Мощный преобразователь на микросхеме ltc3375

Мощный преобразователь на микросхеме LTC3375

Современные промышленные электронные системы содержат множество компонентов для потребительской электроники — микроконтроллеры, логические матрицы, программируемые пользователем (FPGA), системы на кристалле ASIC и другую электронику, которые используют множество цепей низкого напряжения при широком разнообразии токов нагрузки. Промышленные применения также требуют наличие кнопочного интерфейса, постоянно находящегося под питанием, для часов реального времени (RTC) или памяти, и возможностью использовать входное напряжение от источника питания высокого напряжения. Для других устройств необходимо предусмотреть сторожевой таймер (WDT), кнопку сброса или выключения, программное обеспечение для регулировки уровней напряжения и систему оповещения низкого входного/выходного напряжения и высокой температуры кристалла.

Микросхема LTC3375 является высоко конфигурируемым многоканальным понижающим преобразователем питания, который предлагает функции, необходимые для промышленной электроники, а также обеспечивает гибкость конфигурирования различных выходов с максимальным диапазоном тока от 1A до 4A.

Конфигурирование максимального выходного тока

В микросхеме LTC3375 восемь каналов с выходным током 1A можно сконфигурировать так, чтобы получить различные комбинации импульсных понижающих преобразователей с выходным током 1A, 2A, 3A и 4A. В Таблице 1 показано 15 различных конфигураций выходного тока.

Подсоединение вывода обратной связи заданного канала к его входу VIN конфигурирует данный канал как ведомый к смежному каналу. Коммутирующие выводы двух каналов соединены вместе, чтобы совместно использовать одну индуктивность и выходную емкость. Ведущий/ведомый каналы активируются через вывод активации ведущего и регулируют цепь обратной связи ведущего.

Выходной ток можно увеличить до 3A или 4A, подсоединив дополнительные смежные каналы. Схема на рисунке 1 отображает микросхему LTC3375, сконфигурированную с током на выходе 3A, 1A, два выхода по 2A и всегда включенным LDO. На рисунке также показано, как преобразователь LTC3375 может быть подсоединен для контроля запуска внешнего понижающего контроллера через встроенный в чип кнопочный интерфейс для подачи входного питания на понижающие преобразователи LTC3375.

Внешний VCCLDO и контроль запуска внешнего входного питания

Преобразователь LTC3375 может контролировать внешний LDO стабилизатор, для подачи своего VCC питания, и любую другую низко-токовую электронику, например, RTC. VCC подает питание на внутреннюю схему кнопочного интерфейса, WDT, внутренние регистры и выходы с открытым стоком с подключенными нагрузочными резисторами. Внешний LDO на рисунке 1 создает напряжение питания 3.3В из цепи питания напряжением 24В.

После нажатия кнопки, вывод ON отключается, а вывод RUN переходит в высокое состояние на LTC3891, подавая входное напряжение на понижающие преобразователи LTC3375. Когда LTC3891 достигнет стабилизации, вывод PGOOD отключается, активируя EN1 преобразователя LTC3375 и включает 2A преобразователь. Остальные преобразователи могут быть включены с помощью разрешающих выводов с точным пороговым значением или через программно-контролируемые команды интерфейса I 2 C. Повторное нажатие кнопки через 10 секунд или более, или переход в низкое состояние вывода /KILL в течение 50мс или более, вызывает переход вывода ON в низкое состояние, деактивируя при этом все понижающие преобразователи.

Уникальные характеристики и контроль питания

Интерфейс I 2 C обеспечивает расширенный контроль работы преобразователя. Каждый преобразователь может быть установлен в высокоэффективный форсированный режим работы для экономии энергии при низких нагрузках или в форсированный непрерывный режим работы для низкого выходного пульсирующего напряжения. Каждый преобразователь также имеет фазу цикла переключения, сдвинутую на 0°, 90°, 180° или 270° с учетом опорной частоты, чтобы обеспечить низкий входной пульсирующий ток, когда к нескольким выходам подключена большая нагрузка. Еще одной характеристикой является возможность изменения каждого выходного напряжения в большую или меньшую сторону, регулируя обратное опорное напряжение от значения по умолчанию 725мВ с шагом 25мВ (в диапазоне от 425мВ до 800мВ). Интерфейс I 2 C также используется для вывода состояния ошибки для каждого преобразователя.

