Микроконтроллеры avr для начинающих — 2

Микроконтроллеры AVR для начинающих — 2

Собираем программатор

Итак, после первой части статьи микроконтроллер у нас есть, теперь нам нужен программатор. Программатор советую собирать так называемый STK-200, состоит он всего лишь из одной микросхемы, данный программатор будет лучше чем PonyProg. У пони прога есть единственный плюс (а может быть и минус), он не дает запрограммировать некоторые фьюзы, которые иногда еще называют опасными (например RSTDSBL, DWEN, SPIEN). Если случайно запрограммировать такой опасный фьюз, то вы отключите возможность пользоваться ISP программатором, МК заблокируется, для восстановления МК нужен будет параллельный программатор (высоковольтный).

Пользоваться программаторами типа «5 проводков» не рекомендую, есть облегченный вариант программатора STK-200, который так-же построен на нескольких проводках, собирать его я так же не рекомендую, по той причине, что таким программатором очень легко спалить LPT порт, для сравнения — COM порт спалить в разы труднее. Да и потом, программируя «5ти проводками» можно случайно замкнуть эти провода между собой, спалить МК или опять же порт. Использование буферного повторителя в микросхеме улучшает крутизну фронтов сигнала, а так же бережет LPT порт, от случайных КЗ и перенапряжений.

Ниже представлена схема программатора STK200

Как видите, схема очень простая, построена всего лишь на 1 микросхеме, отечественный аналог этой микросхемы КР1533АП5. В схеме присутствуют 3 светодиода: питание, чтение, запись. Длина соединяющих проводов должна быть как можно короче.

На фото, на плате программатора присутствует кварц и конденсаторы. Кварц нужно ставить на 4 мГц, конденсаторы на 5-15 пФ, два штырька рядом со светодиодами на плате, используются для подачи питания, 5 вольт. Если вы будете собирать переходник, то питание подается с платы переходника, т.к. там стоит «кренка» на 5 вольт, она защитит микроконтроллер и схему от переполюсовки или превышения напряжения.

Собранный программатор выглядит вот так:

К программатору дополнительно нужно будет изготовить плату, на которой будут размещаться панельки под разные МК, в принципе, можно просто запаивать проводки к нужными выводам МК, как вам удобнее.

Для того, чтобы проверить работает ли наш программатор, подключаем его в порт LPT, кликаем правой кнопкой мыши на значке «Мой компьютер», в появившемся списке выбираем «диспетчере устройств», откроется окошко, кликаем обновить конфигурацию оборудования и на программаторе моргнут светодиоды чтения/записи. Кстати, питание берется от внешнего источника, а не с LPT порта, будьте внимательны.

Главным преимуществом параллельного программатора является способность восстанавливать некоторые неправильно установленные биты. После этого интерфейс ISP отключается, и при программировании последовательным программатором в таких случаях выдается сообщение об ошибке.

Выбор программы и прошивка микроконтроллера

Популярными программами для записи программы в МК являются PonyProg и CodeVision AVR. Я пользуюсь Code Vision AVR (далее CVAVR), но рассмотрим мы обе программы. В принципе, можете пользоваться любыми другими программами, только запомните одно очень важное замечание, в разных программах фьюзы могут выставляться по разному, т.е. зеркально.

В первую очередь подключаем программатор в нужный нам порт, только сначала ставим микроконтроллер в панельку. Питание подавайте после того, как программатор будет подключен к порту. Для того, чтобы запрограммировать микроконтроллер нам нужны файлы прошивки, файл с расширением .hex, в некоторых проектах используется еще файл EEPROM .eep. (электрически изменяемая память данных, в нем хранятся различного рода константы).

И не забываем про фьюзы, если они выставляются, обычно в статьях всегда прикрепляют картинку или пишут какие фьюзы выставлять.

Прошивка микроконтроллера с помощью PonyProg

1) Скачиваем и запускаем программу PonyProg, появится окошко (возможно проиграется звук), нажимаем ОК.

2) Далее в списке микроконтроллеров нужно выбрать наш МК, кликаем меню «Устройство», затем выбираем AVRmicro -> ATmega8.

3) Далее, нам нужно выбрать файлы прошивки, для этого кликаем Файл -> Открыть файл программы (FLASH)… Откроется окошко, где нам нужно выбрать наш файл прошивки с расширением .hex.

4) В окошке не забываем в списке выбрать нужное нам расширение файла, иначе файл прошивки не обнаружится.

После того как откроем файл, окошко будет заполнено непонятными цифрами и буквами. Это шестнадцатеричное представление прошивки.

5) Теперь точно также нужно выбрать файл прошивки EEPROM с расширением .eep, если конечно он нужен и прилагается.

Если вы еще не подключили программатор и не подали на него питание, сделайте это. Не забудьте вставить МК в панельку, не перепутайте положение в панельке, обратите внимание на насечку или кружок на корпусе МК, оттуда и начинается отсчет ножек.

6) Кликаем Установки -> Настройка оборудования. Все настройки выставляем как на рисунке ниже, затем нажимаем кнопку «Проверка» – должно выйти окошко «Тест ОК»

Если этого не произошло и вышла окошко с надписью «Тест ОШИБКА»

Кликаем правой кнопкой мыши на значке «Мой компьютер» и выбираем «Диспетчер устройств» или можно зайти в Панель управления -> Система -> Оборудование -> Диспетчер устройств.

Появится такое окошко, в списке находим Порты (COM и LPT ), кликаем правой кнопкой мыши на нем и нажимаем «Обновить конфигурацию оборудования»

Затем закрываем окно, и возвращаемся к PonyProg, повторяем пункт 6, нажимаем «Проверка», должно выйти окошко с надписью «Тест ОК».

7) Нажимаем «ОК», далее переходим в меню Установки -> Калибровка, нажимаем Yes.

