике. Заключается оно в том, что усилие, приложенное к образцу пьезоэлектрического материала, приводит к появлению на электродах разности потенциалов. Эффект обратим, т.е. наблюдается и обратное явление: прикладывая к электродам напряжение, образец деформируется. В зависимости от направления преобразования энергии, пьезоэлектрики делятся на генераторы (прямое преобразование) и двигатели (обратное). Термин “пьезогенератор” характеризует не эффективность превращения, а только направление преобразования энергии.

Именно первым явлением, связанным с генерацией электричества при механическом воздействии, заинтересовались в последние годы инженера и изобретатели. Как из рога изобилия, посыпались сообщения о возможностях получения электрической энергии, утилизируя уличный шум, движение волн и ветра, нагрузки от перемещения людей и машин. Сегодня известно несколько примеров практического использования подобной энергии. На станции метро «Марунучи» в Токио установлены пьезогенераторы в зале для приобретения билетов. Скопления пассажиров хватает для управления турникетами. В Лондоне, в элитной дискотеке, пьезогенераторы питают несколько ламп, которые стимулируют танцующих и …продажу прохладительных напитков. Стали обыденными пьезоэлектрические зажигалки. Сейчас любой курильщик носит в кармане собственную «электростанцию».

Получения энергии от движущегося автотранспорта

Сравнительно недавно взорвало мировую общественность сообщение об испытаниях систем получения энергии от движущегося автотранспорта. Израильские ученые из небольшой фирмы Innowattech подсчитали, что 1 километр автобана может генерировать электрическую мощность до 5 МВт. Они не только выполнили расчеты, но и вскрыли несколько десятков метров полотна автострады и смонтировали под ним свои пьезогенераторы. Казалось, что наконец наступил прорыв в области альтернативной энергетики. Но в этом возникают серьезные сомнения.

Пьезогенератор на автобане

Рассмотрим подробней физику процессов, происходящих в пьезоэлектрике. Для знакомства с принципами генерации энергии пьезоэлектрическими материалами достаточно понимания нескольких базовых механизмов. При механическом воздействии на пьезоэлемент происходит смещение атомов в несимметричной кристаллической решетке материала. Это смещение приводит к возникновению электрического поля, которое индуцирует (наводит) заряды на электродах пьезоэлемента. В отличие от обычного конденсатора, обкладки которого могут сохранять заряды достаточно долго, индуцированные заряды пьезоэлемента сохраняются только до тех пор, пока действует механическая нагрузка. Именно в это время можно получить от элемента энергию. После снятия нагрузки индуцированные заряды исчезают. По сути, пьезоэлемент является источником тока ничтожной величины, с очень высоким внутренним сопротивлением.

Поскольку специалисты компании Innowattech так и не сочли нужным поделиться с широкой общественностью результатами своего эксперимента, попробуем сами сделать грубые численные прикидки эффективности работы пьезоэлектриков в качестве источника энергии. В качестве объекта для расчетов возьмем обычную бытовую пьезозажигалку – единственное изделие, получившее сейчас широкое распространение.

Читайте также  Бесконтактный емкостной переключатель на логических элементах

Из обилия технических характеристик пьезоматериалов нам понадобятся всего несколько. Это значение пьезоэлектрического модуля, которое для распространенных (а иных пока промышленность не выпускает) пьезоэлектриков составляет от 200 до 500 пико-кулон (10 в минус 12 степени) на ньютон, и характеризует эффективность генерации заряда под воздействием силы. Эта характеристика не зависит от размеров пьезоэлемента, а полностью определяется свойствами материала. Поэтому пытаться делать более мощные преобразователи за счет увеличения геометрических размеров бессмысленно. Емкость обкладок пьезоэлемента зажигалок известна и составляет около 40 пикофарад.

Рычажная система передачи усилия на пьезоэлемент создает нагрузку приблизительно 1000 ньютонов. Зазор, в котором проскакивает искра — 5 мм. Диэлектрическую прочность воздуха принимаем 1 кВ/мм. При таких исходных данных зажигалка генерирует искры мощностью от 0,9 до 2,2 мегаватта! Но не стоит пугаться. Длительность разряда составляет всего 0,08 наносекунды, отсюда такие огромные значения мощности. Подсчет же суммарной энергии, генерируемой зажигалкой, дает значение всего 600 микро-джоулей. При этом КПД зажигалки, с учетом того, что механическое усилие через рычажную систему полностью передается пьезоэлектрику, составляет всего … 0,12%.