LTC3375 имеет вывод сброса (/RST) и вывод запроса прерывания (/IRQ), которые можно запрограммировать для вывода состояния, когда напряжение на выходе регулятора упало ниже 92.5% от заданного значения. Вывод /IRQ также можно запрограммировать для вывода состояния, когда входное напряжение упадет ниже блокировки питания при пониженном напряжении (UVLO) или когда температура кристалла достигла установленного температурного порога. Состояние PGOOD и UVLO, предупреждение о температуре кристалла и измеренная температура кристалла могут отслеживаться микропроцессором через интерфейс I 2 C.

Однако микропроцессоры подвержены программным сбоям, что может привести к зависанию самой программы. LTC3375 включает вход сторожевого таймера (WDI) для контроля вывода SCL или другого вывода, чтобы определить, работает ли программное обеспечение. Если программа остановила свое выполнение, тогда выход сторожевого таймера (WDO) может использоваться для сброса микропроцессора или снижения питания высоковольтного понижающего преобразователя и понижающих преобразователей LTC3375. Подсоединение вывода WDO к выводу /RST микропроцессора вызывает сброс микропроцессора, если WDT не сработал. Подсоединение вывода WDO к выводу /KILL вызывает переход вывода ON в низкое состояние, деактивируя высоковольтный понижающий преобразователь, а также все преобразователи LTC3375. Вывод /KILL переходит в низкое состояние напряжения с помощью кнопочного «скрепочного» переключателя для выключения, только в крайнем случае, всех преобразователей.

Заключение

Преобразователь LTC3375 может быть сконфигурирован на выходной ток нагрузки от 1A до 4A на каждый канал, в сумме до 8A, и включает множество функций, которые востребованы современной промышленной электроникой.

Linear Technology выпустила восьмиканальные конфигурируемые понижающие DC/DC преобразователи для многоканальных систем питания

Linear Technology LTC3375

Linear Technology анонсировала выпуск новой высокоинтегрированной микросхемы управления питанием для низковольтных приложений общего назначения. Управляемый по шине I 2 C 8-канальный понижающий DC/DC преобразователь LTC3375, выпускаемый в компактном корпусе QFN, оснащен гибкой схемой управления последовательностью включения и монитором неисправностей. Помимо восьми внутренне компенсированных высокоэффективных синхронных преобразователей с выходным током 1 А микросхема содержит высоковольтный 25-миллиамперный постоянно активный контроллер LDO стабилизатора. Каждый понижающий преобразователь имеет собственный независимый вход с диапазоном допустимых напряжений VIN от 2.25 В до 5.5 В и выход с напряжением от 0.425 В до VIN. Для гибкого и надежного управления последовательностью запуска и контроля состояния системы предусмотрен вход кнопки ON/OFF/RESET, функция сброса по включению питания и сторожевой таймер. Еще одной особенностью LTC3375 является генератор, частота которого в диапазоне от 1 МГц до 3 МГц программируется или задается извне, а фаза колебаний управляется с дискретом 90°. По умолчанию рабочая частота генератора установлена равной 2 МГц. При отключенных DC/DC преобразователях микросхема потребляет всего 11 мкА, продлевая время работы аккумулятора. Прибор идеально подходит для широкого класса приложений многоканальных источников питания для промышленных, автомобильных и телекоммуникационных систем.

DC/DC преобразователи микросхемы LTC3375 могут использоваться независимо, или соединяться параллельно для увеличения выходного тока, и, используя одну общую для объединенных каналов индуктивность, отдавать в нагрузку ток вплоть до 4 А на один выход. Допускается параллельное соединение до четырех смежных преобразователей, в результате чего можно получить пятнадцать различных комбинаций выходов. При этом по цепям управления объединенные преобразователи могут быть включены в конфигурации ведущий-ведомый путем соединения выводов VIN и SW каждого канала и подключения выводов FB ведомых преобразователей к источнику входного напряжения. Все DC/DC преобразователи имеют цепи внутренней коррекции, поэтому для их работы требуются только внешние резисторы обратной связи, устанавливающие уровни выходного напряжения. Кроме того, возможен альтернативный способ управления выходным напряжением через шину I 2 C.