Выйдет сообщение об успешно проведенной калибровке, нажимаем ОК

8) Сейчас нам нужно будет выставить фьюзы, если в вашей конструкции фьюзы не выставляются, переходите к следующему пункту. Кликаем Команды -> Security and Configuration Bits… откроется окошко для установки фьюзов

Ставим строго те галочки, которые нам нужно, для моего проекта нужно выставлять следующие фьюзы: BOOTSZ1, BOOTSZ0, BODEN, CKSEL3, CKSEL2. Затем нажимаем ОК. Фьюзы при программировании нужно выставлять только те, что указано, если запрограммируете ненужные вам фьюзы, МК может залочиться, разблокировать его потом будет очень сложно, нужен будет более сложный программатор чем наш, будьте внимательны! Записывать программу в МК можно без выставления фьюзов – заработает затем устройство или нет, это другой вопрос, если даже и заработает, может очень сильно тормозить, или будет работать частично, это ничем не грозит, МК лочится только после неправильно выставленных фьюзов. В некоторых проектах могут использоваться фьюзы, которых может не оказаться в PonyProg, например SPIEN, этот фьюз отключает возможность внутрисхемного программирования, поэтому во многих программах не показывается специально, чтобы вы случайно его не установили.

9) Теперь все готово, и можно прошить микроконтроллер, нажимаем Команды -> Записать все. Если вы еще не передумали, то в окошке которое вышло, нажимаем «Yes», и начнется процесс записи и проверки.

После чего выйдет сообщение об успешном завершении операции

Все, теперь можно вынимать МК из программатора и проверить наше устройство, если вы все сделали все как я расписал, все будет работать, Если по какой то причине устройство не заработало, возможно допущены ошибки при сборке программатора, перепроверьте все и попробуйте еще раз перепрошить МК.

10) Если спустя какое то время вам захочется сменить прошивку, или использовать МК для другого проекта, то снова вставляем его в программатор, подключаем тот к ПК, открываем программу, кликаем Команды -> Стереть, программа сотрет все данные с МК.

Стирать данные совсем не обязательно, при записи новой программы, старая программа сотрется автоматически, и только потом запишется новая.

Что касается программы PonyProg, в разных версиях свой список устройств, если в вашей версии программы вы не можете найти в списке МК скажем ATmega32, скачайте другую версию.

В следующей статье рассмотрим прошивку МК с помощью программы CodeVision AVR а так-же рассмотрим часто возникающие ошибки и проблемы связанные с МК, постараемся их решить

Печатные платы для программатора прилагаются

Программирование микроконтроллеров AVR

Микроконтроллер – микросхема, предназначенная для управления электронными устройствами, или по другому – простенький компьютер (микро-ЭВМ), способный выполнять несложные задачи.


Рано или поздно, любой радиолюбитель (я так думаю), приходит к мысли о применении в своих разработках микроконтроллеров. Микроконтроллер позволяет существенно «облегчить» радиолюбительскую конструкцию, сделать ее проще и намного функциональнее.

Что нужно для того, чтобы начать пользоваться всеми возможностями микроконтроллеров? Я считаю, что не так уж и много. Главное в этом деле — желание. Будет желание, будет и результат.

В этом разделе (и в разделе «Устройство AVR») сайта я постараюсь помочь начинающим «микроконтроллерщикам» сделать первый, он же самый трудный шаг навстречу микроконтроллерам — попробуем разобраться в устройстве и программировании микроконтроллеров AVR семейства ATtiny и ATmega.

В сети существует множество сайтов затрагивающих так или иначе «микроконтроллерную» тематику, много также и различной литературы для начинающих. Поэтому я не собираюсь «переплюнуть» всех и вся и создать очередной шедевр мыслительных мук в виде пособия по микроконтроллерам для начинающих. Я постараюсь систематизировать, собрать в кучу все нужное на мой взгляд, для первого шага в мир микроконтроллеров, и изложить более-менее доступным языком.

В своих статьях я буду опираться на материалы из публикаций популярных авторов микроконтроллерной тематики: Рюмика С.М., Белова А.В., Ревича Ю.В., Евстифеева А.В., Гребнева В.В., Мортона Д., Трамперта В., Фрунзе А.В. и Фрунзе А.А. (и многих других), а также материалы радиолюбительских сайтов. Ну и, может быть, немного своих «умных мыслей».

Программирование микроконтроллеров AVR фирмы Atmel

1. Микроконтроллеры — первый шаг

Эта статья, как и все последующие, — маленький шажок в мир микроконтроллеров. И таких «шажков» у нас будет много, пока не дойдем до того момента, когда сможем сказать: «Микроконтроллер — последний шаг». Но и это, скорее всего, из области фантастики — нельзя объять необъятное, — мир микроконтроллеров постоянно развивается и совершенствуется. Наша задача — сделать первый шаг, логическим итогом которого должна стать первая, самостоятельно разработанная и собранная конструкция на микроконтроллере.

2. Системы счисления: десятичная, двоичная и шестнадцатиричная

Как вы наверняка знаете, существует много разных систем счисления, одними пользуются и сейчас (наша, родная, десятичная система; римская система, известная нам как «римские цифры»), другие остались в глубоком прошлом (системы счисления инков и майя, древнеегипитская система, вавилонская).
Тут, я думаю, вопросов у нас нет, что такое системы счисления нам понятно — отображение чисел символами. А вот какая связь систем счисления с микроконтроллерами.

3. Логические операции, логические выражения, логические элементы

Все современные цифровые технологии основываются на логических операциях, без них никуда не деться. Все цифровые микросхемы в своей работе используют логические схемы (выполняют логические операции, в том числе и микроконтроллер).
Создавая программу, мы прописываем все действия микроконтроллера основываясь на своей логике с применением логических операций, иногда даже и не подозревая об этом, которые применяем к логическим выражениям.

