Контроллер заряда солнечной батареи на ltc4357

Datasheet Linear Technology LTC4357 — Даташит

Positive High Voltage Ideal Diode Controller


Positive High Voltage
Ideal Diode Controller
Features Description Reduces Power Dissipation by Replacing a Power
Schottky Diode with an N-Channel MOSFET
n 0.5Вµs Turn-Off Time Limits Peak Fault Current
n Wide Operating Voltage Range: 9V to 80V
n Smooth Switchover without Oscillatio No Reverse DC Current
n Available in 6-Lead (2mm Г— 3mm) DFN and
8-Lead MSOP Packages The LTCВ®4357 is a positive high voltage ideal diode controller that drives an external N-channel MOSFET to replace a
Schottky diode. When used in diode-OR and high current
diode applications, the LTC4357 reduces power consumption, heat dissipation, voltage loss and PC board area. n Applications n n n N + 1 Redundant Power Supplies
High Availability Systems
AdvancedTCA Systems
Telecom Infrastructure
Automotive Systems The LTC4357 easily ORs power sources to increase total
system reliability. In diode-OR applications, the LTC4357
controls the forward voltage drop across the MOSFET to
ensure smooth current transfer from one path to the other
without oscillation. If the power source fails or is shorted,
a fast turn-off minimizes reverse current transients.
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and
Hot Swap is a trademark of Linear Technology Corporation. All other trademarks are the …

Корпус / Упаковка / Маркировка


Количество каналов 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Demo Boards DC1203A DC1203A DC1203A DC1203A DC1203A DC1203A DC1203A DC1203A DC1203A DC1203A DC1203A DC1203A DC1203A DC1203A DC1203A DC1203A DC1203A DC1203A DC1203A
Design Tools LTspice File LTspice File LTspice File LTspice File LTspice File LTspice File LTspice File LTspice File LTspice File LTspice File LTspice File LTspice File LTspice File LTspice File LTspice File LTspice File LTspice File LTspice File LTspice File
Diode Off with Back-to-Back FETs? нет нет нет нет нет нет нет нет нет нет нет нет нет нет нет нет нет нет нет
Экспортный контроль нет нет нет нет нет нет нет нет нет нет нет нет нет нет нет нет нет нет нет
Ideal Diode Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel Single, External, N-Channel
Internal FET нет нет нет нет нет нет нет нет нет нет нет нет нет нет нет нет нет нет нет
Рабочий диапазон температур, °C от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от -40 до 125 от -40 до 125 от -40 до 125 от -40 до 125 от -40 до 125 от -40 до 85 от -40 до 85 от -40 до 85 от -40 до 85 от -40 до 85 от -55 до 125 от -55 до 125 от -55 до 125 от -55 до 125
Supply for FET Gate drive Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump Internal Charge Pump
Total Quiescent Current, мА 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
Typical Current Capability, A 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Vin Max, В 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
Vin Min, В 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Экологический статус

RoHS Совместим Совместим Совместим Совместим Совместим Совместим Совместим Совместим Совместим Совместим Совместим Совместим Совместим Совместим Совместим Не совместим Совместим Не совместим Совместим

Design Notes

Powering Altera ArriaВ 10 FPGA andВ Arria 10 SoC: Tested
and Verified Power Management Solutions
Design Note 549
Afshin Odabaee
FPGA development kits allow system developers to
evaluate an FPGA without having to design a complete
system. Figures 1 and 2 show Altera’s new 20nm
Arria 10 FPGAs and Arria 10В SoCs (System-on-Chip)
development boards. These boards are tested and
verified by Altera, exemplifying best design practices
in layout, signal integrity and power management.
Power Management for Core, System and I/O
The power management solution for high end FPGAs,
including the Arria 10, should be carefully selected.
A well thought-out power management design can
reduce PCB size, weight and complexity, as well as
lower power consumption and cooling costs. And it
is essential to achieve optimal system performance.
ForВ example, the 0.95V at 105A supplied by the 12V
DC/DC regulator powering the core of the Arria 10 GX
FPGA in Figure 1 has several features that complement
the power saving schemes of the SoC: Figure 1. Arria 10 GX FPGA Development Kit …