Схема включения преобразователя в 8-канальном режиме

Импульсные преобразователи могут работать в двух режимах: в режиме генерации пачек (Burst Mode) для повышения КПД при облегченных нагрузках (этот режим устанавливается по умолчанию при включении), и в режиме принудительной непрерывной ШИМ (forced continuous PWM) для снижения уровня шумов при малых нагрузках. Интерфейс I 2 C может быть использован для выбора режимов работы, управления фазой колебаний генератора, переключения опорного напряжения цепи обратной связи и снижения скорости нарастания напряжения в точке подключения индуктивности. Преобразователи содержат ограничители прямого и обратного тока, схему мягкого старта для смягчения бросков пускового тока, защиту от короткого замыкания и схему контроля скорости нарастания для снижения уровня излучаемых ЭМП. Другие функции включают монитор температуры (доступно чтение по I 2 C), отображающий внутреннюю температуру кристалла микросхемы, а также функцию предупреждения о перегреве, которая сообщает, что температура кристалла приближается к пороговому значению (также программируемому по I 2 C).

Читайте также  Сабвуфер thunder v-150
Зависимость КПД от тока нагрузки

Микросхемы LTC3375 поставляются со склада в низкопрофильном 48-выводном корпусе QFN (0.75мм) размером 7 × 7 мм со сниженным тепловым сопротивлением. Микросхемы групп E и I имеют диапазон рабочих температур кристалла от –40 °C до +125 °C, а группа H рассчитана на расширенный диапазон от –40 °C до +150 °C. В партиях 1000 шт. каждая микросхема группы E стоит $5.45.

Основные особенности LTC3375

  • 8 независимых понижающих DC/DC преобразователей c возможностью параллельного объединения каналов для увеличения выходного тока до 4 А при работе на общую индуктивность
  • Независимый вход питания VIN для каждого DC/DC преобразователя (от 2.25 В до 5.5 В)
  • Все DC/DC преобразователи имеют диапазон выходного напряжения от 0.425 В до VIN
  • Точные пороги переключения входов разрешения для автономного управления последовательностью включения (возможно управление по шине I 2 C)
  • Программируемый генератор частоты от 1 МГц до 3 МГц с возможностью внешней синхронизации (частота по умолчанию 2 МГц)
  • Управление по шине I 2 C фазой синхронизации каждого канала с шагом 90°
  • Программируемая временная диаграмма реакции на сброс по включению питания, срабатывание сторожевого таймера и нажатие кнопки
  • Выход монитора температуры кристалла
  • 48-выводной корпус QFN с габаритами 7 × 7 × 0.75 мм

Перевод: Антон Юрьев по заказу РадиоЛоцман

Повышающий/понижающий преобразователь напряжения своими руками

В этой самоделке AKA KASYAN сделает универсальный понижающий и повышающий преобразователь напряжения.

Недавно автор собрал литиевый аккумулятор. А сегодня раскроет секрет, для какой цели он его изготовил.

Вот новый преобразователь напряжения, режим его работы — однотактный.

Преобразователь имеет небольшие габариты и достаточно большую мощность.

Обычные преобразователи делают одно из двух. Только повышают, или только понижают подаваемое на вход напряжение.
Вариант, изготовленный автором может как повысить,

так и понизить входное напряжение до требуемого значения.

У автора имеются различные регулируемые источники питания, с помощью которых он тестирует собранные самоделки.

Заряжает аккумуляторы, да и использует их для различных других задач.

Не так давно появилась идея создания портативного источника питания.
Постановка задачи была такой: устройство должно иметь возможность заряжать всевозможные портативные гаджеты.

От обычных смартфонов и планшетов до ноутбуков и видеокамер, а также справился даже с питанием любимого паяльника автора TS-100.

Естественно можно просто воспользоваться универсальными зарядными устройствами с адаптерами питания.
Но все они питаются от 220В


В случае автора требуется нужен был именно портативный источник различных выходных напряжений.

А таковых в продаже автор не нашел.

Питающие напряжения для указанных гаджетов имеют очень широкий диапазон.
Например смартфонам нужно всего 5 В, ноутбукам 18, некоторым даже 24 В.
Аккумулятор, изготовленный автором, рассчитан на выходное напряжение в 14,8 В.
Следовательно, необходим преобразователь, способный как повышать, так и понижать начальное напряжение.

Обратите внимание, некоторые номиналы указанных на схеме компонентов, отличаются от установленных на плате.