4. Битовые операции
В прошлой статье была рассмотрена тема логических операций и выражений. В этой статье мы рассмотрим логические битовые операции. Битовые операции очень близки к логическим операциям, можно даже сказать, что это одно и тоже. Разница только в том,что логические операции применяются к высказываниям, а битовые операции, с такими же правилами и результатами применяются к битам.

Читайте также  Монтаж проводки в трубах

5. Прямой, обратный и дополнительный коды двоичного числа

Прямой, обратный и дополнительный коды двоичного числа — способы представления двоичных чисел с фиксированной запятой в компьютерной (микроконтроллерной) арифметике, предназначенные для записи отрицательных и неотрицательных чисел

6. USBASP программатор для микроконтроллеров AVR — идеальное решение для начинающих, и не только

Сегодня мы рассмотрим как, без особых затрат и быстро, запрограммировать любой микроконтроллер AVR поддерживающий режим последовательного программирования (интерфейс ISP) через USB-порт компьютера. В качестве программатора мы будем использовать очень простой и популярный программатор USBASP, а в качестве программы — AVRdude_Prog V3.3, которая предназначена для программирования МК AVR.

7. Программа AVRDUDE_PROG: программирование микроконтроллеров AVR ATmega и ATtiny

Популярнейшая программа AVRDUDE_PROG 3.3 предназначена для программирования микроконтроллеров AVR ATmega и ATtiny

8. Основы программирования микроконтроллеров AVR

С этой статьи мы начнем конкретно заниматься одним вопросом — программирование микроконтроллеров. Процесс будет проходить следующим образом — сначала статья по устройству микроконтроллера (к примеру, первая статья будет по портам ввода-вывода), а затем статья по программированию. Сегодняшний наш разговор вводный, и будет посвящен вопросам материального и программного обеспечения процесса изучения основ программирования микроконтроллеров.

9. Русификация программы Atmel Studio

В этой статье мы поговорим о проблемах русификации программы Atmel Studio, как перевести программу на русский (или другой) язык, и как сделать более удобной работу программы с программатором USBASP. После установки программы Atmel Studio весь интерфейс будет на английском языке. Кому-то, кто знаком с английским, или уже привык работать с программами с английским интерфейсом, это вполне устроит. Меня лично, такой подход создателей программы к великому и могучему не устраивает, мне более комфортно работать с русскими меню.

10. Введение в язык программирования С (Си) для микроконтроллеров

В этой статье будут рассмотрены основные сведение о языке С, структура программы на языке С, дано понятие о функциях, операторах и комментариях данного языка программирования.

11. Переменные и константы в языке С (Си) для микроконтроллеров AVR

В этой статье будут рассмотрены типы переменных в языке С (Си) для микроконтроллеров AVR, объявление переменных, способы задания констант, будет дан обзор арифметических операций языка С, присваивания, инкремента и декремента.

12. Управление портами микроконтроллеров AVR на языке С (Си)

В этой статье будет рассмотрено управление портами микроконтроллеров AVR на языке программирования С (Си): установка выводов порта на вход или выход, считывание значений на входах портов, программа для управления миганием светодиода.

13. Циклы в языке С (Си) для микроконтроллеров AVR

В данной статье будут рассмотрены циклы в языке программирования Си для микроконтроллеров AVR. Будут рассмотрены циклы типа «для» (for) и циклы типа «пока» (while), будет показано как осуществить принудительное прерывание цикла и организовать бесконечный цикл.

14. Массивы в программировании микроконтроллеров AVR

В данной статье мы рассмотрим основы использования массивов в языке С для микроконтроллеров AVR и рассмотрим их практическое применение в программе для изменения цифр на семисегментном индикаторе.

(27 голосов, оценка: 4,74 из 5)

Электроника для всех

Блог о электронике

AVR. Учебный курс. Трактат о программаторах

Программа для микроконтроллера пишется на любом удобном языке программирования, компилируется в бинарный файл (или файл формата intel HEX) и заливается в микроконтроллер посредством программатора.

Итак, первым шагом в освоении микроконтроллера обычно становится программатор. Ведь без программатора невозможно загнать программу в микроконтроллер и он так и останется безжизненным куском кремния.

Что же представляет из себя это устройство?
В простейшем случае программатор это девайс который связывает микроконтроллер и компьютер, позволяя с компа залить файл прошивки в память контроллера. Также нужна прошивающая программа, которая по специальному протоколу загонит данные в микроконтроллер.

Программаторы бывают разные под разные семейства контроллеров существуют свои программаторы. Впрочем, бывают и универсальные. Более того, даже ту же простейшую AVR’ку можно прошить несколькими способами:

Внутрисхемное программирование (ISP)
Самый популярный способ прошивать современные контроллеры. Внутрисхемным данный метод называется потому, что микроконтроллер в этот момент находится в схеме целевого устройства — он может быть даже наглухо туда впаян. Для нужд программатора в этом случае выделяется несколько выводов контроллера (обычно 3..5 в зависимости от контроллера).

К этим выводам подключается прошивающий шнур программатора и происходит заливка прошивки. После чего шнур отключается и контроллер начинает работу.
У AVR прошивка заливается по интерфейсу SPI и для работы программатора нужно четыре линии и питание (достаточно только земли, чтобы уравнять потенциалы земель программатора и устройства):

  • MISO — данные идущие от контроллера (Master-Input/Slave-Output)
  • MOSI — данные идущие в контроллер (Master-Output/Slave-Input)
  • SCK — тактовые импульсы интерфейса SPI
  • RESET — сигналом на RESET программатор вводит контроллер в режим программирования
  • GND — земля

Сам же разъем внутрисхемного программирования представляет собой всего лишь несколько штырьков. Лишь бы на него было удобно надеть разъем. Конфигурация его может быть любой, как тебе удобней.
Однако все же есть один популярный стандарт:

Для внутрисхемной прошивки контроллеров AVR существует не один десяток разнообразных программаторов. Отличаются они в первую очередь по скорости работы и типу подключения к компьютеру (COM/LPT/USB). А также бывают безмозглыми или со своим управляющим контроллером.