Пьезогенератор в кроссовках

Предлагаемые в разных проектах схемы извлечения энергии близки к режимам работы зажигалок. Отдельные пьезоэлементы генерируют высокое напряжение, которое пробивает разрядный промежуток, и ток поступает на выпрямитель, а затем в накопительное устройство, например, ионистор. Дальнейшее преобразование энергии стандартно и интереса не представляет. От зажигалок перейдем к задаче получения энергии в промышленных масштабах. Пусть будут использованы наиболее эффективные элементы, генерирующие 10 милливатт на элемент. Собранные в кластеры (группы) по 100-200 элементов, они помещаются под полотно дороги. Тогда для получения заявленной величины мощности порядка 1 МВт на километр дороги потребуется всего… 100 миллионов отдельных элементов с индивидуальными схемами съема энергии. Остается еще задача ее суммирования, преобразования и передачи потребителю. При этом токи элементов, учитывая изменяющуюся нагрузку на дорожное полотно, будут лежать в диапазоне нано или даже пикоампер.

Пьезогенератор, фантастика или реальность

Знакомясь с подобными проектами получения энергии от пьезоэффекта, невольно напрашивается аналогия с гидроэлектростанцией, в которой турбины работают от влаги утренней росы, бережно собранной с окрестных полей.

А как же с экспериментом израильской компании? Отчет о результатах «вредительства» на полотне автострады так и не появился. А ведь впереди выполнение контракта на получении энергии с автострады Венеция – Триест, который заключила фирма Innowattech.

Новые альтернативные источники электроэнергии

По этому поводу есть одна версия: это компания типа «стартап», т.е. с высоким риском инвестиционного капитала. Получив более чем скромные предварительные результаты исследователей, ее основатели решили оправдать затраченные деньги инвесторов и провернули великолепный маркетинговый ход – провели эффектное испытание с участием прессы. И весь мир заговорил о маленькой компании. И в этом шуме потерялся основной вопрос: где же мегаватты дешевой энергии?

Подводя итоги, можно сделать только один вывод: пьезоэлементы никогда не станут альтернативными источниками электроэнергии в промышленных масштабах. Круг их применений ограничится маломощными (микромощными) источниками питания и датчиками. А жаль, такая красивая была идея!

Пьезоэлектрический генератор электрической мощности

Ажиотаж в мире в отношении создания пьезоэлектрических источников энергии до недавнего времени не отличался высоким уровнем изобретательских предложений. Например, учёные Израиля предлагают монтировать пьезоэлементы в дорожном полотне и использовать энергию проезжающих машин. В Японии пол одного из залов метро покрыт пьезоэлементами. Эти и подобные им проекты генераторов напряжения не выдерживают никакой критики с экономической точки зрения. Причина в следующем.

За один щелчок электрозажигалки, который длится примерно 0,1 наносекунды, выделяется мощность более 2 мегаватт. То есть мощность за секунду равна 0,2 ватта. Если бы можно было сделать 1000 щелчков в секунду, то получили бы мощность 200 ватт. Мощность большая, но как сделать 1000 щелчков в секунду. Это невозможно, но вот прижать пьезоэлемент к гладкому вращающемуся колесу 20 и более тысяч раз можно, возбуждая в нём ультразвуковые колебания.

Это хотя бы доказывает ниже приведенный рисунок (рис.1). Тридцать ватт отбираемой от пьезоэлемента мощности (ватт на грамм пьезоэлемента) в непрерывном режиме при напряжении 300В было достаточно, чтобы питать люминесцентную лампу. Для этого энергия вращающегося колеса преобразовывается в изгибные ультразвуковые колебания камертона выполненного на одном из концов пакета Ланжевена, и затем, за счёт пьезоэффекта, в электрические колебания высокой частоты.

То есть, с помощью пьезоэлементов можно создавать не только электрические генераторы напряжения, но и генераторы мощности.

Идея использовать пьезоэлектрический мотор в качестве генератора мощности (рис.2) долго обходилась без должного внимания. Причина в том, что, согласно этой идее, один тип колебаний принудительно должен возбуждаться в одной из частей пьезоэлемента. Эту часть назовём возбудителем. Для этого, помимо механического воздействия, используется отдельный источник питания. Второй тип колебаний должен генерироваться в другой части пьезоэлемента, за счёт принудительного вращения ротора. Эту часть пьезоэлемента назовём генератором.

Испытания опытных образцов подтвердили возможность получения энергии в генераторе. Но мощность генератора должна быть в несколько раз больше мощности отбираемой от источника питания возбудителя. Иначе в таком генераторе нет смысла. Вот как раз это долго и не получалось.