На схеме указаны эталонные номиналы, а плату автор делал для решения своих задач.
Во-первых, интересовала компактность.

Во-вторых, авторский преобразователь питания позволяет спокойно создать выходной ток в 3 Ампера.

AKA KASYAN большего и не надо.

Связано это с тем, что емкость примененных накопительных конденсаторов небольшая, но схема способна выдать выходной ток до 5 А.

Поэтому схема является универсальной. Параметры зависят от емкости конденсаторов, параметров дросселя, диодного выпрямителя и характеристик полевого ключа.



Замолвим пару слов о схеме. Она представляет собой однотактный преобразователь на базе шим-контроллера UC3843.

Поскольку напряжение от аккумулятора немного больше штатного питания микросхемы, в схему был добавлен 12В стабилизатор 7812 для питания шим-контроллера.

В приведенной схеме данный стабилизатор указан не был.
Сборка. Про перемычки, установленные с монтажной стороны платы.

Этих перемычек четыре, и две из них являются силовыми. Их диаметр должен быть не менее миллиметра!
Трансформатор, вернее дроссель, намотан на желтом кольце из порошкового железа.


Такие колечки можно найти в выходных фильтрах компьютерных блоков питания.
Размеры примененного сердечника.
Внешний диаметр 23,29мм.

Внутренний диаметр 13,59мм.

Скорее всего, толщина намотки изоляции 0,3мм.
Дроссель состоит из двух равноценных обмоток.

Обе обмотки наматываются медной проволокой диаметром 1,2 мм.
Автор рекомендует применять проволоку диаметром немного больше, 1,5-2,0 мм.

Витков в обмотке десять, оба провода наматываются разом, в одном направлении.

Перед установкой дросселя перемычки заклеиваем капроновым скотчем.

Работоспособность схемы заключается в правильной установке дросселя.


Необходимо правильно припаять выводы обмоток.

Просто установите дроссель, как это показано на фото.




Силовой N-канальный полевой транзистор, подойдет практически любой низковольтный.

Ток транзистора не ниже 30А.

Автор использовал транзистор IRFZ44N.

Выходной выпрямитель — это сдвоенный диод YG805C в корпусе TO220.


Важно использовать диоды Шоттки, так как они дают минимальную просадку напряжения (0,3В против 0,7) на переходе, это влияет на потери и нагрев. Их также легко найти в пресловутых компьютерных блоках питания.

В блоках они стоят в выходном выпрямителе.

В одном корпусе — два диода, которые в схеме у автора запараллелены для увеличения проходящего тока.
Преобразователь стабилизирован, имеется обратная связь.

Выходное напряжение задает резистор R3

Его можно заменить на выносной переменный резистор для удобства работы.

Преобразователь также снабжен защитой от короткого замыкания. В качестве датчика тока применен резистор R10.

Это низкоомный шунт, и чем выше его сопротивление тем меньше ток срабатывания защиты. Установлен SMD вариант, на стороне дорожек.

Если защита от КЗ не нужна, то этот узел просто исключаем.

Еще защита. На входе схемы стоит предохранитель на 10А.

Кстати, в плате контроля аккумулятора уже установлена защита от КЗ.

Конденсаторы, применяемые в схеме крайне желательно брать с низким внутренним сопротивлением.


Стабилизатор, полевой транзистор и диодный выпрямитель крепятся к алюминиевому радиатору в виде согнутой пластины.


Обязательно изолируем подложки транзистора и стабилизатора от радиатора при помощи пластиковых втулок и теплопроводящих изолирующих прокладок. Не забываем и про термопасту. А установленный в схеме диод уже имеет изолированный корпус.


Благодаря ШИМ-управлению, КПД у преобразователя весьма высокий кпд.
Например, ток холостого хода, в зависимости от питающего напряжения, находится в пределах 20мА — 40мА.


Приступим к испытаниям.
Для начала проверим диапазоны выходных напряжений.
Подадим на вход 12 В. Выходное напряжение достигает двадцати пяти. Выше поднимать нельзя, выходные конденсаторы на 25 В.

Минимальное выходное напряжение составляет 4,85 В. Следовательно, можно заряжать все USB гаджеты.

Стабилизация работает отлично! Увеличив входное напряжение до 22,2 В, выходное находится точно в установленных пределах.



При компактных размерах стабилизатор дает выходной ток 2,5 — 3 А практически без просадки выходного напряжения.