Безмозглые программаторы, как правило, дешевые, очень простые в изготовлении и наладке. Но при этом обычно работают исключительно через архаичные COM или LPT порты. Которые найти в современном компьютере целая проблема. А еще требуют прямого доступа к портам, что уже в Windows XP может быть проблемой. Плюс бывает зависимость от тактовой частоты процессора компьютера.

Так что твой 3ГГЦ-овый десятиядерный монстр может пролететь, как фанера над Парижем.

Идеальный компьютер для работы с такими программаторами это какой-нибудь PIII-800Mhz с Windows98…XP.
Вот очень краткая подборка проверенных лично безмозглых программаторов:

  • Программатор Громова.
    Простейшая схема, работает через оболочку UniProf(удобнейшая вещь. ), но имеет ряд проблем. В частности тут COM порт используется нетрадиционно и на некоторых материнках может не заработать. А еще на быстрых компах часто не работает. Да, через адаптер USB-COM эта схема работать не будет. По причине извратности подхода 🙂
  • STK200
    Надежная и дубовая, как кувалда, схема. Работает через LPT порт. Поддерживается многими программами, например avrdude. Требует прямого доступа к порту со стороны операционной системы и наличие LPT порта.
  • FTBB-PROG.
    Очень надежный и быстрый программатор работающий через USB, причем безо всяких извратов. C драйверами под разные операционные системы. И мощной оболочкой avrdude. Недостаток один — содержит редкую и дорогую микросхему FTDI, да в таком мелком корпусе, что запаять ее без меткого глаза, твердой руки и большого опыта пайки весьма сложно. Шаг выводов около 0.3мм. Данный программатор встроен в демоплаты Pinboard

Программаторы с управляющим контроллером лишены многих проблем безмозглых. Они без особых проблем работают через USB. А если собраны на COM порт, то без извращенских методик работы с данными — как честный COM порт. Так что адаптеры COM-USB работают на ура. И детали подобрать можно покрупней, чтобы легче было паять. Но у этих программаторов есть другая проблема — для того чтобы сделать такой программатор нужен другой программатор, чтобы прошить ему управляющий контроллер. Проблема курицы и яйца. Широко получили распространение такие программаторы как:

  • USBASP
  • AVRDOPER
  • AVR910 Protoss

Внутрисхемное программирование, несмотря на все его удобства, имеет ряд ограничений.
Микроконтроллер должен быть запущен, иначе он не сможет ответить на сигнал программатора. Поэтому если неправильно выставить биты конфигурации (FUSE), например, переключить на внешний кварцевый резонатор, а сам кварц не поставить. То контроллер не сможет запуститься и прошить его внутрисхемно будет уже нельзя. По крайней мере до тех пор пока МК не будет запущен.
Также в битах конфигурации можно отключить режим внутрисхемной прошивки или преваратить вывод RESET в обычный порт ввода-вывода (это справедливо для малых МК, у которых RESET совмещен с портом). Такое действо тоже обрубает программирование по ISP.

Параллельное высоковольтное программирование
Обычно применяется на поточном производстве при массовой (сотни штук) прошивке чипов в программаторе перед запайкой их в устройство.

Параллельное программирование во много раз быстрей последовательного (ISP), но требует подачи на RESET напряжения в 12 вольт. А также для параллельной зашивки требуется уже не 3 линии данных, а восемь + линии управления. Для программирования в этом режиме микроконтроллер вставляется в панельку программатора, а после прошивки переставляется в целевое устройство.

Для радиолюбительской практики он особо не нужен, т.к. ISP программатор решает 99% насущных задач, но тем не менее параллельный программатор может пригодиться. Например, если в результате ошибочных действий были неправильно выставлены FUSE биты и был отрублен режим ISP. Параллельному программатору на настройку FUSE плевать с высокой колокольни. Плюс некоторые старые модели микроконтроллеров могут прошиваться только высоковольтным программатором.
Из параллельных программаторов для AVR на ум приходит только:

  • HVProg от ElmChan
  • Paraprog
  • DerHammer

А также есть универсальные вроде TurboProg 6, BeeProg, ChipProg++, Fiton которые могут прошивать огромное количество разных микроконтроллеров, но и стоят неслабо. Тысяч по 10-15. Нужны в основном только ремонтникам, т.к. когда не знаешь что тебе завтра притащат на ремонт надо быть готовым ко всему.

Прошивка через JTAG
Вообще JTAG это отладочный интерфейс. Он позволяет пошагово выполнять твою программу прям в кристалле. Но с его помощью можно и программу прошить, или FUSE биты вставить. К сожалению JTAG доступен далеко не во всех микроконтроллерах, только в старших моделях в 40ногих микроконтроллерах. Начиная с Atmega16.

Компания AVR продает фирменный комплект JTAG ICEII для работы с микроконтроллерами по JTAG, но стоит он (как и любой профессиональный инструмент) недешево. Около 10-15тыр. Также есть первая модель JTAG ICE. Ее можно легко изготовить самому, а еще она встроена в мою демоплату Pinboard.

Прошивка через Bootloader
Многие микроконтроллеры AVR имеют режим самопрошивки. Т.е. в микроконтроллер изначально, любым указанным выше способом, зашивается спец программка — bootloader. Дальше для перешивки программатор не нужен. Достаточно выполнить сброс микроконтроллера и подать ему специальный сигнал. После чего он входит в режим программирования и через обычный последовательный интерфейс в него заливается прошивка. Подробней описано в статье посвященной бутлоадеру.
Достоинство этого метода еще и в том, что работая через бутлоадер очень сложно закосячить микроконтроллер настолько, что он не будет отвечать вообще. Т.к. настройки FUSE для бутлоадера недоступны.

