Корпуса микросхем усилителей мощности

Одноплатные усилители мощности звуковой частоты класса AB (подборка с Алиэкспресс): классика жанра

Первые однокристалльные микросхемы усилителей мощности звуковой частоты были выпущены ещё несколько десятилетий назад (можно обозначить этот рубеж словами «в незапамятные времена» или же «даже старожилы не помнят», хотя они никогда ничего не помнят).

Эти чипы потихоньку развивались, расширяли полосу пропускания, увеличивали мощность, обзаводились мостовым выходом, и, наконец, у самых сильных и прогрессивных из них на выходе появились MOSFET (МОП) транзисторы.

Последнее событие оказалось и последним этапом в их развитии: дальше развиваться им стало некуда, а на арену вышли усилители класса D с их невероятным КПД, а заодно и со своими не всегда позитивными особенностями.

В этой подборке усилителей классического жанра будут представлены одноплатные усилители на основе однокристалльных микросхем усилителей мощности, т.е. без дискретных элементов в выходном каскаде (транзисторов или ламп).

Такие усилители имеют небольшие габариты и массу, и, как правило, (почти) не требуют настройки: подключай и пользуйся!

В подборке приведены примерные цены на дату обзора; в дальнейшем они могут меняться в любую сторону. Но на распродаже 11.11 они, скорее всего, на несколько процентов снизятся.

Цены указаны в долларах, так как цены в рублях быстро становятся недействительными (время сейчас такое!).

Одноплатный стереоусилитель мощности на основе TDA7377 с темброблоком

Микросхема TDA7377 построена на обычных биполярных транзисторах и представляет собой популярный и проверенный временем усилитель с однополярным питанием.

Выходы одноплатного усилителя — мостовые, благодаря чему он может развивать значительную мощность даже при невысоком напряжении питания (8-18 В).

Сама микросхема TDA7377 может работать и как 4-канальная с независимыми одиночными каналами, но в этом мало смысла (мостовые попарные выходы лучше во всех смыслах).

В обзорах на данный одноплатный усилитель он критикуется за малый диапазон регулировки тембра по низам; но плата собрана на основе обычных элементов (не SMD!), так что всё в руках пользователя. 🙂

Китайские продавцы заявляют выходную мощность усилителя как 2*40 Вт, но паспортная мощность TDA7377 составляет только 2*30 Вт; так что, как всегда, к информации китайских продавцов надо относиться очень критически.

Одноплатный стереоусилитель мощности на основе TDA2030 с темброблоком

Микросхема TDA2030 (TDA2030A) — исторически первая удачная микросхема для усилителей с двухполярным питанием. Микросхема — одноканальная с мощностью до 15 Вт; на плате расположены две микросхемы.

Усилители с двухполярным питанием относятся к числу особо почитаемых у любителей Hi-Fi. И это — в значительной степени обосновано: благодаря их симметричности относительно питающих напряжений значительно снижается влияние качества источника питания на качество звука.

По факту такие усилители можно запитывать прямо от сетевого трансформатора с выпрямителем.

Именно так и сделано в этом одноплатном усилителе: прямо на плате расположен выпрямительный мост и сглаживающие конденсаторы. Хотя, если есть возможность разместить выпрямитель и конденсаторы за пределами платы, было бы ещё лучше.

Также на плате имеется чисто пассивный регулятор тембра.

Одноплатный моноусилитель мощности на основе TDA2050

Микросхема TDA2050 — это дальнейшая модификация предшественника, TDA2030; полностью совместимая по выводам.

От предшественника она отличается только более высокой выходной мощностью (35 Вт вместо 15 Вт у TDA2030). Также немного повышено и допустимое напряжение питания (до 50 В вместо 44 В).

Данная плата — одноканальная, в ней реализовано однополярное подключение TDA2050 (что допускается документацией на TDA2050).

Хотя это и не лучшее применение TDA2050, но не всегда у пользователя есть возможность реализовать двухполярное питание.

У платы есть очевидный недостаток: площадь теплоотвода явно не соответствует рассеиваемой мощности микросхемы.

В связи с этим, если планируется использование усилителя на высокой мощности, то надо задуматься о принудительной вентиляции или об установке более серьёзного радиатора.

При наличии желания и «прямых рук» плату можно переделать под двухполярное питание.

Цена — около $4 с учётом доставки.

Одноплатные 4-канальные усилители мощности на основе TDA7850

Микросхема TDA7850 имеет MOSFET-ы в выходных каскадах, 4 канала с мостовыми выходами, сопротивление нагрузки до 2 Ом, мощность 4*50 Вт. Огонь.

Если у Вас под окнами ночью гоняет на «тачке» какой-либо джентльмен и радует весь район своей любимой музыкой; то знайте, что в его магнитоле, скорее всего, установлена именно эта микросхема! 🙂

Плата по первой ссылке не сразу готова к употреблению: на ней нет теплоотвода, и пользователю нужно решить эту проблему самостоятельно.

Кроме того, в ней есть особенность: помехоподавляющая микросхема BA3121. Для её функционирования на плате разделены сигнальная земля и земля питания. Если они нигде не объединены за пределами платы, их надо соединить на плате.

Плата по второй ссылке — «навороченная». Она содержит теплоотвод с принудительной вентиляцией, канал Bluetooth и два регулятора громкости.

Одноплатный моноусилитель мощности на основе LM3886

Микросхема LM3886 (LM3886TF) — одноканальный усилитель мощности (68 Вт) с двухполярным питанием.

Микросхема имеет изолированный корпус, что упрощает выбор конструкции теплоотвода (на теплоотводе не будет электрического потенциала).

Кроме того, как и многие другие одноканальные УНЧ, она допускает лёгкое построение усилителя с мостовым выходом из двух микросхем, подключенных в противофазе.

Этто позволяет ещё больше увеличить мощность и объединить преимущества двухполярного питания и мостового выхода.

Правда, при таком способе подключения должно быть вдвое повышено и сопротивление нагрузки (с 4 до 8 Ом); иначе будет превышен предельный ток.

Представленная плата построена именно по такой схеме и может отдать мощность до 130 Вт.

Для построения стерео усилителя потребуются две таких платы.

Плата не имеет в комплекте теплоотвода (а он — обязателен), об этом должен будет позаботиться потребитель.

Цена — $23 ($18.2 на распродаже 11.11).

Одноплатный стереоусилитель мощности на основе TDA7293 / TDA7294

Есть и ещё пара родственных очень мощных микросхем для УНЧ с биполярным питанием: TDA7293 и TDA7294.

Обе микросхемы рассчитаны на выходную мощность 100 Вт и построены с DMOS-транзисторами в выходных каскадах, но рассчитаны на разное питающее напряжение: от ±12 В до ±50 В для TDA7293 и от ±10 В до ±40 В для TDA7294. Справка: DMOS — технология, близкая к MOSFET.