Важно усилить припоем широкие силовые дорожки печатной платы. Ибо там протекают большие токи.



Большое спасибо AKA KASYAN за проделанный труд!

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Мощный преобразователь на микросхеме ltc3375

Мощный преобразователь напряжения для автомобильного усилителя.

Автор: qwert390
Опубликовано 16.09.2010

Преобразователь напряжения (ПН) является неотъемлемой частью мощного автомобильного усилителя.
Схем в интернете очень много. Встречаются преобразователи не стабилизированные и со стабилизацией выходного напряжения. Здесь речь пойдёт про ПНы со стабилизацией.
Основа схемы- ставшая уже «народной» микросхема TL494. Если вникнуть в работу самой TL494, то не составит особого труда понять и принцип самого ПНа (любого, собранного на этой МС).
Поэтому не лишне почитать:

Читайте также  Телефония и фрикинг

Общее описание TL494
Специально созданные для построение ИВП, микросхемы TL494 обеспечивают разработчику расширенные возможности при конструировании схем управления ИВП. Приборы TL494 включают в себя усилитель ошибки, встроенный регулируемый генератор, компаратор регулировки мертвого времени, триггер управления, прецизионный ИОН на 5В и схему управления выходным каскадом. Усилитель ошибки выдает синфазное напряжение в диапазоне от -0,3+(Vcc-2) В. Компаратор регулировки мертвого времени имеет постоянное смещение, которое ограничивает минимальную длительность мертвого времени величиной порядка 5%.
Допускается синхронизация вcтроенного генератора, при помощи подключения вывода R к выходу опорного напряжения и подачи входного пилообразного напряжения на вывод С, что используется при синхронной работе нескольких схем ИВП.
Независимые выходные формирователи на транзисторах обеспечивают возможность работы выходного каскада по схеме с общим эмиттером либо по схеме эмиттерного повторителя. Выходной каскад микросхем TL494 работает в однотактном или двухтактном режиме с возможностью выбора режима с помощью специального входа. Встроенная схема контролирует каждый выход и запрещает выдачу сдвоенного импульса в двухтактном режиме.
Приборы, имеющие суффикс L, гарантируют нормальную работу в диапазоне температур
—5+85С, с суффиксом С гарантируют нормальную работу в диапазоне температур 0+70С.

