Индикатор напряжения аккумулятора на lm3914

Примеры применения микросхем LM3914. LM3916

Схемы: индикатора уровня заряда аккумулятора или батареи питания, индикатора
уровня аудиосигнала, универсального светодиодного индикатора для широкого
спектра задач.

Продолжаем тему применения микросхем LM3914, LM3915 и LM3916 производства компании National Semiconductors, начатую на предыдущей странице (ссылка на страницу), где мы довольно подробно рассмотрели структурную схему ИМС, назначение выводов, а также привели калькулятор для расчёта внешних элементов.
На очереди – примеры и схемы конкретных устройств, использующих данные микросхемы для индикации каких либо физических величин.

А начнём мы с простой схемы светодиодного индикатора уровня заряда (разряда) чего-либо, будь то: аккумулятор, батарея питания, либо какой иной источник постоянного напряжения.


Рис.1 Схема светодиодного индикатора уровня заряда (разряда) элемента питания

Здесь ничего мудрить не надо! LM3914 включена в полном соответствии с типовой схемой включения. В качестве источника питания Еп используется исследуемый аккумулятор, а на 5-вывод микросхемы (вывод для входного сигнала) подаётся уровень напряжения, сформированный делителем Rд1 – Rд2 и равный 1/2 от Еп.
Если подать на 6 вывод микросхемы стабилизированное напряжение равное половине Еп (выбором R1 и R2), то при полностью заряженной батарее индикатор будет индицировать нам: либо свечением всех светодиодов в режиме «столбик», либо свечением верхнего светодиода в режиме «точка». Отсутствие свечения светодиодов будет свидетельствовать о напряжении источника питания близком к нулю.

Понятно, что отслеживая уровень заряда/разряда батарейки или аккумулятора, нет необходимости индикации уровней напряжения ниже определённого порога, после которого аккумулятор может выйти из строя, либо запитываемое устройство теряет работоспособность. По этой причине на 4 вывод LM3914 следует также подать напряжение, соответствующее нижнему порогу индикации уровня разряда, делённому пополам. Сделать это можно выбором номинала резистора R3.
Учитывая специфику, встроенного в микросхему стабилизатора и максимально допустимое значение напряжения питания микросхемы – приведённый индикатор сохраняет корректную работоспособность для источников с номинальными напряжениями полного заряда 6. 20В.

Перенесём сюда подкорректированный калькулятор с предыдущей страницы.

РАСЧЁТ ЭЛЕМЕНТОВ ИНДИКАТОРА ЗАРЯДА/РАЗРЯДА АККУМУЛЯТОРА НА ИМС LM3914

Светодиодные индикаторы уровня или мощности аудио сигнала обычно строятся на ИМС LM3915 и LM3916, которые имеют аналогичную LM3914 цоколёвку, схему включения и отличаются лишь номиналами резисторов внутреннего делителя.
LM3915 обеспечивает логарифмическую шкалу индикации, что позволяет её использовать в индикаторах мощности, подаваемой на акустическую систему (подключается к выходу УМЗЧ).
LM3916 имеет характеристику, оптимизированную для контроля уровня аудиосигнала, и подключается к выходу предварительного усилителя, т. е. ко входу УМЗЧ.

Типовая схема включения LM3914. 3916 для использования в составе светодиодных индикаторов уровня и мощности аудиосигнала приведена на Рис.2 слева, а возможные варианты пиковых детекторов, осуществляющих выпрямление переменного входного напряжения, перекочевали из datasheet-ов на микросхемы (Рис.2 справа).

Рис.2 Схема светодиодного индикатора уровня сигнала и пиковых детекторов из datasheet

Схема однополупериодного выпрямителя с использованием ОУ (Рис.2 справа) обеспечивает большую точность детектирования в широком диапазоне входных напряжений. Однако и простого пикового детектора на транзисторе вполне достаточно, чтобы обеспечить удовлетворительную линейность в диапазоне входных напряжений до 30 дБ. При отсутствии входного сигнала транзисторный детектор имеет на выходе напряжение близкое к нулю, так как зону нечувствительности диода компенсирует напряжение Uбэ транзистора VT1.
Дополнительным преимуществом транзисторной схемы является однополярный источник питания, а также возможность работы не только с переменными входными напряжениями, но и с постоянными.

Все эти преимущества транзисторного детектора дают возможность построить на LM3914. 3916 универсальный индикатор, пригодный для индикации любых напряжений (как переменного, так и постоянного тока) и работающий от однополярного источника питания, к примеру – от батарейки «Крона» (Рис.3).

Рис.3 Схема универсального индикатора уровня сигналов постоянного и переменного токов

Подобный индикатор может найти применение не только в аудио приложениях, но и любых других, где требуется зафиксировать изменение уровня напряжения или тока и где использование стрелочных приборов по какой-либо причине – нежелательно.

Конденсатор фильтра С2 заряжается через резистор R5 и разряжается через R6. Коэффициент передачи детектора близок к 1.
Поскольку компараторы, входящие в состав LM3914. 3916, обладают не самыми выдающимися характеристиками по крутизне преобразования, то для повышения резкости переключения светодиодов из одного состояния в другое имеет смысл обеспечить максимально возможный размах напряжения на входе данных ИМС – в идеале : Еп-3 (В).