На данной плате установлены 4 микросхемы, работающие попарно в мостовом режиме.

Продавец заявляет для такой конфигурации мощность 2*150 Вт.

Как всегда, надо помнить, что сопротивление нагрузки для такой схемы должно быть двойным (8 Ом или более).

Также пользователю придётся самостоятельно позаботиться о радиаторе (внимание: теплоотвод микросхемы находится под потенциалом отрицательного источника питания!).

Цена — $44.6 с учётом доставки.

Пример радиатора 60*150*25 для усилителей

Усилители класса AB рассеивают довольно значительную мощность и требуют теплоотвода.

Алюминиевые радиаторы стоят относительно дорого, и, поэтому, при возможности, лучше их найти где-нибудь в неиспользуемой аппаратуре. Например, для охлаждения некоторых старых процессоров использовались кулеры с массивными алюминиевыми радиаторами. Теперь эти радиаторы могут обрести «вторую жизнь»!

Если найти подходящий радиатор не удаётся, то можно поискать его на Алиэкспресс.

В качестве примера приведена ссылка на радиатор 60*150*25, содержащий 24 ребра. Общая площадь радиатора — около 800 кв. см.

Цена — $4.2 с учётом доставки.

Микросхемы усилителей мощности звуковой частоты россыпью

Большинство микросхем УНЧ класса AB имеет конструкцию, удобную для монтажа в радиолюбительских конструкциях даже с проводным монтажом.

В связи с этим, когда ни одна готовая плата не подходит для задуманной конструкции, можно разработать свою собственную плату; а микросхемы для неё купить отдельно, благо микросхемы россыпью стоят настолько дешево, что чаще всего продаются не поштучно, а наборами по 2 — 10 шт.

По приведённой ссылке можно приобрести микросхемы УМЗЧ в наборах по 5 штук одного наименования.

Это — TDA7385 (4 мостовых канала по 30 Вт), TDA7388 (4 мостовых канала по 41 Вт), TDA7850 (4 мостовых канала по 50 Вт, MOSFET), TDA7851 (4 мостовых канала по 48 Вт, MOSFET).

Цена — от $6.3 до $11.5 за 5 шт. в зависимости от наименования.

Усилители класса AB на основе однокристалльных микросхем показали себя как добротное и проверенное временем решение с высоким качеством звучания.

Выходная мощность таких микросхем может быть очень значительной.

Фактически, если потребителю не нужно конструировать аппаратуру для озвучки стадионов и концертных залов, то для всех прочих бытовых нужд конструкции на основе таких микросхем будут вполне достаточны.

Кроме того, надо заметить, что они содержат различные виды защиты (от перегрева, от перегрузки по току и т.п.), а также имеют качественную термостабилизацию режимов за счёт того, что термодатчик и источник тепла расположены в непосредственной близости (на одной подложке).

То есть, при мощности до 100 — 150 Вт нет никакой необходимости собирать усилитель из дискретных элементов.

Описанные в подборке одноплатные усилители могут быть применены как для ремонта радиоаппаратуры, так и для создания самостоятельных конструкций; в том числе, например, для оживления «старосоветских» колонок (многие из которых до сих пор у населения живы и здоровы); или же для возвращения в строй «осиротевших» колонок от магнитол и музыкальных центров после непоправимого выхода из строя основного устройства.

Если указанные в описаниях товары найдутся у других продавцов на Алиэкспресс дешевле, то тоже можно брать — товар одинаковый (но надо следить за стоимостью доставки).

Интегральные УНЧ

Усилитель мощности низкой частоты — это электронное устройство, которое предназначено для усиления низкочастотного (НЧ) сигнала с последующей его подачей на акустические системы. Часто самодельные интегральные усилители мощности низкой частоты собирают на мощных микросхемах, поскольку они требуют минимум внешних компонентов и очень просты в наладке.

В разделе собраны принципиальные схемы усилителей мощности НЧ на мощных микросхемах, а также на основе интегральных микросхем — драйверов для выходных транзисторов. Используя специализированные интегральные микросхемы можно собрать усилитель мощности разной конфигурации:

  • Стерео — два канала усиления мощности;
  • Квадро — четыре канала усиления мощности;
  • 2+1 — сабвуфер и два сателлита;
  • 5+1 — сабвуфер и пять сателлитов;
  • и другие.

Если нужна большая выходная мощность усилителя НЧ (например для канала сабвуфера — 200Втт) то зачастую применяются мостовые схемы включения микросхем или же в параллель.

Здесь вы найдете схемы самодельных УМЗЧ разной сложности для внешних и интегрированных акустических систем, схемы простых усилителей для наушников и миниатюрной бытовой техники (плееры, MP3, диктофоны, игрушки и т.д).

Можно сказать, уже сложилась такая традиция, если нужен мощный УМЗЧ с минимальным набором обвязки и хорошими параметрами, его делают на микросхеме TDA или LM. Традиция традицией, но есть и другие варианты, хотя и не такие проверенные и отработанные. Опыт с УМЗЧ на микросхеме OPA541 еще интересен .

Схема и описание самодельного усилителя мощности на микросхеме LM3876, LM3886 фирмы NS (National Semiconductor). Параметры усилителя: 1. Номинальный уровень входного сигнала . 1V. 2. Выходная мощность на нагрузке 8 Ом при КНИ не более 0,1%. 40W .

Тем кто занялся конструированием усилителя для аудиосистемы или DVD-плеера конечно же хочется достигнуть наилучших результатов с минимальными трудовыми затратами. УМЗЧ на микросхеме TDA7294 в этом смысле как раз то что нужно. Вот девять доводов в пользу УМЗЧ на TDA7294: 1 Выходная мощность .

Сейчас многие автолюбители в машине пользуются планшетными компьютерами. Это очень удобно, потому что планшет -это и средство мобильной аудио и видео связи, это навигатор, с его помощью можно оперативно найти нужную информацию в интернете. Кроме того, планшет может работать как радиоприемник, как .

Интегральная микросхема типа TDA7496L производства фирмы SGT-Thomson Microelectronics представляет собой двухканальный усилитель звуковой частоты с выходной мощностью в каждом канале до 2 Вт на нагрузке сопротивлением 8 Ом. Максимальная рассеиваемая мощность 6 Вт. напряжение питания однополярное .

Читайте также  Как провести проводку для точечных светильников?

Усилитель стереофонический, выполнен на микросхеме К174УН20 советского производства. Микросхема содержит два УНЧ, по схемотехнике, аналогичных двум микросхемам типа К174УН14, но меньшей мощности и в корпусе типа DIP16, но с двумя радиаторными пластинами, вместо выводов .