Лишь только относительно недавно Вячеслав Лавриненко, изобретатель пьезоэлектрического мотора, пенсионер, работая у себя дома после тщательной подборки материалов пьезоэлемента и контактных пар смог получить полезную мощность на нагрузке в несколько раз больше, мощности, отбираемой от дополнительного источника питания. Появилась возможность часть мощности генератора направить в возбудитель и убрать дополнительный источник. Эту задачу он решал двумя способами.

По первому способу измерял амплитуду и фазу на входе возбудителя и с помощь реактивных элементов подгоняли под такую же амплитуду и фазу напряжение на выходе генератора. То есть, как и в обычных электрических генераторах выполнялись условия баланса амплитуды и фазы. Когда эти условия были выполнены, выход замыкался с входом.

По второму способу напряжение с генератора преобразовывалось в постоянное напряжение, которым питался усилитель мощности и маломощный генератор переменного напряжения. По мере того, как удалось устойчиво получать полезную мощность в пределах 0,2 Ватта на грамм пьезоэлемента, Лавриненко обнаруживает интересный эффект, соизмеримый в физике с открытием, который он сформулировал так:

В двух, совмещённых в одном теле, резонаторах взаимно перпендикулярных акустических колебаний, с частотами резонанса смещёнными друг относительно друга для создания сдвига фаз между колебаниями при их возбуждении спонтанно генерируются взаимно поперечные колебания на частоте между упомянутыми резонансными частотами при фрикционном взаимодействии тела с другим телом, например, с вращающимся колесом.

То есть, при фрикционном взаимодействии упомянутых тел существует положительная обратная связь. Появление случайных колебаний образуют эллипс, размеры которого увеличиваются при вращении колеса. Подобным образом в электрическом усилителе напряжения, охваченной положительной обратной связью спонтанно возбуждаются электрические колебания, и энергия источника постоянного напряжения преобразуется в переменное напряжение. Зависимость этого напряжения от скорости вращения имеет вид, показанный на рис.3.

Обнаруженный эффект значительно упрощает идею создания пьезоэлектрических генераторов мощности, причем мощность в 5 ватт на грамм пьезоэлемента становится вполне реальной. Будут ли они иметь преимущества перед электромагнитными генераторами можно будет сказать только со временем, по мере их изучения, хотя о некоторых из них можно говорить уже сейчас.

Отсутствие меди и обмоток – это надёжность в условиях повышенной влажности. Отсутствие тяжёлых металлов (меди и сплавов железа) – это высокие удельные параметры. Получаемый на выходе высокочастотный сигнал, легко трансформируется под любую нагрузку. А главное преимущество, что для любых частот вращения колеса не требуется редуктор. Достаточно лишь правильно рассчитать диаметр колеса.

При невозможности применения солнечных батарей, пьезоэлектрические генераторы мощности, используя энергию, мускул или ветра, могут их заменить, например, для зарядки аккумуляторов ноутбуков, планшетов и пр. Хотя актуальность направления очевидна, для его развития требуется достаточная финансовая поддержка, которой, как и у многих проектов наших стран, пока нет.

Использование пьезопреобразователей серии DuraAct для аккумулирования энергии

Термин «аккумулирование энергии» используется в тех случаях, когда источником для выработки электричества является окружающая среда. К примеру, температура, вибрации, потоки воздуха. В настоящее время существуют электронные платы, чьё энергопотребление находится в диапазоне нескольких милливатт. Несмотря на то, что вырабатываемая энергия с использованием устройств на основе пьезоэффекта невелика, данное направление представляет интерес в тех случаях, когда электричество не может быть подведено с помощью кабелей или требуется исключить использование батарей, что связано с техническим обслуживанием.

Рис.1 Аккумулирование энергии может быть основано на ряде физических эффектов. Пьезоэлектрические кристаллы идеально подходят для этой задачи

Аккумулирование энергии (рис.1) может быть основано на ряде физических эффектов. Это могут быть фотоэлементы, а также термогенераторы, которые вырабатывают электрическую энергию при колебаниях температуры. Существует возможность получать и использовать энергию радиоволн с помощью антенн, что может использоваться, например, для питания идентификационных радиометок. Пьезоэлектрические кристаллы также идеально подходят для задач аккумулирования энергии. Они генерируют электрическое напряжение в результате приложения силы в форме давления или вибраций.

Генерация энергии посредством пьезоэффекта

В случае механической деформации пьезоэлектрического кристалла при приложении усилия происходит возникновение электрического напряжения на электродах пьезоэлемента. Данное явление известно как прямой пьезоэлектрический эффект.

Рис.2 Генерация энергии при использовании пьезоэффекта

Генерируемый заряд может быть описан математическим соотношением Q = d ∙ ΔF

Постоянная d зависит от используемого материала. В связи с тем, что количество генерируемого заряда мало, накладываются высокие требования к механической системе и электронике для аккумулирования оптимального количества энергии.