Avoid Debugging Cycles in Power Management for FPGA,
GPU and ASIC Systems
Afshin Odabaee When it comes to designing FPGA, GPU or ASIC controlled systems, the number of
design challenges related to power management and analog systems pale in comparison
to those related to digital design. Nevertheless, it is risky to assume that power system
design can be left to “later,” or taken in line with digital design. Even seemingly innocuous
problems in power supply design can significantly delay the release of a system, as any
added time to the power system debugging cycle can halt all work on the digital side.
A good way to put DC/DC regulation
issues to rest is to use a verified development kit offered by the FPGA, GPU or
ASIC vendor. Often, the design itself or
a similar design is available as a board/
kit by the suppliers of power products
and FPGA, GPU and ASIC manufacturers. Using a tested and verified kit unburdens
system designers of most power system
and analog issues, allowing them instead
to focus their energies on configuring the
complex digital systems. The optimum
power system layout is taken care of
before significant design is undertaken. THOUGHTFUL POWER MANAGEMENT
IS CHALLENGING AT THE START Every design task is initially daunting,
and power management design is no
exception. This is the case when power is …

design features Low IQ Ideal Diode Controller with Reverse Input Protection
for Automotive and Telecom Power Solutions
Meilissa Lum Blocking diodes are widely used in power supplies to solve a variety of problems.
In automotive systems, a series blocking diode protects against accidental reverse
battery connections when the battery is replaced or the car is jump started. High
availability systems and telecom power distributions employ blocking diodes to
achieve redundancy by paralleling power supplies. Diodes are also used to prevent
discharge of reservoir capacitors in situations where some temporary holdup of
output voltage is necessary to ride through input dropouts or noise spikes, or to
allow the load to gracefully power down when the input supply abruptly fails.
While blocking diodes are easy to understand and apply, their forward drop results
in significant power dissipation, making
them unsuitable in both low voltage and
high current applications. In low voltage
applications, the forward voltage drop
becomes a limiting factor for a circuit’s
operating range, even when using a
Schottky barrier diode. At least 500mV of
supply headroom is lost across a series
diode—a substantial degradation in 12V
automotive systems where the supply can
drop to as low as 4V during cold crank.
Since diodes operate at a fixed voltage …

DESIGN IDEAS L 9V to 80V Ideal Diode Reduces Heat
Dissipation by Order of Magnitude
by Meilissa Lum
over Schottky
High availability systems often employ
parallel-connected power supplies
or battery feeds to achieve redundancy and enhance system reliability.
Schottky ORing diodes have long been
used to connect these supplies at
the point of load. Unfortunately, the
forward voltage drop of these diodes
reduces the available supply voltage
and dissipates significant power at
high currents. Costly heat sinks and
elaborate layouts are needed to keep
the Schottky diode cool.
A better solution is to replace the
Schottky diode with a MOSFET-based
ideal diode. This reduces the voltage
drop and power dissipation, thereby
reducing the complexity, size and cost
of the thermal layout and increasing …

Солнечная батарея на балконе: тестирование контроллера заряда

В предыдущей части была рассмотрена и проверена работа платы BMS, обеспечивающей корректный заряд литий-ионного аккумулятора. Китайская почта наконец доставила Solar charge controller, так что пора протестировать и его.

Результаты тестирования под катом.

Контроллер заряда (Solar charge controller)

Данное устройство является основным во всей системе — именно контроллер обеспечивает взаимодействие всех компонентов — солнечной панели, нагрузки и батареи (он нужен, только если мы хотим именно накапливать энергию в батарее, если отдавать энергию сразу в электросеть, нужен другой тип контроллера grid tie).

Контроллеров на небольшие токи (10-20А) на рынке довольно-таки много, но т.к. в нашем случае используется литиевая батарея вместо свинцовой, то нужно выбирать контроллер с настраиваемыми (adjustable) параметрами. Был куплен контроллер, как на фото, цена вопроса от 13$ на eBay до 20-30$ в зависимости от жадности местных продавцов. Контроллер гордо называется «Intelligent PWM Solar Panel Charge Controller», хотя по сути вся его «интеллектуальность» заключается в возможности задания порогов заряда и разряда, и конструктивно он не сильно отличается от обычного DC-DC конвертора.