Усилитель развивает выходную мощность до 25W на канал, может работать на акустические системы сопротивлением отЗ до 10 Ом. При выходной мощности 16W на канал и акустических системах сопротивлением по 6 Ом КНИ на частоте 1 кГц не превосходит 0,03%. Есть регулировка тембра по низким и высоким .

Микросхема TDA2005 устаревшая, и уже давно не выпускается, однако она все еще остается одной из самых недорогих и широкодоступных, интегральных УМЗЧ. Относительно небольшое число навесных элементов, в сочетании с вполне хорошими электрическими характеристиками, наличие защиты выхода от перегрузки .

Это несложный полный УНЧ на двух микросхемах TDA2050, питающийся отимпульсного блока питания для галогеновых светильников (выходное переменное напряжение 12V, мощность 75W). Характеристики усилителя: 1. Максимальная выходная мощность на нагрузке 4 Ом 2x12W .

Микросхема TDA1010A представляет собой ИМС УНЧ для телевизоров и другой электронной техники. Особенность этой микросхемы в том, что в ней есть как усилитель мощности ЗЧ, так и предварительный усилитель. Причем, выход предварительного усилителя и вход усилителя мощности выведены на разные .

Большая статья о маленьком усилителе на микросхеме TDA2822M

Интегральная микросхема TDA2822M благодаря небольшому числу элементов обвязки относится к числу простых усилителей, которые можно собрать за короткое время, подключить к МР3 плееру, ноутбуку, радиоприемнику – и тут же оценить результат своей работы.

Вот как привлекательно выглядит описание микросхемы TDA2822M (ST, DIP8) на Датагорской ярмарке:
«TDA2822M — стереофонический, двухканальный низковольтный усилитель для портативной техники и пр.
Возможно мостовое включение, использование в качестве наушникового или контрольного усилителя и многое другое.
Рабочее напряжение питания: от 1,8 В до 12 В, мощность до 1 Вт на канал, искажения до 0,2%. Радиатор не требуется.
Вопреки суперминиатюрным размерам выдаёт честный бас. Идеальный чип для бесчеловечных опытов начинающих».

Своей статьёй я постарался помочь коллегам-радиолюбителям сделать эксперименты с этим интересным чипом более осознанными и гуманными.

Содержание / Contents

  • 1 Разберемся с корпусом микросхемы
  • 2 Функциональная схема TDA2822M
  • 3 Стереофонический и монофонический усилители на микросхеме TDA2822M
  • 4 Эксперименты со стереофоническим усилителем
  • 5 Опыты с мостовым усилителем
  • 6 Итог
  • 7 Файлы
  • 8 Список упомянутых источников

↑ Разберемся с корпусом микросхемы

Различают две микросхемы: одну TDA2822, другую с индексом «М» — TDA2822М.
Интегральная микросхема TDA2822 (Philips) предназначена для создания простых усилителей мощности звуковой частоты. Допустимый диапазон питающих напряжений 3…15 В; при Uпит=6 В, Rн=4 Ом выходная мощность составляет до 0,65 Вт на канал, в полосе частот 30 Гц…18 кГц. Корпус микросхемы Powerdip 16.
Микросхема TDA2822M выполнена в ином корпусе Minidip 8 и имеет отличающуюся цоколевку при несколько меньшей максимальной рассеиваемой мощности (1 Вт против 1,25 Вт у TDA2822).

↑ Функциональная схема TDA2822M

приведена в документации [1]. Как видно из рис. 1, каждый канал усилителя по структуре близок к типовой схеме Лина.

Усилители имеют общие функциональные узлы: цепи задания опорного тока I REF для генераторов стабильного тока (ГСТ) в цепях эмиттеров дифференциальных каскадов, цепь задания смещения R3, D6 на базах ключей Q12, Q13 и цепи поддержания токов покоя I0 CONTROL выходных каскадов усилителя.

Данное решение способствует улучшению стабильности работы усилителя в мостовом режиме.
Каждый канал усилителя состоит из дифференциального каскада Q9…Q11 (Q14…Q16), усилителя напряжения Q7 (Q18) и выходного каскада Q1…Q6 (Q18…Q24).

Дифференциальный каскад имеет динамическую нагрузку в виде токового зеркала на элементах Q8, D5 (Q17, D6).

Обратите внимание, что другие цепи встроенной защиты выходного каскада отсутствуют, что сделано из соображений лучшего использования источника питания, к сожалению, в ущерб надежности.

Выводы 5 и 8 микросхемы соединяются с общим проводом по переменному току. В этом случае коэффициент передачи усилителя с отрицательной обратной связью составит:

Ku=20lg(1+R1/R2)= 20lg(1+R5/R4)=39 дБ.

Структурная схема ИС представлена на рис. 2.

Экспериментально определено, что сумма сопротивлений резисторов R1+R2 и R5+R4 равна 51,575 кОм. Зная коэффициент усиления, несложно вычислить, что R1=R5=51 кОм, а R2=R4=0,575 кОм.

Чтобы уменьшить коэффициент усиления микросхемы с ООС, обычно последовательно с R2 (R4) включают дополнительный резистор. В данном случае такому схемотехническому приему «мешают» открытые транзисторные ключи на транзисторах Q12 (Q13).

Но даже, если предположить, что ключи не оказывают влияния на коэффициент передачи с обратной связью, маневр по уменьшению коэффициента усиления незначителен – не более 3 дБ; в противном случае не гарантируется устойчивость усилителя, охваченного ООС.

Поэтому можно поэкспериментировать с изменением коэффициента передачи усилителя, учтя, что сопротивление дополнительного резистора лежит в пределах 100…240 Ом.

↑ Стереофонический и монофонический усилители на микросхеме TDA2822M

Широкий диапазон питающих напряжений 1,8…15 В позволяет «приспособить» микросхему для обширного круга портативных устройств с батарейным питанием.

Несложно изготовить как стереофонический усилитель, так и монофонический, с мостовым включением микросхемы.

При этом в стерео варианте выходная мощность при напряжении питания 6 В и использовании двух динамиков с сопротивлением 4 Ом составит 2х0,65 Вт, в мостовом варианте при напряжении питания 9 В и сопротивлении нагрузки 16 Ом позволяет получить 2 Вт выходной мощности. Во всех случаях коэффициент гармоник не превысит 0,2 %.

↑ Эксперименты со стереофоническим усилителем

проводились в соответствии со схемами, изображенными на рис. 3 и 8.
Стереофонический усилитель, показанный на рис. 3, может использоваться как с небольшими акустическими системами, так и с наушниками.

Кратко о назначении элементов. Резисторы R1 и R2 определяют входное сопротивление усилителя.
Конденсаторы С1, С2 в цепи ООС включены последовательно с резисторами R5, R6, которые позволяют в небольших пределах уменьшить коэффициент усиления в каждом из каналов усилителя. Как уже указывалось выше, сопротивление резисторов R5, R6 может находиться в диапазоне 100…240 Ом.