Бутлоадер также прошит по умолчанию в главный контроллер демоплаты Pinboard чтобы облегчить и обезопасить первые шаги на пути освоения микроконтроллеров.

Pinboard II
Прошивка AVR с помощью демоплаты Pinboard II (для Pinboard 1.1 все похоже)

Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!

А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.

89 thoughts on “AVR. Учебный курс. Трактат о программаторах”

А что это делает в учебном курсе? чего не на главной странице?
Здарова, Артем, вот я и зашел, чего то не мог зайти долго…

Я постепенно правлю и переписываю старые статьи, чтобы привести их в более стройный и завершенный вид.

Осваиваем микроконтроллеры на примере Atmega8

Программирование AVR. Первые шаги, или – что нам нужно иметь для того, чтобы
прошить и увидеть микроконтроллер в действии.

В рамках данной статьи мы не станем сильно погружаться в многообразие внутренних процессов и дебри архитектуры микроконтроллера. А основной нашей задачей будет являться – освоение азов практической работы с микроконтроллером и получение навыков для самостоятельной разработки и изготовления какого-либо интересующего нас электронного устройства.

В качестве подопытного предлагаю выбрать популярный и довольно высокопроизводительный 8-разрядный AVR микроконтроллер Atmega8 в удобном для наших целей 28-выводном DIP корпусе.

Итак, что нам нужно для полного счастья?

1. Простая и, в приоритете, бесплатная среда разработки, в которой можно посредством слов и цифр написать программу, а затем скомпилировать её, т. е. перевести на язык, понятный микроконтроллеру.
Одним из удачных примеров такой среды является Atmel Studio. Скачать эту программу не составит никакого труда, в том числе и на официальном сайте разработчика – https://www.microchip.com/.

2. Отладочная плата для микроконтроллера, желательно с DIP28 панелькой для микросхемы.

Удачным вариантом такой платы я бы посчитал изделие под названием «плата разработки ATmega8 – сделай сам», предлагаемое нашими китайскими друзьями за символические 150 отечественных рублей.

В комплект поставки входят:
– собственно, сама плата;
– Панелька DIP28;
– Кварцевый резонатор на 8 МГц;
– Разъём для подключения программатора;
– Разные деталюшки в виде: конденсаторов, резисторов, кнопок, светодиодов, т. е. всего того, что позволит легко запрограммировать и проверить микропроцессор в работе.

Можно, конечно, обойтись и без отладочной платы и произвести прошивку ATmega8 непосредственно в готовом устройстве, тем более что микропроцессор это сделать позволяет. Однако на практике произвести эти манипуляции заранее, а уже потом устанавливать микросхему по месту прописки оказывается значительно удобнее.

3. Программатор AVR USB, для того чтобы запрограммировать микроконтроллер, то есть перенести в него информацию с компьютера.

Такой программатор оценивается на aliexpress примерно в ту же стоимость, что и предыдущее изделие.

Программатор подсоединяется к USB порту компьютера, а другим своим концом к плате микроконтроллера.
Данное соединение осуществляется через ISP разъём кабеля, который также входит в комплект поставки.

Питание берётся от USB разъёма компьютера.
Работать программатор может под разными операционными системами, в том числе – под Windows.

Если тип приобретённого программатора не будет поддерживаться Atmel Studio, то придётся скачать и бесплатную программу прошивки микроконтроллеров, например, AVRDude.

4. Контактная макетная плата для монтажа без пайки.

Такая макетная плата совместно с набором соединительных проводов (джамперов) будет весьма полезна на начальном этапе освоения микроконтроллера.

Она без какого-либо напряга и паяльника позволит соединить любые электронные элементы обвеса микроконтроллера в единую конструкцию, превращая весь процесс создания схемы в увлекательную игру с конструктором LEGO.

Подобный набор, состоящий из беспаечной макетной платы и комплекта проводов, обойдётся не дороже 200 рублей.

5. Для того чтобы в процессе отладки не перепрошивать ATmega8 бесчисленное количество раз, жизненно необходима программа, позволяющая отладить прошивку без участия микроконтроллера.
Для этой цели как нельзя лучше подходит программа для автоматизированного проектирования электронных схем (в том числе и микроконтроллеров) – Proteus. Она значительно упрощает процесс отладки программы без участия микроконтроллера, ведь любой накопитель имеет конечное число перезаписей, хотя это число и достаточно большое.

6. Если написать и отладить программу для микроконтроллера можно и без его непосредственного участия, то, по-любому, рано или поздно встанет конкретный вопрос: «А на фига мы всё это делали?».
Поэтому хочешь, не хочешь, а приобрести ATmega8 нам также всё ж таки придётся. Стоит она на Али, как и всё остальное, довольно-таки гуманных денег – около 100 рублей за единицу продукции, поэтому кошелёк опорожнит не сильно, но уважительного к себе отношения потребует.

А теперь давайте-ка посмотрим: А что это за штука ATMEGA8 попала к нам в руки?

Рис.1 Внешний вид и назначение выводов Atmega8

У данного типа МК есть два типа питания – цифровое VCC (выв.7) и аналоговое AVCC (выв.20). В стандартном включении, когда на входы/выходы контроллера подаются логические 1 и 0, оба вывода питания соединяют (физически соединяются VCC и AVCC, поскольку GND выводы 8 и 22 уже замкнуты внутри ИМС через сопротивление 0,7 Ом). Однако при подключении нагрузки, эти земляные выводы необходимо замкнуть на плате, т. к. внутри они соединены тонким проводником, который при существенном токе не следует рассматривать как «перемычку».
Если используется встроенный АЦП, или входы/выходы задействованы для работы с аналоговыми сигналами, то для уменьшения помех производитель рекомендует использовать последовательный LC-фильтр по AVCC.
Между выводами питания и землёй (в непосредственной близости от выводов питания микросхемы) всегда следует устанавливать керамические конденсаторы ёмкостью 0,1 Мкф, которые обычно называют блокировочными конденсаторами.