Читайте также  Обвеска крен8а для тока до 7.5а

Система аккумулирования энергии

Универсального решения для аккумулирования энергии не существует, так как существует множество приложений и параметры установки всегда различаются. На рис.3 показана общая схема установки.

Рис.3 Общая схема установки для аккумулирования энергии

Для правильного расчёта такой системы, все граничные условия должны быть известны и приняты во внимание. Возьмём, к примеру, источник энергии. Нужно понимать, какой тип воздействия будет оказываться: непрерывный или импульсный. Требования электропотребителя также должны быть приняты во внимание. Важными параметрами являются: требуемое напряжение, мощность и входное сопротивление. Затем можно использовать эти данные для проектирования пьезопреобразователя, включая механическую систему.

Типичные приложения для аккумулирования энергии с использованием пьезоэффекта

Существует множество приложений, где процесс аккумулирования энергии из окружающей среды оказывается эффективным и полезным. Хотя, в настоящее время, небольшие аккумуляторные элементы имеют длительный срок службы, имеет смысл отказываться от их использования, так как требуется много усилий, чтобы проверить или заменить их, если электропотребитель устанавливается в труднодоступном месте. Системы аккумулирования энергии могут являться решением в таких случаях. Типичным примером является контроль технического состояния лопаток ветровых турбин.

Другим интересным приложением является мониторинг и передача данных в системах отопления и кондиционирования воздуха. Вибрации транспортного средства могут быть использованы для выработки энергии и тем самым во время транспортировки можно контролировать продукцию, не используя датчики, оснащённые батареями. Это может быть полезно, если требуется, к примеру, отслеживать температуру в закрытых контейнерах. Датчики дождя могут получать необходимую электроэнергию с помощью систем сбора энергии. Беспроводные сети типа ZigBee могут также получать питание с использованием систем аккумулирования энергии.

Универсальные и надёжные пьезопреобразователи

В общем случае, каждый пьезокерамический элемент или пьезоактуатор может быть использован для аккумуляции энергии. Путем преобразования механических вибраций с частотой в несколько килогерц в электрическое напряжение, может быть получена мощность в диапазоне нескольких милливатт. Питание может подаваться на электрические компоненты, в том числе, на процессоры, датчики и миниатюрные передатчики.

Характеристики

Толщина пьезокерамического слоя

Диапазон рабочих температур

Технические характеристики пьезопреобразователей, выпускаемых компанией Physik Instrumente ( PI )

Компания PI предоставляет широкий ассортимент пьезопреобразователей (рис. 3), которые отличаются высокой надёжностью.

Рис.4 Пьезопреобразователи производства Physik Instrumente

Пьезопреобразователь состоит из пьезокерамического слоя, покрытого полимерной изоляцией, а также электрических контактов. Полимер выполняет функции электроизоляции и механической защиты хрупкой пьезокерамики. Таким образом, использование полимера повышает допустимые пределы по нагрузке на пьезопреобразователь и позволяет его прикреплять на изогнутые поверхности. Кроме того, компактная конструкция и изоляция позволяют пользователю легко интегрировать пьезопреобразователь в свою систему. К примеру, в композитные материалы. Пьезопреобразователь имеет симметричную структуру, т.е. когда он изогнут, на обоих электродах генерируется одинаковое количество заряда противоположного знака. Существует необходимость крепления пьезопреобразователя на подложку (например, из алюминия; пластика, армированного углеродным волокном или стекловолокном), таким образом, получая обычную биморфную структуру. В результате этого заряды генерируются путём фиксирования краевой части пластины и её деформации. Количество заряда оказывается пропорциональным величине деформации в первом приближении.

Проведение испытаний позволяет получить информацию о том, как толщина пьезокерамического слоя влияет на характеристики, связанные с аккумулированием энергии. С этой целью, пьезопреобразователи серии DuraAct были закреплены на пластину из пластика, армированного углеродным волокном. Сама пластина была зафиксирована с одного конца. Вращающийся эксцентриковый диск создавал смещение биморфного пьезопреобразователя. С помощью этой установки удалось реализовать воспроизводимые условия воздействия на пьезопреобразователи, необходимые для их сравнения (варьирование частоты и величины смещения).

Зависимость выходной мощности от сопротивления нагрузки

В ходе эксперимента было проведено сравнение различных пьезопреобразователей серии DuraAct ( P -876. A 11, P -876. A 12, P -876. A 15), закреплённых на пластину из пластика, армированного углеродным волокном, на предмет зависимости выходной мощности от сопротивления нагрузки при одинаковых условиях воздействия (частота 1 Гц, смещение 5 мм). Переменное напряжение от генератора было выпрямлено с помощью двухполупериодного мостового выпрямителя и сглажено посредством конденсатора (10 мкФ). Выходную мощность для каждого пьезопреобразователя определяли при различных сопротивлениях нагрузки.