Поскольку на выходах УМЗЧ присутствует постоянное напряжение, примерно равное половине напряжения источника питания, соединение с нагрузкой выполнено через разделительные конденсаторы С3, С4.

На выходе каждого канала включены цепи Зобеля R3, C6 и R4, C7, обеспечивающие устойчивую работу усилителя. Кстати, без указанных цепей усилитель неработоспособен.

По цепи питания усилителя установлены два конденсатора: керамический С8 и оксидный С5.

Усилитель имеет следующие характеристики:
Напряжение питания Uп=1,8…12 В
Выходное напряжение Uвых=2…4 В
Потребляемый ток в режиме покоя Io=6…12 мА
Выходная мощность Pвых=0,45…1,7 Вт
Коэффициент усиления Ku=36…41 (39) дБ
Входное сопротивление Rвх=9,0 кОм
Переходное затухание между каналами 50 дБ.

С практической точки зрения для надежной эксплуатации усилителя целесообразно установить напряжение питания не более 9 В; при этом для нагрузки Rн=8 Ом выходная мощность составит 2х1,0 Вт, для Rн=16 Ом – 2х0,6 Вт и для Rн=32 Ом – 2х0,3 Вт. При сопротивлении нагрузки Rн=4 Ом оптимальным будет напряжение питания до 6 В (Pвых=2х0,65 Вт).

Коэффициент усиления микросхемы в 39 дБ даже с учетом небольшой корректировки резисторами R5, R6 в сторону уменьшения, оказывается чрезмерным для современных источников сигнала напряжением 250…750 мВ. Например, для Uп=9 В, Rн=8 Ом чувствительность со входа составляет около 30 мВ.

На рис. 4, а показана схема включения усилителя, позволяющая подключить персональный компьютер, MP3 плеер или радиоприемник с уровнем сигнала около 350 мВ. Для устройств с выходным сигналом 250 мВ сопротивления резисторов R1, R2 необходимо уменьшить до 33 кОм; при уровне выходного сигнала 0,5 В следует поставить резисторы R1=R2=68 кОм, 0,75 В – 110 кОм.

Сдвоенным резистором R3 устанавливают необходимый уровень громкости. Конденсаторы С1, С2 – переходные.

На рис. 4, б показано подключение к усилителю разъема для наушников. Резисторы R4, R5 устраняют щелчки при подключении стереотелефонов, резисторы R6, R7 ограничивают уровень громкости.

В процессе экспериментов я пытал питал УМЗЧ как от стабилизированного блока питания (на интегральной микросхеме LM317 и транзисторе BD912), рис. 5, так и от аккумуляторной батареи емкостью 7,2 А•ч на напряжение 12 В с источником питания на фиксированные напряжения, рис. 6.

Напряжение питания подается по возможности короткой парой свитых вместе проводов.
Правильно собранное устройство в наладке не нуждается.

Субъективная оценка уровня шумов показала, что при установке регулятора громкости на максимальный уровень шум едва заметен.
Субъективная оценка качества звуковоспроизведения производилась без сравнения с эталоном. Результат – звук неплохой, прослушивание фонограмм не вызывает раздражения.

Я ознакомился с форумами по микросхеме в Интернете, на которых встретил множество сообщений о поисках непонятных источников шумов, самовозбуждения и других неприятностей.
В результате разработал печатную плату, отличительной особенностью которой является заземление элементов «звездой». Фотовид печатной платы из программы Sprint-Layout показан на рис. 7.

При экспериментах на этой печатке ни с одним из описанных на форумах артефактов встретиться не удалось.

Детали стереофонического УМЗЧ на микросхеме TDA2822M
Печатная плата рассчитана на установку самых распространенных деталей: резисторов МЛТ, С2-33, С1-4 или импортных мощностью 0,125 или 0,25 Вт, пленочных конденсаторов К73-17, К73-24 или импортных МКТ, импортных оксидных конденсаторов.

Я применил недорогие, но надежные электролитические конденсаторы с низким импедансом, большим сроком службы (5000 часов) и возможностью работы при температуре до +105°С фирмы Hitano серий ESX, EHR и EXR. Следует помнить, что чем больше внешний диаметр конденсатора в серии, тем выше срок его службы.

Микросхема DA1 установлена в восьмивыводную панельку. Микросхему TDA2822M можно заменить на KA2209B (Samsung) или К174УН34 (ОАО «Ангстрем», г. Зеленоград) [2, 3]. ЧИП конденсатор С8 (SMD) размещен со стороны печатных дорожек.

Многие радиолюбители не без основания полагают, что лучше всего включать микросхемы в соответствии с Datasheet и использовать предлагаемые разработчиками печатные платы.
Ниже приведены схемы и печатные платы, выполненные на основе документации с единственной доработкой — для повышения устойчивости работы усилителя параллельно оксидному конденсатору по цепи питания включен пленочный (рис. 8, 9).

Детали типового стереофонического УМЗЧ
При установке элементов на печатную плату советую воспользоваться простыми технологическими приемами, описанными в Датагорской статье [4].

↑ Опыты с мостовым усилителем

В отличие от схемы стереофонического усилителя (рис. 3), в которой предполагается, что разделительные конденсаторы имеются на выходе предыдущего устройства, на входе мостового усилителя включен разделительный конденсатор, определяющий нижнюю частоту, воспроизводимую усилителем.

В зависимости от конкретного применения емкость конденсатора С1 может быть от 0,1 мкФ (fн = 180 Гц) до 0,68 мкФ (fн = 25 Гц) и более. При емкости С1, указанной на принципиальной схеме нижняя частота воспроизводимых частот составляет 80 Гц.

Внутренние резисторы, подключенные к инвертирующим входам усилителя через разделительный конденсатор С2 соединены между собой, что обеспечивает на выходах равные по величине, но противоположные по фазе сигналы.

Конденсатор С3 осуществляет коррекцию частотной характеристики усилителя на высоких частотах.

Поскольку потенциалы выходов усилителя по постоянному току равны, стало возможным непосредственное подключение нагрузки, без разделительных конденсаторов.

Назначение остальных элементов описывалось ранее.

Для стереофонического варианта потребуется два мостовых усилителя на микросхеме TDA2822M. Схему включения несложно получить, взяв за основу рис. 4.

Надежная работа усилителя в мостовом режиме обеспечивается выбором соответствующего напряжения питания в зависимости от сопротивления нагрузки (см. таблицу).

Все детали мостового усилителя размещены на печатной плате размерами 32 х 38 мм из односторонне фольгированного стеклотекстолита толщиной 2 мм. Чертеж возможного варианта платы изображен на рис. 11.

Принципиальная схема типового мостового УМЗЧ и размещение элементов на печатной плате показаны соответственно на рис. 12 и 13.