Ещё один непомеченный цветом вывод (Рис.1) – 21 вывод (AREF).
AREF означает Analog Reference и является входом для подачи (при необходимости) опорного напряжения от внешнего источника питания.

Все раскрашенные выводы микроконтроллера (Рис.1) – это порты ввода-вывода, через которые микроконтроллер общается с внешним миром. У ATmega8 их три: PB0. PB7, PC0. PC6, PD0. PD7.
PB0. PB7 и PD0. PD7 – это полные, т. е. 8-разрядные порты, PC0. PC6 – неполный 7-разрядный порт, т. к. для полноты ему тупо не хватило лишнего вывода у микросхемы.

Каждый вывод порта может работать либо как вход, либо как выход. Для того чтобы выбрать режим работы ножки микроконтроллера необходимо прописать нужные биты в соответствующие регистры.
Однако есть у части портов ввода-вывода и специфические функции, прописанные в документации на микросхему. Давайте посмотрим, что это за функции:

1. Порты PB0. РВ7. Два вывода (РВ6 и PB7) используются для подключения кварцевого резонатора. Выводы РВ2. РВ5 зарезервированы для программирования МК. Таким образом, для общего применения остаются порты PB0 и PB1.
2. Порты PC0. РС6. Порты PC0. РС5 есть возможность использовать в качестве аналоговых входов. РС6 обычно используется для общего внешнего сброса настроек, т. е. перезагрузки прошивки МК.
3. Порты PD0. РD7. Эти порты можно использовать для общего применения.

Atmega8 выпускается с уже настроенным для использования встроенным RC-генератором с частотой 1МГц, который позволяет запустить МК без внешних элементов. Посредством конфигурационных манипуляций, значения этой частоты могут принимать также значения: 2, 4 и 8 MHz. Однако для решения многих задач стабильности RC-генератора оказывается явно недостаточно, в связи с чем для тактирования микроконтроллера используется внешний кварцевый резонатор.

Следует запомнить, что МК не является устройством, которое управляет большими мощностями, для этого есть транзисторы, тиристоры и прочие силовые элементы. Максимальный ток линии ввода/вывода составляет 40мА, максимальный суммарный ток по цепям питания и GND – 200мА.
И под занавес:

Основные технические параметры ATmega8:

— Память для программ составляет 8 Кб с возможностью перезаписать 10 000 раз;
— 512 байт флеш-памяти для хранения переменных (100 000 циклов перезаписи);
— 1 Кб ОЗУ и 32 регистра общего назначения;
— Два 8-разрядных Таймера/Счетчика с раздельным прескалером, режим сравнения;
— 16-разрядный Таймер/Счетчик с раздельным прескалером, режим сравнения, режим захвата;
— Таймер реального времени с независимым генератором;
— 3 канала ШИМ;
— 6 каналов 10-разрядного АЦП;
— Двухпроводный последовательный интерфейс;
— Программируемый последовательный USART;
— Интерфейс SPI с режимами Master/Slave;
— Программируемый сторожевой таймер с отдельным независимым генератором;
— Встроенный аналоговый компаратор;
— Сброс при включении питания, программируемая защита от провалов питания;
— Встроенный калиброванный RC-генератор;
— Обработка внутренних и внешних прерываний;
— 5 режимов с пониженным энергопотреблением: Idle, ADC Noise Reduction, Power-save, Power-down и Standby;
— Напряжение питания 4.5 — 5.5В;
— Тактовая частота 0-16 МГц.

Ну, на этом, пожалуй, и всё.
Для желающих посерьёзней углубиться в знания, могу порекомендовать datasheet производителя и русскоязычное описание ATmega8, с которым можно познакомиться по ссылке — ATMEGA8.

А на следующих страницах будем осваивать язык программирования, а также запускать несложные устройства, выполненные на микроконтроллерах.

Вы еще не программируете микроконтроллеры? Тогда мы идем к вам!

Здравствуйте, уважаемые Хабражители!

В этой статье я хочу рассказать о том, как однажды решил начать программировать микроконтроллеры, что для этого понадобилось и что в итоге получилось.

Тема микроконтроллеров меня заинтересовала очень давно, году этак в 2001. Но тогда достать программатор по месту жительства оказалось проблематично, а о покупке через Интернет и речи не было. Пришлось отложить это дело до лучших времен. И вот, в один прекрасный день я обнаружил, что лучшие времена пришли не выходя из дома можно купить все, что мне было нужно. Решил попробовать. Итак, что нам понадобится:

1. Программатор

На рынке предлагается много вариантов — от самых дешевых ISP (In-System Programming) программаторов за несколько долларов, до мощных программаторов-отладчиков за пару сотен. Не имея большого опыта в этом деле, для начала я решил попробовать один из самых простых и дешевых — USBasp. Купил в свое время на eBay за $12, сейчас можно найти даже за $3-4. На самом деле это китайская версия программатора от Thomas Fischl. Что могу сказать про него? Только одно — он работает. К тому же поддерживает достаточно много AVR контроллеров серий ATmega и ATtiny. Под Linux не требует драйвера.

Для прошивки надо соединить выходы программатора VCC, GND, RESET, SCK, MOSI, MISO с соответствующими выходами микроконтроллера. Для простоты я собрал вспомогательную схему прямо на макетной плате:

Слева на плате — тот самый микроконтроллер, который мы собираемся прошивать.

2. Микроконтроллер

С выбором микроконтроллера я особо не заморачивался и взял ATmega8 от Atmel — 23 пина ввода/вывода, два 8-битных таймера, один 16-битный, частота — до 16 Мгц, маленькое потребление (1-3.6 мА), дешевый ($2). В общем, для начала — более чем достаточно.