Рис. 5 Зависимость выходной мощности от сопротивления нагрузки

График показывает, что каждый пьезопреобразователь при определённой нагрузке имеет максимальную выходную мощность. Из протестированных пьезопреобразователей модель P -876. A 12 показала наибольшую выходную мощность. Таким образом, для достижения максимальной выходной мощности требуется оптимизированная конструкция пьезопреобразователя с соответствующей регулировкой параметров нагрузки.

Зависимость выходной мощности от параметров воздействия на пьезопреобразователь

Другие результаты исследования ограничены рассмотрением биморфной структуры на основе пьезопреобразователя P-876.A12.

Рис.6 Зависимость выходной мощности от смещения пьезопреобразователя P -876. A 12.

Рис.7 Зависимость выходной мощности от частоты механического воздействия на пьезопреобразователь P -876. A 12.

Электроника для задач аккумулирования энергии

Доступная электроника для задач аккумулирования энергии посредством использования пьезоэффекта включает выпрямитель с накопительным конденсатором и переключатель нагрузки. Данная схема позволяет преобразовывать переменное и постоянное входное напряжение. Электронная схема позволяет разъединять нагрузку (т.е. потребитель) от генератора, и, таким образом, энергия может собираться и храниться в течение длительного времени.

Для процесса зарядки накопительного конденсатора напряжение генератора в разомкнутой цепи должно быть выше чем уровень Vhigh .

После того, как уровень напряжения Vhigh достигнут в течение временного интервала t 1+ t 2, следует процесс разрядки (передача электрической энергии нагрузке) в течение времени t 3. В случае, если напряжение падает до уровня Vlow , дальнейшая передача энергии нагрузке прекращается и накопительный конденсатор должен быть снова заряжен (рис. 8)

Рис. 8 Схема работы электронного модуля, контролирующего процесс передачи энергии нагрузке.

Таким образом, энергия может передаваться только между уровнями Vhigh и Vlow:

Существует возможность подбирать ёмкость конденсатора в соответствии с требованиями по мощности для конкретного потребителя энергии. Выходное напряжение электронного модуля для тестирования может изменяться до 1.8 В или 5 В. Вследствие следующего цикла: «накопление заряда», «хранение», «передача электроэнергии потребителю», «накопление заряда» это решение может применяться для приложений, где не требуется постоянная передача энергии потребителю. К примеру, в случае с беспроводными датчиками, где заряд может генерироваться, накапливаться и храниться в течение периода между измерениями и извлекаться для измерения и передачи данных. Если пьезоэлектрический преобразователь, механическая система и электронный модуль согласованы в соответствии с конкретным приложением, метод аккумулирования энергии на основе пьезоэффекта может иметь широкое практическое применение.

Приведённые выше данные показывают примеры того, как энергия из окружающей среды может быть преобразована в электрическую энергию, которая затем используется соответствующим потребителем.

Не существует единого решения по аккумулированию энергии, которое удовлетворяет всем требованиям. Конструкция пьезоэлектрического преобразователя, модуль электроники и условия воздействия на пьезокерамику определяют выходные параметры и должны подбираться исходя из конкретной задачи.

Более подробную информацию о пьезопреобразователях серии DuraAct Вы можете найти по следующим ссылкам:

© Все использованные рисунки являются собственностью компаний: Physik Instrumente (PI) GmbH, Moxtek Inc. Все торговые марки являются собственностью соответствующих компаний-владельцев. Цитирование материалов сайта без ссылки на первоисточник запрещено.

Пьезогенераторы. Устройство и работа. Особенности и применение

С развитием технологий человечество начинает расходовать все меньше энергии понапрасну. Появились солнечные панели, ветровые электростанции, солнечные концентраторы, пьезогенераторы, суперконденсаторы и иные устройства, которые помогают людям получать альтернативную энергию и сохранять ее. Большинство из этих устройств уже используются в повседневной жизни.

Но наука не стоит на месте, в скором времени можно будет получать энергию с помощью повседневных и малозначительных движений. Это можно будет сделать при помощи пьезогенераторов. Ее вполне хватит, чтобы быстро зарядить телефон или плеер. Могут появиться и такие пьезогенераторы, которые будут подзаряжать, к примеру, наручные часы при помощи возбуждения, которое передается сердцебиением.