Несомненно, старая и добрая микросхема TDA2822M еще послужит радиолюбителям во многих интересных конструкциях.
Выбирайте любую из предложенных разводок печатных плат. Лично мне по душе печатные платы с радиальным расположением общих проводников.
В настоящее время имеется солидный список «последователей» TDA2822M: TDA7050, TDA7052, TDA7053, TDA7231, TDA7233, TDA7233D, K174УН31 и другие интегральные схемы.

Читайте также  Провод силовой для проводки

↑ Файлы

Схемы и печатные платы можно взять здесь:
▼ Make_the_amplifier_on_microcircuit_TDA2822M.7z 28,61 Kb ⇣ 296

↑ Список упомянутых источников

Камрад, рассмотри датагорские рекомендации

🌼 Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.

Корпуса микросхем усилителей мощности

интегральные усилители мощности усилители на микросхемах TDA1554 TDA2030 TDA2050 TDA2052 TDA7381 TDA7382 TDA7383 TDA7384 TDA7385 TDA7386 TDA7560 схемы подключения характеристики интегральных усилителей мощности чертежи печатных плат

Мультимедийный усилитель на базе TDA1554 2.1

Данный усилитель предназначен для создания системы 2.1, т.е. 2 широкополосных усилителя + 1 более мощный, предназначенный для воспроизведения только НЧ сигнала.
Принципиальная схема усилителя приведена на рисунке 1, чертеж печатной платы — рисунке 2 (не в масштабе). Взять чертеж в формате lay можно тут, в формате JPG — тут (плата уже в зеркальном виде, т.е. готова к производству лазерным утюгом).


Рисунок 1.


Рисунок 2.

ПЕЧАТНАЯ ПЛАТА ДЛЯ ВЫСОКОКАЧЕСТВЕННОГО УСИЛИТЕЛЯ МОЩНОСТИ

Этот мультимединый усилитель предназначен для создание средненькой аудиосистемы, предназначенной для эксплуатации в стационарных условиях..
Основой усилителя служат популярные микросхемы TDA2030 и не очень популярные TDA2052. Ну а поскольку речь зашла об этих микросхемах, то уж лучше остановится подробнее на каждой из них.
TDA2030 по справочнику относится к разряду Hi-Fi усилителей, однако сказанно это слишком громко — звук у нее несколько не Hi-Fi. Гораздо приятней звучит ее боле мощный брат — TDA2050. По цокелевке она полностью совпадает с TDA2030 поэтому произвести замену можно не изменяя на печатной плате практически ничего.
Принципиальная схема усилителя на микросхеме TDA2030 приведена на рисунке 1, на рисунке 2 — TDA2050 — рисуноки импортированы из даташита. Единственно что изменено в схеме — нет диодов с выхода м/с на плюс-минус питания. Диоды эти используются для уменьшения самоиндукции динамической головки, а использовать данную схему с головками с «тяжелым» дифузором решится мало кто, то и диоды были попросту исключены из схемы. Большая партия плат, выпущенных без данных диодов показала, что усилитель работает так же устойчиво как и с ними, т.е. на работу схемы влияния оказано не было. Однако постоянные вопросы «А почему нет диодов?» уже достали основательно на готовых платах мы их все же устанавливаем.


Рисунок 1.


Рисунок 2.

Разумеется, что номиналы в цепи ООС разные, однако их отношение практически одинаково, значит коф. усиления у них одинаков. Кроме этого вариант ООС TDA2050 более предпочтителен, поскольку через меньшие резисторы течет больший ток, следовательно она менее критична к наводкам и внешним помехам. И еще — мы позволили себе R5 зашунтировать последовательно соединенными резистором на 100 кОм и конденсатором на 100 пкФ. Это увеличивает устойчивость усилителя и обеспечивает спад коф. усиления на частотах выше 20 кГц.
Питание усилителя выбраннно однополярным посокольку ухудшения качества звука почти не происходит, а вот дополнительные горизонты этот факт открывает:
— происходит некоторая экономия электролитических конденсаторов по питанию;
-при создании мультимедийного усилителя с использованием двуполярного питания плюсовая «ветка» питания используется для питания СЧ-ВЧ звена как усилитель с однополярным питанием, а плюсовая и минусовая «ветки» — как питания усилителя для сабвуфера. Таким образом схемотехника усилителя довольно не плохо упрощается.
Если же нет желания заморачиватся с двуполяркой, то можно использовать мостовое включение микросхем, только давайте поправочку на то, что в мостовом включении от мс требуется гораздо большей мощности. Например при использовании СЧ-ВЧ звена с TDA2030 мостовой усилитель должен использоваться с TDA2050 (как тут), если же усилители СЧ-ВЧ на юазе TDA2050, то мостовой усилитель уже надо брать на базе TDA2052.
На рисунке 3 приведен эскиз печатной платы для одной TDA2030, архив с чертежом lay тут, с jpg тут (палата уже перевернута, т.е. подготовлена для лазерного утюга).


Рисунок 3.

Ну и несколько слов об усилителе на микросхеме TDA2052. Это интегральный усилитель мощности позволяющий развить на нагрузке 4 Ома до 40 Вт. Принципиальная схема усилителя приведена на рисунке 4.


Рисунок 4.

Это усилитель с двумя входами, но для упрощения конструкции второй вход попросту не задействован. Эскиз печатной платы приведен на рисунке 5. На рисунке 6 — эскиз мостового включения TDA2052, ну а на рисунке 7 эскиз печатной платы собственно мультимедийного усилителя на TDA2030 ( TDA2050 ) и мостового усилителя на TDA2052.
Чертеж печатной платы усилителя мощности один на всех, в фоормате lay тут, в jpg тут.


Рисунок 5.


Рисунок 6.


Рисунок 7.

Немного дополнительной информации тут и тут.

Интегральные четырехканальные усилители мощности.

Как быстро собрать усилок на 4 канала, а заодно не боятся ремонтировать автомобильную технику будет тут расказанно.

Речь пойдет о ряде микросхем, имеющих одну схему включения, но различные характеристики. Разумеется печатка у них тоже одна. Ну начнем по по порядку:
В автомобильной технике довольно часто применяются микросхемы TDA7381, TDA7382, TDA7383, TDA7384, TDA7385, TDA7386, несколько реже TDA7560. Все эти чудовинки практически имеют одну схему включения, приведенную на рисунке 1, а вот характеристики у них несколько разнятся, что собственно и отражено в таблице 1.


Рисунок 1.

Как я делал бюджетный усилитель на TDA2050 для старых колонок

Под катом фото, описание процесса, немного схем и детальное описание некоторых моментов создания этого чуда.