Под Linux для компиляции и загрузки прошивки на контроллер отлично работает связка avr-gcc + avrdude. Установка тривиальная. Следуя инструкции, можно за несколько минут установить все необходимое ПО. Единственный ньюанс, на который следует обратить внимание — avrdude (ПО для записи на контроллер) может потребовать права супер-пользователя для доступа к программатору. Выход — запустить через sudo (не очень хорошая идея), либо прописать специальные udev права. Синтаксис может отличаться в разных версиях ОС, но в моем случае (Linux Mint 15) сработало добавление следующего правила в файл /etc/udev/rules.d/41-atmega.rules :

После этого, естественно, необходим перезапуск сервиса

Компилировать и прошивать без проблем можно прямо из командной строки (кто бы сомневался), но если проектов много, то удобнее поставить плагин AVR Eclipse и делать все прямо из среды Eclipse.

Под Windows придется поставить драйвер. В остальном проблем нет. Ради научного интереса попробовал связку AVR Studio + eXtreme Burner в Windows. Опять-таки, все работает на ура.

Начинаем программировать

Программировать AVR контроллеры можно как на ассемблере (AVR assembler), так и на Си. Тут, думаю, каждый должен сделать свой выбор сам в зависимости от конкретной задачи и своих предпочтений. Лично я в первую очередь начал ковырять ассемблер. При программировании на ассемблере архитектура устройства становится понятнее и появляется ощущение, что копаешься непосредственно во внутренностях контроллера. К тому же полагаю, что в особенно критических по размеру и производительности программах знание ассемблера может очень пригодиться. После ознакомления с AVR ассемблером я переполз на Си.

После знакомства с архитектурой и основными принципами, решил собрать что-то полезное и интересное. Тут мне помогла дочурка, она занимается шахматами и в один прекрасный вечер заявила, что хочет иметь часы-таймер для партий на время. БАЦ! Вот она — идея первого проекта! Можно было конечно заказать их на том же eBay, но захотелось сделать свои собственные часы, с блэк… эээ… с индикаторами и кнопочками. Сказано — сделано!

В качестве дисплея решено было использовать два 7-сегментных диодных индикатора. Для управления достаточно было 5 кнопок — “Игрок 1” , “Игрок 2” , “Сброс” , “Настройка” и “Пауза” . Ну и не забываем про звуковую индикацию окончания игры. Вроде все. На рисунке ниже представлена общая схема подключения микроконтроллера к индикаторам и кнопкам. Она понадобится нам при разборе исходного кода программы:

Разбор полета

Начнем, как и положено, с точки входа программы — функции main . На самом деле ничего примечательного в ней нет — настройка портов, инициализация данных и бесконечный цикл обработки нажатий кнопок. Ну и вызов sei() — разрешение обработки прерываний, о них немного позже.

Рассмотрим каждую функцию в отдельности.

Настройка портов ввода/вывода происходит очень просто — в регистр DDRx (где x — буква, обозначающая порт) записивается число, каждый бит которого означает, будет ли соответствующий пин устройством ввода (соответствует 0) либо вывода (соответствует 1). Таким образом, заслав в DDRB и DDRD число 0xFF, мы сделали B и D портами вывода. Соответственно, команда DDRC = 0b11100000; превращает первые 5 пинов порта C во входные пины, а оставшиеся — в выходные. Команда PORTC |= 0b00011111; включает внутренние подтягивающие резисторы на 5 входах контроллера. Согласно схеме, к этим входам подключены кнопки, которые при нажатии замкнут их на землю. Таким образом контроллер понимает, что кнопка нажата.

Далее следует настройка двух таймеров, Timer0 и Timer1. Первый мы используем для обновления индикаторов, а второй — для обратного отсчета времени, предварительно настроив его на срабатывание каждую секунду. Подробное описание всех констант и метода настройки таймера на определенноый интервал можно найти в документации к ATmega8.

Обработка прерываний

При срабатывании таймера управление передается соответствующему обработчику прерывания. В нашем случае это обработчик TIMER0_OVF_vect, который вызывает процедуру вывода времени на индикаторы, и TIMER1_COMPA_vect, который обрабатывает обратный отсчет.

Вывод на индикаторы

Функция display использует метод динамической индикации. Дело в том, что каждый отдельно взятый индикатор имеет 9 контактов (7 для управления сегментами, 1 для точки и 1 для питания). Для управления 4 цифрами понадобилось бы 36 контактов. Слишком расточительно. Поэтому вывод разрядов на индикатор с несколькими цифрами организован по следующему принципу:

Напряжение поочередно подается на каждый из общих контактов, что позволяет высветить на соответствующем индикаторе нужную цифру при помощи одних и тех же 8 управляющих контактов. При достаточно высокой частоте вывода это выглядит для глаза как статическая картинка. Именно поэтому все 8 питающих контактов обоих индикаторов на схеме подключены к 8 выходам порта D, а 16 управляющих сегментами контактов соединены попарно и подключены к 8 выходам порта B. Таким образом, функция display с задержкой в 0.25 мс попеременно выводит нужную цифру на каждый из индикаторов. Под конец отключаются все выходы, подающие напряжение на индикаторы (команда PORTD = 0; ). Если этого не сделать, то последняя выводимая цифра будет продолжать гореть до следующего вызова функции display, что приведет к ее более яркому свечению по сравнению с остальными.