Подключение контроллера весьма просто, у него всего 3 разъема — для солнечной панели, нагрузки и аккумулятора соответственно. В качестве нагрузки в моем случае была подключена светодиодная лента на 12В, аккумулятор все тот же тестовый с Hobbyking. Также на контроллере есть 2 USB-разъема, от которых можно заряжать различные устройства.

Все вместе выглядело так:

Перед тем как использовать контроллер, его надо настроить. Контроллеры этой модели продаются в разных модификациях для разных типов батарей, отличия скорее всего лишь в предустановленных параметрах. Для моей литиевой батареи c тремя ячейками (3S1P) я установил следующие значения:

Как можно видеть, напряжение отключения заряда (PV OFF) установлено на 12.5В (исходя из 4.2В на ячейку можно было поставить 12.6, но небольшой недозаряд положительно сказывается на количестве циклов батареи). Следующие 2 параметра — отключение нагрузки, в моем случае настроено на 10В, и повторное включение заряда на 10.5В. Минимальное значение можно было поставить и меньше, до 9.6В, небольшой запас был оставлен для работы самого контроллера, который питается от той же батареи.


С разрядом проблем ожидаемо не было. Заряда батареи хватило чтобы зарядить планшет, также горела светодиодная лента, и при пороговом напряжении в 10В, лента погасла — контроллер отключил нагрузку, чтобы не разряжать батарею ниже заданного порога.

А вот с зарядом все пошло не совсем так. Вначале все было хорошо, и максимальная мощность по ваттметру составила около 50Вт, что вполне неплохо. Но ближе к концу заряда подключенная в качестве нагрузки лента стала сильно мерцать. Причина ясна и без осциллографа — две BMS не очень дружат между собой. Как только напряжение на одной из ячеек достигает порога, BMS отключает батарею, из-за чего отключается и нагрузка и контроллер, затем процесс повторяется. Да и учитывая что пороговые напряжения уже заданы в контроллере, вторая плата защиты по сути и не нужна.

Пришлось вернуться к плану «Б» — поставить на батарею только плату балансировки, оставив контроллеру управление зарядом. Плата 3S balance board выглядит так:

Бонус этого балансира еще и в том, что он в 2 раза дешевле.

Конструкция получилась даже проще и красивее — балансир занял свое «законное» место на балансировочном разъеме батареи, к контроллеру батарея подключена через силовой разъем.
Все вместе выглядит примерно так:

Больше никаких неожиданностей не было. Когда напряжение на батарее поднялось до 12.5В, потребляемая от панелей мощность упала практически до нуля а напряжение увеличилось до максимума «холостого хода» (22В), т.е. заряд больше не идет.

Напряжение на 3х ячейках батареи в конце заряда составило 4.16В, 4.16В и 4.16В, что дает в сумме 12.48В, к контролю заряда, как и к балансиру претензий нет.


Система работает, почти как и ожидалось. Днем электроэнергия может накапливаться, вечером ее можно использовать. В финальной версии батарея будет заменена на блок из элементов 18650, которые уже описывались в предыдущей части. Емкость батареи можно увеличить до 20Ач, больше для балконной системы уже избыточно. Если же приобрести другой балансир, можно использовать и LiFePo4-аккумуляторы, достаточно установить нужные пороги напряжений в контроллере. Однако в моем случае, смысла в этом скорее всего нет — стоимость LiFePo4 на 10-20Ач составляет 80-100$, что уже сопоставимо со стоимостью Grid Tie контроллера, который я собираюсь протестировать в дальнейшем.

Еще исключительно для тестов (понятно что экономического смысла в этом нет) была заказана батарея ионисторов на 12В, благо цены падают и сейчас они относительно дешевые. Будет интересно проверить, на сколько хватит их заряда. Stay tuned.

Примечание: показанная на фото батарея от Hobbyking была поставлена исключительно для теста. Эти батареи не тестировались для постоянного использования в подобных системах, также их не рекомендуется оставлять без присмотра.

Более-менее окончательная версия батареи выглядит вот так:

Это 12 ячеек 18650, соединенных в группы параллельно по 4. Примерная емкость батареи около 12ач, этого хватает для зарядки разных гаджетов и для вечернего освещения комнаты светодиодной лентой. В батарее используются элементы Panasonic, те же что и в автомобилях Tesla S, надежность данных ячеек можно считать вполне хорошей.