Вот попали ко мне старые советские колонки S-50(если руки дойдут – хочу модернизировать их, но пока что есть, то есть), их ТХ:

  • Паспортная электрическая мощность не менее 50 Вт
  • Номинальная электрическая мощность 25 Вт
  • Номинальное электрическое сопротивление 8 Ом
  • Диапазон воспроизводимых частот не уже 40-20000 Гц

И в комплекте с ними мне достался великолепный усилитель Одиссей У-010, который сгорел. Разобрав его, понял, что с моим-то мизерным опытом, ничего не сделаю. Немного помучил гугл, посмотрел на профильных сайтах и вот оно решение — сделаем себе сами усилитель на базе микросхемы TDA2050, как замену старому. Ибо «Handmade и DIY навеки», да и не так уж сложно. ТХ TDA2050:

  • Номинальная выходная мощность 32Вт
  • Интегрированная защита от КЗ
  • Интегрированная защита от перегрева
  • Питание до 50В от однополярного БП

(Сразу замечание, возможно, мне попалась подделка, однако при КЗ, одна TDA2050 взорвалась так, что осколком микросхемы оставила на моем предплечье довольно глубокую рану, повезло, что не в глаз, будьте внимательны, Техника безопасности превыше всего!)

Корпус

Для начала определимся с корпусом. Как вариант, использование корпуса от сгоревшего Одиссей У-010, отпал сразу, по причине размера того корпуса с небольшую тумбочку (460х360х120). Нам же подойдет что-то более компактное. Сначала смотрел в сторону алюминиевых корпусов, но быстро отказался от затеи ввиду цены этих самых корпусов. Те, что мне нравились от 100$, что уже никак не вписывается в «бюджетный усилитель». Поэтому был выбран промежуточный вариант «временного» самого дешевого корпуса, в котором он стоит уже как 6 месяцев. Этим корпусом стал «Z16 Черный» (легко находится в гугле по этому запросу).
Габариты (H/W/L): 89 x 257 x 148

Схема

Далее надо было определиться с самой схемой, ведь под TDA2050 их огромное количество. Выбор пал на так называемую «схему Скифа». Да и обычные компоненты, не SMD, для меня стали плюсом, ведь опыта в пайке SMD и самой паяльной станции не было, только обычный паяльник на 40Вт.
Итак, сама схема (рисунок платы для этой схемы можно скачать по ссылке в конце статьи):

Обращаю ваше внимание на то, что для этой схемы нужно ДВУПОЛЯРНОЕ питание.
Размер готовой платы под один канал усилителя: 35х45мм (а их нужно 2), что вполне компактно в результате.

Блок питания

Итак, для питания 2-х каналов по 32 Вт, нам нужно 64 Вт(хотя это все условно и можно меньше). По счастливой случайности в закромах валялся без дела трансформатор ТПП-287-220-50 мощностью 90 ВА, и с него как раз легко снять двуполярное питание. Фото и схема:

Для того, что бы снять с него по 35,26 В переменного тока со средней точкой, необходимо соединить выводы с номерами: 12-15, 11-20, 13-18, 14-21, 17-16, а снимать напряжение мы будем с 16, 19, 21 выводов.
Далее схема выпрямителя:

Вот пример самой платы. Хотя я её сделал, просто нарисовав перманентным маркером на текстолите, и вытравив, без всякого ЛУТа. Все довольно просто.

В случае с трансформатором ТПП-287-220-50 нужно соединить 16 вывод трансформатора с входом «средняя точка» платы выпрямителя. 19 и 21 в оставшиеся два, какой куда решать вам, и припаять перемычку от входа средней точки к площадке между конденсаторами. После подключения можно проверять напряжения на выходах выпрямителя. Между + и – должно быть от 42 до 50 В, в зависимости от напряжения в сети. Между «+» и землей, а так же землей и «-» должны быть одинаковые значения. Если у вас нет в наличии чего-то из элементов для выпрямителя, то не спешите, как разберемся с платой усилителя, поедем на радиорынок брать все кучей. Список всех элементов будет далее по тексту.

Усилитель

Для начала травим две вот такие платы:

И пока они травятся, можем съездить в ближайший магазин радиокомпонентов или радиорынок.

Итак, нам понадобятся на весь усилитель:

Блок питания:

  • Эл. литические конденсаторы минимум 10 000 мкФ х 25 (или больше) В
  • Диодный мост практически любой, до 10А (с огромным запасом) и более 50 В. (я взял на 10А и 400В – стоит копейки)

Сами усилители (все посчитано на 1 плату, соответственно берете в 2 раза больше):
Конденсаторы эл. литические:

  • С7, С8 – 1000мкФ x 25 В
  • С3 – 22мкФ x 25 В

Конденсаторы керамические:

  • С2- 220пФ

Конденсаторы пленочные:

  • С1, С4, С6 – 4,7мкФ
  • С5 — 0,47мкФ

Резисторы (все по 0.125 Вт, а R6 и R7 2Вт):

  • R1, R3 – 2,2k
  • R2, R5 – 22k
  • R4 – 680
  • R6 – 2,2
  • R7 – 10

Ну и конечно сама TDA2050, возьмите штуки 3, что бы запас был, а то мало ли.
Ещё вам понадобится:

  • 2 RCA входа,
  • 4 зажима под выход на колонки
  • выключатель
  • и сдвоенный переменный резистор на 50 кОм
  • ручка регулятора на этот самый резистор (но я просто снял алюминиевую со старого радио)
  • Радиатор от старого процессора (если у вас нет ненужного)

После чего сверлим и собираем по схеме. У меня все заработало сразу, вот только был треск в динамиках, но об этом я расскажу позже. Единственное, что хочу заметить, так это радиаторы. Я пошел легким путем и просто разрезал, обычной ножовкой, старый радиатор от какого-то AMD пополам, и на каждую половину прикрутил микросхему, предварительно просверлив и нарезав резьбу. Вот только мои микросхемы не на самих платах расположены, а на отдельно стоящих радиаторах, соединены с платами небольшими шлейфами примерно вот так:

А катушка L1 по схеме мотается очень просто, берете одну жилу с витой пары, и мотаете 5 витков прямо на резисторе R7, концы припаиваете к выводам этого же резистора.
Вот и все, с электроникой закончили, к этому моменту у вас должны быть готовы 3 платы: выпрямитель и 2 одинаковые платы усилителя на оба канала.

Компоновка и сборка

А после этого можем приступать к сборке всего этого уже в корпусе. Итак, для начала лучше разметить и высверлить отверстия для крепления плат, трансформатора, радиаторов охлаждения микросхем, входов-выходов. Кстати, если вы купили прямоугольный выключатель для своего усилителя, есть маленький хинт, как под него легко сделать отверстие на панели. Для начала размечаете размеры вашего будущего отверстия прямо на панели, и сверлите тонким сверлом аккуратную дырочку внутри периметра этого самого отверстия. А теперь самое интересное: возьмите самую обычную хлопковую нить (желательно потолще, тонкая часто рвется в процессе), проденьте в отверстие и, натянув нить, можно, как полотном лобзика, вырезать любую форму. Вот только лобзиком вы вырезаете, а здесь, как бы «расплавляете». Именно поэтому лучше вырезать немного меньшее отверстие, что бы потом надфилем довести его до ровного. Ещё желательно сделать вентиляционные отверстия недалеко от радиаторов. Я перестраховался и ставил ещё кулер, который оказался бесполезен, усилитель сильно не греется даже на максимальной громкости. Включаю только тогда, когда усилитель летом на улице работает.