Обработка нажатий

Эта функция по очереди опрашивает все 5 кнопок и обрабатывает нажатие, если таковое случилось. Нажатие регистрируется проверкой bit_is_clear(BUTTON_PIN, bit) , т.е. кнопка нажата в том случае, если соответствующий ей вход соединен с землей, что и произойдет, согласно схеме, при нажатии кнопки. Задержка длительностью DEBOUNCE_TIME и повторная проверка нужна во избежание множественных лишних срабатываний из-за дребезга контактов. Сохранение статуса нажатия в соответствующих битах переменной _pressed используется для исключения повторного срабатывания при длительном нажатии на кнопку.
Функции обработки нажатий достаточно тривиальны и полагаю, что в дополнительных комментариях не нуждаются.

Прототип был собран на макетной плате:

После тестирования прототипа пришло время все это добро разместить в корпусе, обеспечить питание и т.д.

Ниже показан окончательный вид устройства. Часы питаются от 9-вольтовой батарейки типа “Крона”. Потребление тока — 55 мА.

Заключение

Потратив $20-25 на оборудование и пару вечеров на начальное ознакомление с архитектурой микроконтроллера и основными принципами работы, можно начать делать интересные DIY проекты. Статья посвящается тем, кто, как и я в свое время, думает, что начать программировать микроконтроллеры — это сложно, долго или дорого. Поверьте, начать намного проще, чем может показаться. Если есть интерес и желание — пробуйте, не пожалете!

Микроконтроллеры AVR

Микроконтроллеры (далее по тексту просто МК) ворвались в нашу жизнь и очень сильно ее облегчили. Они используются абсолютно везде, начиная с вашей стиральной машины и заканчивая смартфоном. Сами по себе МК ничего не могут делать, но занимают главную “должность” в электронной аппаратуре. Они УПРАВЛЯЮТ процессом работы всех отдельных узлов радиоэлектронной аппаратуры и КОНТРОЛИРУЮТ ситуацию, чтобы та не вышла за рамки дозволенности). Эта их основная функция ;-). Вот и все!

Приступая к изучению микроконтроллеров с нуля, даже опытные электронщики порой заходят в тупик, не знают с чего начать и как понять все это. Гора информации кажется неподъемной и настолько страшной и не понятной, что порой на первых попытках изучения МК все и заканчивается.

Что такое микроконтроллеры?

В настоящее время видов МК очень много. Самые знаменитые из них это микроконтроллеры PIC фирмы Microchip Technology, в народе “пики”; а также микроконтроллеры AVR фирмы Atmel, в народе называемые “авээрки”. Самые продвинутые электронщики уже юзают микроконтроллеры STM фирмы STMicroelectronics. Думаю, до них нам еще далеко. Так как самыми простыми МК для изучения являются AVR с них, пожалуй, и начнем.

Микроконтроллер представляет из себя пластмаску с железными ножками в различных корпусах. Ниже на рисунке корпуса микроконтроллеров AVR:

Давайте рассмотрим МК AVR Atmega8 в DIP корпусе:

Для того, чтобы узнать, как у нее идет нумерация ножек (распиновка), надо простой найти выемку на микросхеме, и от нее уже начинать счет 😉

А вот так идет счет, против часовой стрелки:

Теперь давайте рассмотрим схемотехническое обозначение МК AVR Atmega8:

Как мы видим, каждая из ножек пронумерована, носит свое название и даже не одно. Все дело в том, что некоторые выводы могут выполнять разные функции, в зависимости от того, как мы запрограммируем наш МК. Чем “фаршированнее” МК, тем больше ножек и выполняемых функций он имеет.

Как же это все работает?

Внутри микроконтроллера функционирует программа. Эта программа способна выполнять ТОЛЬКО ТРИ ДЕЙСТВИЯ, она может на любую из ножек ПОДАТЬ ПИТАНИЕ в 5 Вольт (включить логическую единицу), ВЫКЛЮЧИТЬ ПИТАНИЕ (логический ноль), ПРОЧИТАТЬ, подаем мы на ногу питание со стороны или нет. Вот и все, другого не дано, программа ни на что более не способна. Это, на самом деле, сильно упрощает программирование. Подробнее про основы цифровой электроники можно прочитать зде сь.

Например, мы хотим помигать светодиодом.

В основном, с этой программы начинают изучение микроконтроллеров. Как поступим в этом случае?

Для начала мы прицепим, скажем, на ножку “2” микроконтроллера светодиод (LED-RED). Пусть он будет прицеплен анодом, а катод светодиода будет сидеть на земле (GND или, грубо говоря, минус питания). Схема будет выглядеть следующим образом:

Схема сделана в программе Proteus, к которой мы вернемся в следующих статьях.

Итак, на ноге PD0 второго вывода микросхемы сидит светодиод с токоограничительным резистором. Резистор здесь просто ограничивает проходящий ток через светодиод, чтобы светодиод не сгорел.

Дальше нам надо запрограммировать наш МК программой. На языке программеров это звучит как “залить”, “прошить”, “шивануть”. Для этого существуют специальные программаторы.

А дальше программа внутри микроконтроллера должна делать следующее:

  1. Подать питание на ногу PD0 (светодиод загорается)
  2. Подождать сколько нужно (продолжает гореть)
  3. Выключить питание на ноге PD0 (светодиод тухнет)
  4. Подождать сколько нужно ( все еще не горит)
  5. Перейти к шагу 1 (светодиод загорается)

Вот и все, больше ничего программа делать не будет, только тупо моргать светодиодом 😉

Посмотрим что будет, если из алгоритма выкинуть хотя бы один шаг.

Думаю нет необходимости выкидывать шаги 1 и 3, очевидно, что без них светодиод либо никогда не загорится, либо будет всегда выключен.

Что если убрать шаг 2? Тогда получится следующее: Питание включено, диод горит, далее через не ощутимое человеком мгновение светодиод погас, идет задержка. Светодиод включается на столь малое время, что нам кажется, будто он постоянно выключен.

Аналогично будет, если убрать задержку под номером 3, светодиод будет выключаться на столь малое время, что будет казаться нам постоянно включен.

Вот что примерно представляет из себя микроконтроллер.