Устройство

В последние годы было создано несколько опытных образцов пьезогенераторов для различного применения. Они могут быть объединены в два различных класса, которые отличаются по типу колебаний, продольных и поперечных .

Пьезогенератор, работающий по продольной схеме колебаний. В данном устройстве одиночный пьезоэлемент монтируется в подкладку обуви, он позволяет генерировать определенную мощность энергии при быстром передвижении, к примеру, при беге человека. Данное устройство изобретено в техническом университете Луизианы и был выполнен в виде специального спирального пластинчатого пьезоэлемента.

На данный момент обеспечить надежность и долговечность подобного устройства затруднительно в виду хрупкости пьезокерамического материала. Однако данная идея может оказаться продуктивной при использовании гибких пьезополимерных пластин. Но подобные материалы на данный момент находятся на стадии исследований.

Не менее перспективны пьезогенераторы, работающие на изгибных колебаниях. Они также могут отличаться своей конфигурацией и конструктивным исполнением.

Для источников питания сравнительно большой мощности созданы опытные образцы макропьезогенераторов самых разных конструкций. К самым продвинутым разработкам подобного класса устройств можно отнести экспериментальную систему накопителей энергии, созданную на основе пьезогенераторов, которые вмонтированы в настил пола у билетных терминалов на входе в станции метро Marunouchi (Токио).

Известно устройство взрывного пьезогенератора, который включает:

  • Устройство инициирования:
  • Генератор ударной волны:
  • Пьезоэлектрический преобразователь, выполненный из набора пьезопластин, соединенных параллельно:
  • Электроды, которые нанесены на противоположные грани пьезопластин, расположены перпендикулярно выходной поверхности генератора ударной волны:
  • Блок пьезопластин размещен в цилиндрический объем, у которого торцевая часть совпадает с поверхностью генератора ударной волны:
  • Генератор ударной волны выглядит как аксиально симметричная конструкция, она выполнена из слоя взрывчатого вещества, конического алюминиевого лайнера и конической алюминиевой крышки.
Принцип действия

Пьезоэффект, который применяется в пьезогенераторах, заключается в том, что в устройстве имеется специальный диэлектрик, к которому прикладываются механические напряжения. В результате диэлектрик на двух разных концах создает разницу потенциалов. В итоге, создавая давление на подобный пьезоэлемент, можно на выходе получить электрическое напряжение определенной величины.

Читайте также  Автомат световой день

Пьезоэффект также может вызывать и обратное преобразование, то есть обеспечить превращение электрической энергии в механическую, к примеру, для создания звуковых излучателей. По типу применяемого соотношения между вектором поляризации пьезоэлемента и направлением механических колебаний пьезогенераторы можно разделить на классы с поперечным и продольным направлением механического воздействия.

Если рассматривать физику процессов, которые происходят в пьезоэлектрике, подробней, то все выглядит довольно просто. Для этого нужно только понимать принципы генерации энергии пьезоэлектрическими материалами:
  • При механическом воздействии на пьезоэлемент наблюдается смещение атомов в его материале, то есть в несимметричной кристаллической решетке.
  • Данное смещение приводит к появлению электрического поля, которое приводит к индукции зарядов на электродах пьезоэлемента.

В отличие от стандартного конденсатора, обкладки которого способны сохранять заряды весьма долго, индуцированные заряды пьезогенератора сохраняются до момента, пока не перестает действовать механическая нагрузка. Именно в течение данного периода от элемента можно получать энергию. Как только нагрузка снимается, индуцированные заряды исчезают.

Явление пьезоэлектричества открыто братьями Пьером и Джексоном Кюри в 1880 году, с того времени оно широкое распространение в измерительной технике и радиотехнике. Термин «пьезогенераторы» характеризует лишь направление преобразования энергии, а не эффективность превращения. Именно с явлением, связанным с генерацией электричества в случае механического воздействия, заинтересовались инженера и изобретатели в последние годы.

Начали появляться сообщения о возможностях получения электрической энергии при помощи воздействия разной механической энергии:
  • Движение волн и ветра.
  • Воздействие уличного шума.
  • Нагрузки от перемещения машин и людей.
  • Сердцебиение и так далее.

На основе всех этих вариантов стали придумываться различные изобретения. Многие из них уже нашли применение, а некоторые на данный момент находятся в планах, так как технологии не достигли требуемого уровня.