Для желающих посмотреть видео-версию, ролик выложен в youtube.

Контроллеры для солнечных батарей

Принцип работы контроллеров для заряда солнечных батарей, устройство, что учитывать при выборе

В современных солнечных электростанциях для передачи выработанной электроэнергии рабочим аккумуляторам применяются разные схемы подключения источников тока. Они используют не одинаковые алгоритмы, созданы на основе микропроцессорных технологий, называются контроллерами.

Как работают контроллеры заряда солнечных батарей

Электроэнергия, вырабатываемая солнечной батареей, может передаваться накопительным аккумуляторным батареям:

1. напрямую, без использования коммутационных приборов и регулирующих устройств,

2. через контроллер.

При первом способе электрический ток от источника пойдет к аккумуляторам и станет увеличивать напряжение на их клеммах. Вначале оно дойдет до определенного, предельного значения, зависящего от конструкции (типа) аккумуляторной батареи и окружающей температуры. Затем преодолеет рекомендуемый уровень.

На начальном этапе заряда схема работает нормально. А вот дальше начинаются крайне нежелательные процессы: продолжающееся поступление зарядного тока вызывает повышение напряжения сверх допустимых значений (порядка 14 В), возникает перезаряд с резким возрастанием температуры электролита, приводящей к его закипанию с интенсивным выбросом паров дистиллированной воды из элементов. Иногда вплоть до полного высыхания емкостей. Естественно, что ресурс аккумуляторной батареи резко снижается.

Поэтому задачу ограничения зарядного тока решают контроллерами или вручную. Последний способ: постоянно контролировать по приборам величину напряжения и коммутировать переключатели руками такой неблагодарный, что существует только в теории.

Типовая схема подключения контроллера

Алгоритмы работы контроллеров заряда солнечных батарей

По сложности способа ограничения предельного напряжения приборы изготавливают по принципам:

1. Откл/Вкл (или On/Off), когда схема просто коммутирует аккумуляторы к зарядному устройству по величине напряжения на клеммах,

2. широтно-импульсных (ШИМ) преобразований,

3. сканирования точки максимальной мощности.

Принцип №1: Схема Откл/Вкл

Это наиболее простой, но самый ненадежный метод. Его главный недостаток в том, что при возрастании напряжения на клеммах аккумумляторной батареи до предельного значения полного заряда емкости не происходит. Она доходит в этом случае примерно до 90% номинального значения.

У аккумуляторов постоянно происходит регулярный недобор энергии, который значительно снижает срок их эксплуатации.

Принцип №2: Схема ШИМ контроллеров

Сокращенное обозначение этих устройств на английском языке: PWM. Они выпускаются на основе конструкций микросхем. Их задачей является управление силовым блоком для регулирования напряжения на его входе в заданном диапазоне с помощью сигналов обратной связи.

PWM контроллеры дополнительно могут:

учитывать температуру электролита встроенным либо выносным датчиком (последний способ точнее),

создавать температурные компенсации зарядным напряжениям,

настраиваться под определенный тип аккумуляторов (GEL, AGM, жидко-кислотные) с разными показателями графиков напряжений в одинаковых точках.

Увеличение функций PWM контроллеров повышает их стоимость и надежность работы.

График работы солнечной батареи

Принцип №3: сканирование точки максимальной мощности

Такие устройства обозначают английскими буквами MPPT. Они тоже работают по способу широтно-импульсных преобразователей, но предельно точны потому, что учитывают наибольшую величину мощности, которую способны отдать солнечные батареи. Это значение всегда точно определяется и вносится в документацию.

Например, для гелиобатарей 12 В точка отдачи максимальной мощности составляет порядка 17,5 В. Обыкновенный PWM контроллер прекратит заряд аккумумляторной батареи при достижении напряжения 14 — 14,5 В, а работающий по технологии MPPT — позволит дополнительно использовать ресурс солнечных батарей до 17,5 В.

С увеличением глубины разряда аккумуляторов возрастают потери энергии от источника. МРРТ контроллеры уменьшают их.