Функциональное описание:
Микросхема TL494 представляет из себя ШИМ-контролер импульсного источника питания, работающий на фиксированной частоте, и включает в себя все необходимые для этого блоки. Встроенный генератор пилообразного напряжения требует для установке частоты только двух внешних компонентов R и С.
Частота генератора определяется по формуле:
F=1/(RC), где R- резистор на выв. 6 МС; С- конденсатор на выв. 5 МС.
Модуляция ширины выходных импульсов достигается сравнением положительного пилообразного напряжения, получаемого на конденсаторе С, с двумя управляющими сигналами (см временную диаграмму). Логический элементы ИЛИ-НЕ возбуждает выходные транзисторы Q1 и Q2 только тогда, когда линия тактирования встроенного триггера находится в НИЗКОМ логическом состоянии. Это происходит только в течение того времени, когда амплитуда пилообразного напряжения выше амплитуды управляющих сигналов. Следовательно повышение амплитуды управляющих сигналов вызывает соответствующее линейное уменьшение ширины выходных импульсов. Под управляющими сигналами понимаются напряжения производимые схемой регулировки мёртвого времени (вывод 4), усилители ошибки (выводы 1, 2, 15, 16) и цепью обратной связи (вывод 3).
Вход компаратора регулировки мертвого времени имеет смещение 120мВ, что ограничивает минимальное мертвое время на выходе первыми 4% длительности цикла пилообразно напряжения. Врезультате максимальная длительность рабочего цикла составляет 96% в том случае, если вывод 13 заземлен, и 48% в том случае, если на вывод 13 подано опорное напряжение.
Увеличить длительность мертвого времени на выходе, можно подавая на вход регулировки мертвого времени (вывод 4) постоянное напряжение в диапазоне 0..3,3В. ШИМ-компаратор регулирует ширину выходных импульсов от максимального значения, определяемого входом регулировки мертвого времени, до нуля, когда напряжение обратной связи изменяется от 0,5 до 3,5В. Оба усилителя ошибки имеют входной диапазон синфазного сигнала от -0,3 до (Vcc-2,0)В и могут использоваться для считывания значений напряжения или тока с выхода источника питания. Выходы усилителей ошибки имеют активный ВЫСОКИЙ уровень напряжения и обьеденины функцией ИЛИ не неинвертирующем входе ШИМ-компаратора. В такой конфигурации усилитель, требующий минимального времени для включения выхода, является доминирующим в петле управления. Во время разряда конденсатора С на выходе компаратора регулировки мертвого времени генерируется положительный импульс, который тактирует триггер и блокирует выходные транзисторы Q1 и Q2. Если на вход выбора режима работы подается опорное напряжение (вывод 13), триггер непосредственно управляет двумя выходными транзисторами в противофазе (двухтактный режим), а выходная частота равна половине частоты генератора. Выходной формирователь может также работать в однотактном режиме, когда оба транзистора открываются и закрываются одновременно, и когда требуется максимальный рабочий цикл не превышающий 50%. Это желательно, когда трансформатор имеет звенящую обмотку с ограничительным диодом, используемым для подавления переходных процессов. Если в однотактном режиме требуются большие токи, выходные транзисторы могут работать параллельно. Для этого требуется замкнуть на землю вход выбора режима работы ОТС, что блокирует выходной сигнал от триггера. Выходная частота в этом случае будет равна частоте генератора.
Не много заострим внимание на стабилизацию ПНа:
Транзисторный оптрон U1 обеспечивает гальваническую развязку в цепи отрицательной обратной связи по напряжению. Он относится к цепи стабилизации выходного напряжения. Так- же за стабилизацию отвечают стабилизаторы параллельного типа DD1 и DD2 (TL431 или наш аналог КР142ЕН19А).
Падение напряжения на резисторе R4 приблизительно равно 2,5 вольт. Сопротивление этого резистора рассчитывают, задавшись током через резистивный делитель R3R4. Сопротивление резистора R3 вычисляют по формуле: R3=(Uвых-2,5)/I» где Uвых- выходное напряжение ПНа; I»- ток через резистивный делитель R3R4.
Нагрузкой DD2 являются параллельно соединённые балластный резистор R5 и излучающий диод (выв. 1,2 оптрона U1) с токоограничивающим резистором R6. Балластный резистор создаёт минимальную нагрузку, необходимую для нормального функционирования микросхемы.
Важно. Нужно учитывать то, что рабочее напряжение TL431 не должно превышать 36 вольт (см. даташит на TL431). Если планируется изготавливать ПН с Uвых.>35 вольт, то схему стабилизации нужно будет не много изменить с соответствующим подбором некоторых деталей, о чём будет сказано ниже.
Микросхема DD1 стабилизирует напряжение 8 вольт для питания делителя, состоящего из фототранзисторного оптрона U1.1 и резистора R7. Напряжение от средней точки делителя поступает на неинвертирующий вход первого усилителя сигнала ошибки ШИ- контроллера TL494.
Так- же от резистора R7 зависит выходное напряжение ПНа- чем меньше сопротивление, тем меньше выходное напряжение.
Налаживание.
Если монтаж выполнен без ошибок и использованы исправные детали, то налаживание сводится к установке восьми вольт на выводе 3 DD1 и требуемого выходного напряжения.
1. Прежде всего нужно выставить 8 вольт на выводе 3 DD1 с помощью подбора резистора R1.
2. Установить 35 вольт на выходе ПНа. Это делается резистором R3. Но как я писал выше, на выходное напряжение так- же влияет номинал резистора R7.
Для тех, кому не достаточно подробно описаны этапы настройки, читайте далее.
Вместо оптрона U1 впаяйте обычный светодиод (анодом к выводу 1, катодом — к выводу
2). В разрыв цепи R6 — вывод 1 оптрона включите миллиамперметр на 15+30 мА (это может быть любой тестер). В разрыв резистора R3 поставить переменный резистор на 2,2 кОм. К выходу +35 вольт Пна подключите в соответствующей полярности источник питания с выходным напряжением +35 вольт, при этом нагрузку можно не подключать. Резистор R6 предварительно подбирают так, чтобы при минимальном номинале добавочного переменного резистора (сопротивление =0) контролируемый ток не превышал 10+ 12 мА. Если ток существенно выше (при этом светодиод может выйти из строя, но он всё же дешевле оптрона) и подбором добавочного переменного резистора не регулируется, заменяют микросхему DD2.
Затем вместо светодиода установите оптрон и снова проверьте возможность регулирования входного тока. Если ток отсутствует — замените оптрон.
Транзисторы КТ639 и КТ961 можно заменить на BD139/140 и им подобны, согласно проводимость.
IRFZ44N можно заменить на IRF3205, при такой замене будет достаточно одной пары, при использовании 2ух пар, мощность ПНа можно увеличить до 600-800Вт, но в таком случае необходимо и желательно устанавливать дополнительный трансформатор.