Применения и особенности
На текущий момент известно несколько вариантов практического применения пьезогенераторов в:
  • Пьезозажигалках с целью высокого напряжения на специальном разряднике от движения пальца. Сегодня любой курильщик может носить в кармане собственную «электростанцию».
  • Качестве чувствительного элемента в приемных элементах сонаров, микрофонах, головках звукоснимателя электрофонов, гидрофонах.
  • Контактном пьезоэлектрическом взрывателе, к примеру, к выстрелам гранатомета РПГ-7.
  • Датчиках в виде чувствительного к силе элемента, к примеру, датчиках давления газов и жидкостей, силоизмерительных датчиках и так далее.
Обратный пьезоэлектрический эффект может применяться в:
  • Пьезокерамических излучателях звука, к примеру, музыкальные открытки, всевозможные оповещатели, которые используются в самых разных бытовых устройствах от стандартных наручных часов до техники на кухне.
  • Системах сверхточного позиционирования, к примеру, позиционер перемещения головки винчестера, в сканирующем туннельном микроскопе в системе позиционирования иглы.
  • Излучателях гидролокаторов (сонарах).
  • Ультразвуковых излучателях для ультразвуковой гидроочистки (промышленные ультразвуковые ванны, ультразвуковые стиральные машины).
  • Пьезоэлектрических двигателях.
  • Струйных принтерах для подачи чернил.
  • Адаптивной оптике с целью изгиба отражающей поверхности деформируемого зеркала.
Обратный и прямой эффект пьезогенераторов одновременно используются в:
  • Датчиках на специальных поверхностных акустических волнах.
  • Ультразвуковых линиях задержки специальных электронной аппаратуры.
  • Приборах на эффекте специальных поверхностных акустических волн.
  • Пьезотрансформаторах с целью изменения напряжения высокой частоты.
  • Кварцевых резонаторах, применяемых в качестве эталона частоты.

Большинство из применяемых пьезогенераторов вырабатывают небольшой ток. Отдельные пьезоэлементы могут генерировать высокое напряжение, которое пробивает разрядный промежуток, затем ток поступает на выпрямитель, после чего в накопительное устройство, к примеру, ионистор.

Пьезогенераторы — новые источники электроэнергии. Фантазии или реальность?

Тонкая пьезоэлектрическая пленка на оконном стекле, поглощающая шум улицы и преобразующая его в энергию для зарядки телефона. Пешеходы на тротуарах, эскалаторах метро, которые заряжают через пьезо преобразователи аккумуляторы автономного освещения. Плотные потоки автомобилей на оживленных трассах, вырабатывающие мегаватты электроэнергии, которой хватает для целых городов и поселков.

Фантастика? К сожалению, пока да, и таковой может остаться. Есть большая вероятность, что скоро закончится ажиотаж вокруг сенсационных сообщений о чудесных перспективах генераторов энергии на пьезоэлементах. А мы будем опять мечтать о безопасной, возобновляемой и, что греха таить, дешевой электрической энергии, полученной с привлечением других явлений. Ведь список физических эффектов замечательно велик.

Явление пьезоэлектричества было открыто братьями Джексоном и Пьером Кюри в 1880 году и с тех пор получило широкое распространение в радиотехнике и измерительной технике. Заключается оно в том, что усилие, приложенное к образцу пьезоэлектрического материала, приводит к появлению на электродах разности потенциалов. Эффект обратим, т.е. наблюдается и обратное явление: прикладывая к электродам напряжение, образец деформируется.

В зависимости от направления преобразования энергии пьезоэлектрики делятся на генераторы (прямое преобразование) и двигатели (обратное). Термин “пьезогенераторы” характеризует не эффективность превращения, а только направление преобразования энергии.

Именно первым явлением, связанным с генерацией электричества при механическом воздействии, заинтересовались в последние годы инженера и изобретатели. Как из рога изобилия, посыпались сообщения о возможностях получения электрической энергии, утилизируя уличный шум, движение волн и ветра, нагрузки от перемещения людей и машин.

Сегодня известно несколько примеров практического использования подобной энергии. На станции метро «Марунучи» в Токио установлены пьезогенераторы в зале для приобретения билетов. Скопления пассажиров хватает для управления турникетами.

В Лондоне, в элитной дискотеке, пьезогенераторы питают несколько ламп, которые стимулируют танцующих и . продажу прохладительных напитков. Стали обыденными пьезоэлектрические зажигалки. Сейчас любой курильщик носит в кармане собственную «электростанцию».

Сравнительно недавно взорвало мировую общественность сообщение об испытаниях систем получения энергии от движущегося автотранспорта. Израильские ученые из небольшой фирмы Innowattech подсчитали, что 1 километр автобана может генерировать электрическую мощность до 5 МВт. Они не только выполнили расчеты, но и вскрыли несколько десятков метров полотна автострады и смонтировали под ним свои пьезогенераторы. Казалось, что наконец наступил прорыв в области альтернативной энергетики. Но в этом возникают серьезные сомнения.