Характер отслеживания напряжения, соответствующего отдаче максимальной мощности солнечной батареи в 80 ватт, демонстрируется усредненным графиком.

Таким способом МРРТ контроллеры, используя широтно-импульсные преобразования во всех циклах заряда аккумуляторов, увеличивают отдачу солнечной батареи. В зависимости от разных факторов экономия может составлять 10 — 30%. При этом ток выхода из аккумулятора будет превышать ток входа в него из солнечной батареи.

Основные параметры контроллеров заряда солнечных батарей

При выборе контроллера для солнечной батареи кроме знания принципов его работы следует обратить внимание на условия, для которых он разработан.

Главными показателями приборов являются:

значение входного напряжения,

величина суммарной мощности солнечной энергии,

характер подключаемой нагрузки.

Напряжение солнечной батареи

На контроллер может подаваться напряжение от одной или нескольких солнечных батарей, соединенных по разным схемам. Для правильной работы прибора важно, чтобы суммарная величина подаваемого на него напряжения с учетом холостого хода источника не превышала предельной величины, указанной производителем в технической документации.

При этом следует сделать запас (резерв) ≥ 20% из-за ряда факторов:

не секрет, что отдельные параметры солнечной батареи иногда могут быть чуть-чуть завышены в рекламных целях,

происходящие на Солнце процессы не носят стабильного характера, а при аномально повышенных вспышках активности возможна передача энергии, создающая напряжение холостого хода солнечной батареи выше расчетного предела.

Мощность солнечной батареи

Она важна для выбора контроллера потому, что прибор должен быть способен надежно передавать ее рабочим аккумуляторам. В противном случае он просто сгорит.

Для определения мощности (в ваттах) умножают величину тока выхода из контроллера (в амперах) на напряжение (в вольтах), вырабатываемое солнечной батареей с учетом, созданного для него, 20% запаса.

Характер подключаемой нагрузки

Надо хорошо понимать назначение контроллера. Не стоит использовать его в качестве универсального источника питания, подключая к нему различные бытовые устройства. Конечно, часть из них сможет нормально работать, не создавая аномальных режимов.

Но…насколько долго это будет продолжаться? Прибор работает на основе широтно-импульсных преобразований, использует микропроцессорные и транзисторные технологии, которые учли в качестве нагрузки только характеристики аккумуляторов, а не случайных потребителей со сложными переходными процессами при коммутациях и меняющимся характером потребляемой мощности.

Краткий обзор производителей

Выпуском контроллеров для солнечных электростанций занимаются многие страны. На Российском рынке популярна продукция компаний:

Morningstar Corporation (ведущий производитель США),

Beijing Epsolar Technology (работает с 1990-го года в Пекине),

AnHui SunShine New Energy Co (КНР),

Среди них всегда можно подобрать надежную модель контроллера, наиболее подходящую под конкретные условия эксплуатации солнечных электростанций с определенными техническими характеристиками. Для этого просто используете рекомендации этой статьи.

Контроллер заряда для солнечных батарей Delta Battery

Система автономного солнечного электроснабжения, построенная из фотоэлектрических солнечных модулей, содержащая в своем составе аккумуляторные батареи, должна содержать в себе средства контроля заряда и разряда аккумуляторов. Таким устройством является контроллер заряда для солнечных батарей торговой марки Delta Battery.

Контроллер заряда предназначен для обеспечения максимально полной передачи энергии солнца от фотоэлектрических модулей и обеспечения наиболее благоприятного режима работы аккумуляторной батареи. Контроллер предотвращает перезаряд и глубокий разряд аккумулятора, препятствует протеканию обратного тока через модули в ночное время, контролирует режим работы нагрузки и многое другое.

Контроллеры солнечных модулей Delta Battery разделены на две серии: PWM и MPPT.

Модели серии PWM

Солнечный контроллер заряда серии PWM (pulse-width modulation) или ШИМ (широтно-импульсная модуляция) тока заряда используются для заряда аккумуляторов от солнечных модулей. Применяются в системах малой мощности, а также в регионах с высокой солнечной активностью. Низкий КПД является основным недостатком таких контроллеров. Однако технология ШИМ имеет низкую стоимость реализации, поэтому цена контроллера нивелирует недостаток КПД. Именно из-за сравнительно низкой стоимости данные контроллеры получили такое широкое распространение.