По этой схеме был изготовлен ПН, который размещён на одной плате с 2-х канальным усилителем «ВП». Фото 1.

Если требуется ПН с выходным напряжением больше, чем +-35 вольт, то узел стабилизации нужно будет изменить, как на рисунке 2

Читайте также  Ультразвуковой контроль уровня воды на микроконтроллере 8051

Приведу ещё одну схему (рисунок 3), в которой узел управления выполнен на транзисторах (без реле).
Так же привожу схему (рисунок 4), которая проще первой, но имеет замечательные параметры.

Сообщества › Электронные Поделки › Блог › Повышающий преобразователь напряжения на UC3845 против NE555. Выходная мощность и КПД.

Привет всем, пару недель назад в этом сообществе написал ссылка про повышающий преобразователь на основе таймера 555. В комментах умные люди подсказали, что преобразователи собранные по таким схемам гораздо лучше работают на микросхемах серии uc384x. И скажу вам заранее оказались правы. Я собрал преобразователь на UC3845, собирал по вот этой схеме.

Так выглядит конечная схема по которой я собрал плату, номиналы и компоненты указаны также те, что и стоят на плате.
Если присмотреться и сравнить данную схему с прошлой (на ne555), то они почти не отличаются. Отличие лишь в в названии самих микросхем.

Сделал я это для того, что бы сравнить данные микросхемы в как можно более похожих условиях.
Плату в этот раз развел поменьше размером.

Силовой транзистор, как и в прошлый раз применил irfz44.

Дроссель намотал на кольце из порошкового железа диаметр кольца 24мм, мотал 2-мя жилами провода диаметром 1мм, влезло 24 витка.

Диод взял сдвоенный диод Шоттки на 100 вольт 40 ампер.

Точную частоту работы микросхемы я к сожалению не знаю, так осциллограф для меня только еще моя маленькая мечта, но судя по графикам из даташита с такими номиналами, как у меня частота примерно 75…80kHz.

В плату на 555 таймере тоже внес небольшие изменения, самое основное это намотал новый дроссель и заменил транзистор и стабилитрон в системе стабилизации, теперь напряжение холостого хода в пределах нормы (19.2 вольта для ноутбука).

Ну собственно перейдем к замерам, чтобы посчитать КПД преобразователей я нагружал их по очереди разным сопротивлением. Так у меня получилось по три замера 10Вт на выходе, 45Вт и 80Вт мощность на выходе преобразователей.
Для расчета входной мощности использовал вольт-амперметр, для выходной два мультиметра один измерял ток второй напряжение.
КПД считал по формуле P2P1x100, где P2 это мощность на выходе, а P1 это мощность на входе, а 100 это 100%.

Все замеры записал в таблицу, вот что получилось

И вот глядя в эту таблицу можно увидеть, что стабилизация выходного напряжения на микросхеме uc3845 работает прекрасно во всем диапазоне нагрузок, видим что при 10Вт на выходе напряжение 18,94в при 85Вт 18,8в т.е просадка всего 0,1в и это прекрасно.
А что же у нас по ne555, а тут уже не все так радужно, как можно видеть до 40…45Вт данный преобразователь вполне справляется и напряжение просядает вполне допустимо, а вот при более высоких нагрузках уже идет завал по выходной мощности. В часности при 80Вт на выходе напряжение просядает до 17,8в. Кстати все замеры более детально можно посмотреть на видео, которое я оставлю в низу.
Так почему же все таки казалось бы одинаковые по схемотехнике преобразователи имеют такие разные показатели?
Да все по тому, что микросхема uc3845 какой ни какой, а все таки ШИМ-контроллер и она умеет менять ширину импульсов на своем выходе, а ne555 это просто генератор импульсов и ему это умение не дано.
Микросхема uc3845 имеет полноценную систему стабилизации выходного напряжения, так называемую обратную связь, и благодаря этому чем больше просядает напряжение на выходе схемы тем дольше микросхема оставляет транзистор в открытом состоянии, что бы в магнитном поле дросселя запасти как можно больше энергии. а затем передать ее в выходной конденсатор и затем нагрузку. Именно поэтому мы имеем больший входной ток (посравнению с ne555), но и соответственно большую мощность на выходе.
Кстати последний замер и тот и другой преобразователи нагружались одинаковым сопротивлением.
Да чуть не забыл КПД.