Рассмотрим подробней физику процессов, происходящих в пьезоэлектрике. Для знакомства с принципами генерации энергии пьезоэлектрическими материалами достаточно понимания нескольких базовых механизмов. При механическом воздействии на пьезоэлемент происходит смещение атомов в несимметричной кристаллической решетке материала. Это смещение приводит к возникновению электрического поля, которое индуцирует (наводит) заряды на электродах пьезоэлемента.

В отличие от обычного конденсатора, обкладки которого могут сохранять заряды достаточно долго, индуцированные заряды пьезоэлемента сохраняются только до тех пор, пока действует механическая нагрузка. Именно в это время можно получить от элемента энергию. После снятия нагрузки индуцированные заряды исчезают. По сути, пьезоэлемент является источником тока ничтожной величины, с очень высоким внутренним сопротивлением.

Поскольку специалисты компании Innowattech так и не сочли нужным поделиться с широкой общественностью результатами своего эксперимента, попробуем сами сделать грубые численные прикидки эффективности работы пьезоэлектриков в качестве источника энергии. В качестве объекта для расчетов возьмем обычную бытовую пьезозажигалку – единственное изделие, получившее сейчас широкое распространение.

Из обилия технических характеристик пьезоматериалов нам понадобятся всего несколько. Это значение пьезоэлектрического модуля, которое для распространенных (а иных пока промышленность не выпускает) пьезоэлектриков составляет от 200 до 500 пикокулон (10 в минус 12 степени) на ньютон, и характеризует эффективность генерации заряда под воздействием силы.

Эта характеристика не зависит от размеров пьезоэлемента, а полностью определяется свойствами материала. Поэтому пытаться делать более мощные преобразователи за счет увеличения геометрических размеров бессмысленно. Емкость обкладок пьезоэлемента зажигалок известна и составляет около 40 пикофарад.

Рычажная система передачи усилия на пьезоэлемент создает нагрузку приблизительно 1000 ньютонов. Зазор, в котором проскакивает искра — 5 мм. Диэлектрическую прочность воздуха принимаем 1 кВ/мм. При таких исходных данных зажигалка генерирует искры мощностью от 0,9 до 2,2 мегаватта!

Но не стоит пугаться. Длительность разряда составляет всего 0,08 наносекунды, отсюда такие огромные значения мощности. Подсчет же суммарной энергии, генерируемой зажигалкой, дает значение всего 600 микроджоулей. При этом КПД зажигалки, с учетом того, что механическое усилие через рычажную систему полностью передается пьезоэлектрику, составляет всего . 0,12%.

Предлагаемые в разных проектах схемы извлечения энергии близки к режимам работы зажигалок. Отдельные пьезоэлементы генерируют высокое напряжение, которое пробивает разрядный промежуток, и ток поступает на выпрямитель, а затем в накопительное устройство, например, ионистор. Дальнейшее преобразование энергии стандартно и интереса не представляет.

От зажигалок перейдем к задаче получения энергии в промышленных масштабах. Пусть будут использованы наиболее эффективные элементы, генерирующие 10 милливатт на элемент. Собранные в кластеры (группы) по 100-200 элементов, они помещаются под полотно дороги. Тогда для получения заявленной величины мощности порядка 1 МВт на километр дороги потребуется всего. 100 миллионов отдельных элементов с индивидуальными схемами съема энергии. Остается еще задача ее суммирования, преобразования и передачи потребителю. При этом токи элементов, учитывая изменяющуюся нагрузку на дорожное полотно, будут лежать в диапазоне нано или даже пикоампер.

Знакомясь с подобными проектами получения энергии от пьезоэффекта, невольно напрашивается аналогия с гидроэлектростанцией, в которой турбины работают от влаги утренней росы, бережно собранной с окрестных полей.

А как же с экспериментом израильской компании? Отчет о результатах «вредительства» на полотне автострады так и не появился. А ведь впереди выполнение контракта на получении энергии с автострады Венеция – Триест, который заключила фирма Innowattech.

По этому поводу есть одна версия: это компания типа «стартап», т.е. с высоким риском инвестиционного капитала. Получив более чем скромные предварительные результаты исследователей, ее основатели решили оправдать затраченные деньги инвесторов и провернули великолепный маркетинговый ход – провели эффектное испытание с участием прессы. И весь мир заговорил о маленькой компании. И в этом шуме потерялся основной вопрос: где же мегаватты дешевой энергии?

Подводя итоги, можно сделать только один вывод: пьезоэлементы никогда не станут альтернативными источниками электроэнергии в промышленных масштабах. Круг их применений ограничится маломощными (микромощными) источниками питания и датчиками. А жаль, такая красивая была идея!