  • Автоматическое распознавание напряжения в системе 12В/24В.
  • Наличие USB-разъема для заряда мобильных устройств.
  • Контроллер оснащен графическим ЖК экраном.
  • ШИМ последовательное регулирование тока заряда с температурной компенсацией.
  • Значительно меньшую стоимость, в равнении с технологией MPPT.
  • Предусмотрен выбор типа АКБ (GEL, AGM, жидко-кислотные).
  • Температура эксплуатации от -25°C до +55°C.
  • Защита от перезаряда, от глубокого разряда, перегрузки и короткого замыкания цепи.
Модель Ток, А Напряжение, В Макс. мощность солн. модуля
PWM 2410 10 12/24 150Вт/12В │ 300Вт/24В
PWM 2420 20 12/24 300Вт/12В │ 600Вт/24В
PWM 2430 30 12/24 450Вт/12В │ 900Вт/24В
PWM 2440 40 12/24 600Вт/12В │ 1200Вт/24В
PWM 2460 60 12/24 900Вт/12В │ 1800Вт/24В

Модели серии MPPT

Солнечный контроллер заряда серии MPPT работает по технологии MPPT (Maximum Power Point Tracking) — поиск точки максимальной мощности (ТММ) солнечного модуля. По сравнению с обычными PWM-контроллерами, контроллер MPPT может максимально использовать мощность солнечных модулей и обеспечивать больший ток заряда, тем самым повышая коэффициент использования энергии на 15-20% в сравнении с PWM-контроллером.

  • Автоматическое распознавание напряжения в системе 12В/24В/36В/48В.
  • Предусмотрен выбор типа АКБ (GEL, AGM, жидко-кислотные, литиевые).
  • Наличие кнопки ручного включения/отключения нагрузки.
  • Программируемый таймер с привязками к «точке заката» или просто по реальному времени.
  • Коммуникационный порт RS-232 для соединения с компьютером.
  • Графический LCD монитор, на котором отражается все параметры фотоэлектрической системы.
  • Защита от перезаряда, от глубокого разряда, перегрузки и короткого замыкания цепи, защита от молнии.
  • Высокий КПД.
  • Возможность параллельного подключения для МРРТ 4860.

Контроллер заряда солнечной батареи: схема, принцип работы, способы подключения

Солнечная энергетика пока что ограничивается (на бытовом уровне) созданием фотоэлектрических панелей относительно невысокой мощности. Но независимо от конструкции фотоэлектрического преобразователя света солнца в ток это устройство оснащается модулем, который называют контроллер заряда солнечной батареи.

Действительно, в схему установки фотосинтеза солнечного света входит аккумуляторная батарея – накопитель энергии, получаемой от солнечной панели. Именно этот вторичный источник энергии обслуживается в первую очередь контроллером.

В представленной нами статье разберемся в устройстве и принципах работы этого прибора, а также рассмотрим способы его подключения.

Контроллеры для солнечных батарей

Электронный модуль, называемый контроллером для солнечной батареи, предназначен выполнять целый ряд контрольных функций в процессе заряда/разряда аккумулятора солнечной батареи.

Когда на поверхность солнечной панели, установленной, к примеру, на крыше дома, падает солнечный свет, фотоэлементами устройства этот свет преобразуется в электрический ток.

Полученная энергия, по сути, могла бы подаваться непосредственно на аккумулятор-накопитель. Однако процесс зарядки/разрядки АКБ имеет свои тонкости (определённые уровни токов и напряжений). Если пренебречь этими тонкостями, АКБ за короткий срок эксплуатации попросту выйдет из строя.

Чтобы не иметь таких грустных последствий, предназначен модуль, именуемый контроллером заряда для солнечной батареи.

Помимо контроля уровня заряда аккумулятора, модуль также отслеживает потребление энергии. В зависимости от степени разряда, схемой контроллера заряда аккумулятора от солнечной батареи регулируется и устанавливается уровень тока, необходимый для начального и последующего заряда.

В общем, если говорить простым языком, модуль обеспечивает беззаботную «жизнь» для АКБ, что периодически накапливает и отдаёт энергию устройствам-потребителям.