Читайте также  Fat32 на stm32

Моя компоновка выглядит так (и хотя куча проводов и вообще не красиво, но все работает как часы уже полгода при регулярном использовании):

Крайняя слева плата – выпрямитель, остальные 2 – усилители.

Вот и все, можно начинать собирать и спаивать. Я спаивал прямо в корпусе, без всяких зажимов, штекеров и прочего. Возможно, кто-то захочет сделать все удобнее.

Схема подключения регулятора громкость (два резистора — это один сдвоенный):

Основные рекомендации:

  • Выходы с усилителей лучше выполнить как можно более толстым кабелем.
  • Если после сборки и спайки в колонках слышите отчетливый шум – проверяйте конденсаторы на платах усилителя
  • Если треск в колонках, то проверяйте дорожки питания на усилителях – я плохо отмыл флюс кислотный, и если присмотреться в темноте были видны маленькие искры между дорожками, как только отмыл плату от флюса, треск пропал.

В итоге выглядит все так:

Расходы:

  • Все конденсаторы и резисторы в сумме – 4$
  • Микросхемы TDA2050(3 шт) – 2$
  • Корпус – 3$
  • Все штекера, гнезда, ручки, выключатели – 7-8$

Итого 17$ и куча положительных эмоций «Оно работает!»

Архив со всеми схемами и рисунками плат в формате Sprint-Layout 6: dl.dropbox.com/u/47591852/usilitjel_habr.rar

PS Это мое первое рабочее устройство, собранное для проверки работоспособности и надежности. В ближайшее время планирую его переработать в новом корпусе и в более аккуратном исполнении. Если Вам будет интересно — то будет продолжение.

Схемотехника и микросхемы для современных УМЗЧ класса D

Увеличение КПД усилителей мощности звуковой частоты (УМЗЧ) – одна из важных задач разработчика носимых (мобильных) и ряда других аналоговых и цифровых устройств. Зачастую лучшим решением этой задачи оказывается применение УМЗЧ класса D. В последние годы появилось множество специализированных микросхем УМЗЧ класса D с высоким КПД (почти 100%) и небольшим коэффициентом нелинейных искажений (заметно менее 10%). В статье описаны основные принципы работы и схемотехника усилителей класса D на микросхемах УМЗЧ разных фирм.

На протяжении двух десятков лет схемотехника УМЗЧ развивается в двух взаимоисключающих направлениях. Во-первых, это улучшение субъективного качества воспроизведения звука (как правило, за счет уменьшения КПД усилителя), а во-вторых — повышение экономичности (КПД) усилителя и уменьшение его размеров при сохранении высоких показателей качества звука.
В выходных каскадах усилителей первого типа используются мощные полевые транзисторы или радиолампы (Hi-End), работающие в линейном режиме — классе А или его модификациях.
Второе направление развивается главным образом в секторе носимой и автомобильной звуковоспроизводящей аппаратуры. Именно здесь широко используются усилители класса D. В высококачественной стационарной звуковоспроизводящей аппаратуре класс D также начал использоваться — чаще всего в усилителях для сабвуфера, где из-за малой полосы пропускания удается достичь весьма небольших искажений.

Заметно расширить применение УМЗЧ класса D позволило создание микросхем, содержащих не только драйвер, но и выходные ключи на МДП-транзисторах. Примером могут служить микросхемы серии MP77хх фирмы MPS (Monolithic Power Systems).
Всего на момент написания статьи таких микросхем было пять: MP7720, MP7722, MP7731, MP7781 и MP7782. На номинальную выходную мощность косвенно указывает предпоследняя цифра в наименовании микросхемы (см. табл. 1).

Номинальная мощность,Вт (Uпит = 24 В, нагрузка 4 Ом)

50 (нагрузка 6 Ом)

Коэффициент нелинейных искажений (THD+N), % (на частоте 1 кГц при вых. мощности 1 Вт)

0,06 (нагрузка 8 Ом)
0,16 (нагрузка 4 Ом)

Частота преобразования ШИМ, кГц

Сопротивление канала выходных МДП-ключей в состоянии насыщения, Ом

Динамический диапазон, дБ

SOIC8 или PDIP8

Напряжение питания всех микросхем – 7,5…24 В; эффективное напряжение входного сигнала – 1 В.

Исключением является микросхема MP7782, развивающая 50 Вт на нагрузке 6 Ом. Пиковая выходная мощность всех микросхем этой серии вдвое больше номинальной. В таблице 1 приведены также и другие важные парамет­ры микросхем MP77хх. Для примера рассмотрим подробнее УМЗЧ на микросхемах MP7722 и MP7782.

Область применения этой микросхемы — DVD-проигрыватели, домашние стереосистемы, мультимедийные ПК, телевизоры — как обычные, так и плоскопанельные (LCD и PDP).
Микросхема MP7722 выпускается в корпусе для поверхностного монтажа TSSOP20F, размеры которого вместе с выводами приблизительно равны 6,5 × 6,5 мм при высоте 1,2 мм. УМЗЧ на этой микросхеме имеет номинальную мощность 20 Вт при сопротивлении нагрузки 4 Ом и напряжении питания 24 В. Диапазон воспроизводимых частот — 20 Гц….20 кГц. Усилитель имеет КПД 90% при коэффициенте нелинейных искажений не более 0,1% для всего диапазона частот (при выходной мощности 1 Вт). В каждый канал микросхемы встроены по два выходных ключа на МДП-транзисторах, которые включены последовательно по питанию (полумостом). Принципиальная схема стереофонического УМЗЧ класса D на микросхеме MP7722 изображена на рисунке 1, а назначение деталей сведено в таблицу 2.

Коэффициент усиления по напряжению любого канала микросхемы MP7722 так же, как и у операционных усилителей при инверсном включении, равен отношению сопротивлений резистора ООС и ограничивающего резистора на входе этого канала. AV1 и AV2 (именно так обозначены коэффициенты усиления по напряжению в документации фирмы MPS) для каждого из каналов можно рассчитать по формулам:

Знаки «минус» в этих формулах показывают, что выходные сигналы микросхемы противофазны входным.
Одна из особенностей микросхемы MP7722 — зависимость частоты ШИМ от напряжения питания и уровня сигнала. Поэтому определяющей при расчетах является частота ШИМ без входного сигнала (так называемая idle frequency). Она задается раздельно для каждого из каналов времязадающими конденсаторами (CINT1, CINT2) и резисторами ООС (RFB1, RFB2). Зависимость частоты ШИМ от напряжения питания микросхемы и номиналов ряда элементов схемы приведена в таблице 3.