Как можно видеть КПД у преобразователей практически одинаковый.
Если запитывать ноутбук мощностью до 50Вт, то разницы на какой микросхеме построен ваш преобразователь вы не заметите, а вот если мощность нагрузки выше 50Вт, то тут уже разница очевидна.
Вообщем для себя я решил, что UC3845 конечно же лучше подходит для этого дела да и по стоимости эти микросхемы не сильно отличаются.
Ну что друзья всем пока спасибо за внимание, посмотрите видосик, всех благ вам.

LTC3586: Charger + DCDC

Возникла у нас как-то задача использовать в одном из проектов новый контроллер заряда литий-ионных аккумуляторов взамен снятого с производства. Да не просто зарядник, а еще и с кучей источников питания с разными напряжениями. А ведь любому электронщику известно, что новый чип — это новые грабли, новые шишки, новые ерраты. И чтобы не было мучительно больно — сначала решили сделать тестовую платку. ну а раз все равно тестить, то почему бы и не сделать этот проект открытым, заложив туда максимальную гибкость? И вот что из этого получилось:

Это присланные китайцами образцы. Стандартная заготовка 5х5см вмещает две платы. Аккуратно разрезав их по линии, получаем две заготовки, готовые к сборке:

Все комплектующие были заказаны заранее, платы и детали пришли к нам буквально с разрывом в несколько дней, поэтому спустя пару часов у нас уже была вот такая красавица:

Некоторое время было потрачено на вылавливание багов и перечитывание PDFов. Обычная магия — второе прочтение пдфки позволяет найти фразы, которых явно не было при первом прочтении, иначе я не сделал бы тех тупейших ошибок, которые таки оказались в первой версии.

К счастью, ничего резать не пришлось, буквально пара перемычек и навесных компонентов исправили ситуацию. И вот уже плата весело моргает синеньким, в цвет платы, светодиодиком:

В процессе отладки был спаян близнец:

И теперь я с чистой совестью передаю эти платы программистам, которые будут писать драйвер для GasGauge.

Ну а теперь, когда с лирикой закончено, расскажу немного про внутренности.

В качестве главного компонента использован PMIC от Linear LTC3586 в паре с Gas Gauge LTC2942. Итого мы имеем на одной плате зарядку аккумулятора, четыре (. ) разных источника питания, как понижающих, так и повыщающих, и измеритель заряда, оставщегося в аккумуляторе, рапортующего микропроцессору по I2C. Все конфигурируемые пины имеют места для запайки перемычек либо для управления снаружи платы, как кому удобнее. Все это втиснуто на крохотную платку, имеющую USB-разъем и ножки для установки на Breadboard или напрямую в ваш дизайн:

Компоненты не то чтобы очень легко монтируемые, но ничего сверхестественного, SMD 0603 минимум. В окончательном дизайне будут стоять 0201, там уже без микроскопа не подберешься:

Теперь о приятном. Плат было сделано предостаточно, а нам реально нужно всего несколько штук, поэтому я готов поделиться платами за какие-нибудь абстрактные шоколадки. Сорри, почтой переслать не смогу, ибо я ненавижу нашу почту, а вот вынести плату челувеку, приехавшему к моему офису — без проблем. Киев, м.Шевченко.

Второе приятное: обе микросхемы можно заказать у Линеаров в качестве семплов.

Остальные компоненты покупаются, например, на Диджикее, для этого к проекту был сгенерен BOM c DigikeyID для всех использованных компонентов. Его можно бросить на Диджикей и вам пришлют коробочку со всеми детальками.

Ну и для желающих я могу прислать герберы с рисунком платы. В открытый доступ герберы не выкладываю, ибо китайцы — такие китайцы.