Применяемые на практике виды

На промышленном уровне налажен и осуществляется выпуск двух видов электронных устройств, исполнение которых подходит для установки в схему солнечной энергетической системы:

  1. Устройства серии PWM.
  2. Устройства серии MPPT.

Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и ветряной энергетики.

Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.

Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность.

Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.

Контроллер типа MPPT:

  • имеет более высокую стоимость;
  • обладает сложным алгоритмом настройки;
  • даёт выигрыш по мощности только на панелях значительной площади.

Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.

Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).

Структурные схемы контроллеров

Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.

Вариант #1 – устройства PWM

Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.

Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).

Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.

Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM.

Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.

Вариант #2 – приборы MPPT

Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы.

Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.

Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий.

Схемой таких устройств реализуются несколько методов контроля:

  • возмущения и наблюдения;
  • возрастающей проводимости;
  • токовой развёртки;
  • постоянного напряжения.

А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.

Способы подключения контроллеров

Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.

Так, например, если используется контроллер, рассчитанный на максимум входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.

Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.

Недопустимо наличие в непосредственной близости от прибора источников вибраций, тепла и влажности. Место установки необходимо защитить от попадания атмосферных осадков и прямых солнечных лучей.

Техника подключения моделей PWM

Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.

Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:

  1. Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
  2. Непосредственно в точке контакта положительного провода включить защитный предохранитель.
  3. На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
  4. Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).

Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. В этом материале более подробно описана схема сборки солнечных батарей с аккумулятором.

Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.

Порядок подключения приборов MPPT

Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.

Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм 2 . То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм 2 .

Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями.

Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.

Перед подключением солнечных панелей к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.

Подключение периферии к аппарату MTTP:

  1. Выключатели панели и аккумулятора перевести в положение «отключено».
  2. Извлечь защитные предохранители на панели и аккумуляторе.
  3. Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
  4. Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
  5. Соединить кабелем клемму заземления с шиной «земли».
  6. Установить температурный датчик на контроллере согласно инструкции.

После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.

Далее, после непродолжительной паузы (1-2 мин), поставить на место ранее извлечённый предохранитель солнечной панели и перевести выключатель панели в положение «включено».

Экран прибора покажет значение напряжения солнечной панели. Этот момент свидетельствует об успешном запуске энергетической солнечной установки в работу.

Выводы и полезное видео по теме

Промышленностью выпускаются устройства многоплановые с точки зрения схемных решений. Поэтому однозначных рекомендаций относительно подключения всех без исключения установок дать невозможно.

Однако главный принцип для любых типов приборов остаётся единым: без подключения АКБ на шины контроллера соединение с фотоэлектрическими панелями недопустимо. Аналогичные требования предъявляются и для включения в схему инвертора напряжения. Его следует рассматривать как отдельный модуль, подключаемый на АКБ прямым контактом.

Если у вас есть необходимый опыт или знания, пожалуйста, поделитесь им с нашими читателями. Оставляйте свои комментарии в расположенном ниже блоке. Здесь же можно задать вопрос по теме статьи.

Модули защиты и контроллеры заряд/разряд для Li-ion аккумуляторов

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).


Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

Решение от Advanced Analog Technology — AAT8660 Series.

Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).

FS326 Series

Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.

В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.


Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

Обозначение Порог отключения по перезаряду, В Гистерезис порога перезаряда, мВ Порог отключения по переразряду, В Порог включения перегрузки по току, мВ
R5421N111C 4.250±0.025 200 2.50±0.013 200±30
R5421N112C 4.350±0.025
R5421N151F 4.250±0.025
R5421N152F 4.350±0.025


Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

Обозначение Порог отключения по перезаряду, В Гистерезис порога перезаряда, мВ Порог отключения по переразряду, В Порог включения перегрузки по току, мВ
SA57608Y 4.350±0.050 180 2.30±0.070 150±30
SA57608B 4.280±0.025 180 2.30±0.058 75±30
SA57608C 4.295±0.025 150 2.30±0.058 200±30
SA57608D 4.350±0.050 180 2.30±0.070 200±30
SA57608E 4.275±0.025 200 2.30±0.058 100±30
SA57608G 4.280±0.025 200 2.30±0.058 100±30

SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).


Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.

Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет

11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты — в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (

4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.