Номера каналов в обозначении деталей в этой таблице не указаны.
Наличие у микросхемы MP7722 входов разрешения позволяет легко организовать дежурный режим и режим приглушения (MUTE). Для этого достаточно на выводы 6 (для приглушения — 10) подать потенциал менее 0,4 В. В нормальном режиме на этих выводах должно быть напряжение более 2 В.

Область применения этой микросхемы шире, нежели у MP7722. Кроме DVD-проигрывателей, домашних стереосистем, мультимедийных ПК и телевизоров, микросхема MP7782 может использоваться в сабвуферах. Она так же, как и MP7722, выпускается в корпусе для поверхностного монтажа TSSOP20F и имеет с этой микросхемой много общего, несмотря на то, что микросхема MP7782 — это монофонический УМЗЧ класса D с мостовым выходом. На нагрузке 6 Ом УМЗЧ на MP7782 способен развивать выходную мощность 50 Вт.
Учитывая, что МС MP7782 имеет мостовой выход, можно говорить (см. [1]), что она имеет два канала усиления (УМЗЧ), работающих в противофазе. Наличие двух каналов усиления в MP7782, тот же корпус и похожая цоколевка сближает эту микросхему с рассмотренной выше MP7722. Принципиальная схема монофонического УМЗЧ класса D на этой микросхеме показана на рисунке 2.

Сравнивая эту схему со схемой УМЗЧ на микросхеме MP7722 (см. рис. 1), легко разобраться в назначении деталей. Частота ШИМ в отсутствие входного сигнала здесь так же зависит от напряжения питания (VDD), емкостей конденсаторов C4, C10 и C13 и сопротивлений резисторов R1, R3, R4 и R8. При этом времязадающим конденсатором считается C4. Емкостью этого конденсатора задается оптимальное значение частоты ШИМ без входного сигнала (400…600 кГц) при номинальных емкостях конденсаторов C10, C13 в пределах 1…2,2 пФ.

В микросхемах УМЗЧ класса D третьего поколения, выпускаемых Texas Instruments, используется технология (фирменное ноу-хау), которая позволяет значительно снизить амплитуду и длительность импульсов ШИМ между выходами, а значит, существенно уменьшить габариты дросселя ФНЧ, а в большинстве случаев отказаться от него совсем. В чем суть этого ноу-хау?
Для ответа на этот вопрос рассмот­рим основные принципы построения и работы УМЗЧ класса D третьего поколения. Во-первых, такой усилитель должен иметь мостовой выход (т.е. иметь два выхода — прямой и инверсный). Во-вторых, сигналы звука на выходах (прямом и инверсном) должны быть противофазны. И, наконец, главное: импульсные сигналы ШИМ на этих выходах должны быть синфазны. Последнее достигается практически только в режиме покоя (без сигнала).
Упрощенная схема УМЗЧ класса D с мостовым выходом без ФНЧ показана на рисунке 3.

Он содержит два выходных усилителя (канала), НЧ-сигналы на выходах которых имеют одинаковый размах, но противоположные фазы. В каждом канале имеется свой ШИМ. При этом прямоугольные сигналы на выходе схемы в режиме покоя синфазны или имеют небольшой фазовый сдвиг (см. рис. 4).

Синфазность импульсов ШИМ на выходах достигается с помощью инвертора (см. рис. 3) с коэффициентом усиления по напряжению, равным 1 (KU = 1). В результате, на громкоговоритель в режиме покоя в худшем случае поступают симметричные противофазные импульсы малой длительности (см. рис. 4). Для их сглаживания обычно достаточно собственной емкости и индуктивности громкоговорителя. Ток нагрузки в режиме покоя в схеме на рисунке 3 заметно ниже, чем в обычном мостовом УМЗЧ класса D. В режиме усиления входного НЧ-сигнала звука ШИМы работают в противофазе, т.е. если длительность импульсов на выходе одного ШИМ увеличивается, то на выходе другого уменьшается, и наоборот (см. рис. 4). Это приводит к асимметрии импульсов, прикладываемых к нагрузке, а значит, к появлению в токе громкоговорителя составляющей, величина которой зависит от разности длительностей импульсов ШИМ-1 и ШИМ-2. Эта составляющая меняется по закону входного НЧ-сигнала звука и будет преобразовываться громкоговорителем в акустические колебания. Импульсная составляющая сглаживается индуктивностью и емкостью громкоговорителя. Только в некоторых случаях в ФНЧ для очень мощных усилителей может потребоваться дополнительный дроссель с небольшой индуктивностью. Иногда для этих целей достаточно на соединительные провода или перемычки между мостовым выходом микросхемы надеть ферритовые трубочки («бусинки»).
Описанное ноу-хау используется в микросхемах семейства TPA20хх (таких, как TPA2000D1, TPA2010D1, TPA2012D2, TPA2013D1, TPA2032D1 и т.п.). Эти микросхемы — не очень мощные, но имеют малые габариты и высокий КПД. Они предназначены для переносной аппаратуры, оргтехники, электронных игрушек и подобных малогабаритных устройств с автономным питанием. Эти микросхемы можно встретить также в сотовых телефонах, коммуникаторах (PDA), ноутбуках, устройствах GPS и другой аппаратуре с батарейным питанием.
Одна из последних разработок Texas Instruments — микросхема УМЗЧ TPA2013D1. Рассмотрим ее подробнее.

Микросхема TPA2013D1 рассчитана на применение в носимых (мобильных) устройствах с батарейным питанием и имеет встроенный повышающий преобразователь, который позволяет поддерживать в нагрузке постоянную мощность при значительном изменении напряжения питания.
Так, при питании от литий-ионных аккумуляторов с напряжением от 2,3 до 4,8 В УМЗЧ может поддерживать постоянную выходную мощность 1,5 Вт. При напряжении питания 3,6 В усилитель на TPA2013D1 развивает мощность 2,7 Вт на нагрузке 4 Ом или 2,2 Вт на нагрузке 8 Ом. Микросхема имеет КПД 85%. Диапазон напряжения питания (VDD) — от 1,8 до 5,5 В.
Микросхема TPA2013D1 выпускается только для поверхностного монтажа в корпусах QFN размером 4 × 4 мм с 20 плоскими выводами (TPA2013D1RGP) или WCSP размером 2,275 × 2,275 мм с 16 шариковыми выводами (TPA2013D1YZH). Максимальная выходная мощность микросхем в корпусах QFN и WCSP заметно различается и зависит от температуры окружающей среды (см. табл. 4).