Давайте сдобрим калькулятором и индикаторы уровня, приведённые на Рис.2 и Рис.3. Выбираем значение Uмакс – не менее 1,25В.

РАСЧЁТ ЭЛЕМЕНТОВ СВЕТОДИОДНЫХ ИНДИКАТОРОВ УРОВНЯ НА ИМС LM3914. 3916

Если индикатор призван работать только с сигналами переменного тока, то на входе детектора имеет смысл поставить разделительный конденсатор ёмкостью 1 МкФ.

Индикатор напряжения аккумулятора на LM3914

Устройство представляет собой светодиодный вольтметр (индикатор напряжения) 12В аккумулятора, с применением широко известной микросхемы LM3914 (даташит).

Данное устройство мне было необходимо для того, чтобы я знал когда автомобильный аккумулятор полностью зарядится от зарядного устройства. Т.к. зарядка была старого типа и на ней не было никаких стрелочных или цифровых индикаторов для измерения напряжения.

В качестве светодиодного столбикового индикатора (бара) я выбрал HDSP-4832 с 10 светодиодами трех разных цветов: три красных, четыре желтых и три зеленых.

Для правильной индикации напряжения, нужно определиться с нижним и верхним уровнем измеряемых напряжений, чтобы на индикаторе соответственно при данных уровнях загорались первый и последние светодиоды (полоски).

Для 12В автомобильного аккумулятора, были выбраны следующие диапазоны: первый светодиод загорался при напряжении 10В, а последний при напряжении 13.5В, т.о. шаг индикации напряжения получился 0.35В на один светодиод. Естественно, вы можете установить и другие напряжения, при помощи двух подстроечных резисторов. Это дает возможность использовать данный индикатор для измерения напряжения, например NiCd или NiMH аккумуляторов. Границы напряжения в данном случае устанавливаются в Vmin = 0.9 * Ncells and Vmax = 1.45 * Ncells, где Ncells — количество «банок» аккумулятора. Плюс между + и — аккумуляторов должен быть помещен мощный резистор рассчитанный на ток не менее 0.5А для имитации реальной нагрузки.

Микросхема LM3914 может работать в двух режимах: режим «точка» — при котором загорается только один светодиод, и «столбиковый» режим, при котором загорается несколько светодиодов по нарастающей. Данная схема работает в «столбиковом» (bar) режиме, для этого 9 вывод микросхемы подключен к плюсу источника питания.

При работе в режиме bar, соответственно и увеличивается энергопотребление LM3914. Когда все 10 сегментов индикатора горят, то LM3914 потребляет почти в 10 раз больше, чем если бы горел только один светодиод (сегмент). Для предотвращения выгорания м/с LM3914 необходимо следить, чтобы ток светодиодов не превысил максимально допустимый.

Максимальная рассеиваемая мощность микросхемы не должна превышать 1365 мВт. И если предположить, что подводимое максимальное напряжение составит 14.4В, то максимально возможный ток составит I = P/V = 1.365/14.4 = 94.8мА. Т.о. ток, каждого сегмента индикатора не должен превышать 94.8/10=9.5мА. В схеме, сопротивление резистора R3 (4.7 кОм) задает максимальный ток светодиодов. Ток светодиода примерно в 10 раз больше тока, который проходит через данный резистор IR3 = 1.25 / 4700 = 266 мкА. Т.о. ток на каждый светодиод ограничен значением 2.6 мА, что намного меньше допустимого.

Входной каскад: для снятия показаний входного напряжения (и им же питается схема) в схеме применен делитель напряжения 1:2, подсоединенный к выводу 5 микросхемы. Делитель состоит из двух резисторов номиналом 10 кОм и т.о. напряжение, снимаемое с делителя находится в диапазоне от 5В до 6.75В, в то время как входное напряжение будет от 10В до 13.5В. Эти же значения будут использоваться для калибровки LM3914.

Принципиальная схема индикатора

Схема состоит из двух элементов: отдельно схемы контроля и отдельно плата индикатора. Между собой они соединяются при помощи 11-ти контактного разъема.

Основные задающие элементы схемы:
R1 и R2 — делитель напряжения
R3 и R4 — ограничение тока светодиодов и установка верхней границы напряжения
R5 — установка нижней границы напряжения

Про R1, R2 и R3 я рассказывал выше. Теперь разберем R4, который устанавливает верхний порог (вывод 6 м/с):
На выводах микросхемы 6 и 7 необходимо установить напряжение на уровне 6.75В (что является входным напряжением 13.5В после делителя, в том случае, если аккумулятор заряжен полностью). Зная значение тока проходящего через R3, а также прибавив сюда ток «error current» с 8 вывода микросхемы (120мкА), мы можем рассчитать сопротивление R4:
6.75В = 1.25В + R4(120мкА+266мкА)
R4 = (6.75 — 1.25)/(386мкА)
R4 = 14.2кОм и больше (мы выбираем подстроечный резистор 22кОм)
С подстроечным резистором 22 кОм мы можем регулировать напряжение на выводе 7 в диапазоне от 1.25В до 9.74В, что дает возможность задавать верхнюю границу напряжения от 2.5В до 19.5В.

Читайте также  Многотональный автомат звуковых эффектов

Сопротивлением R5 устанавливается нижняя граница напряжения:
Подставив в формулу VO = VI * RB/(RA + RB) следующие значения:
RA = 10 * 1К внутренние резисторы LM3914
RB = R5
VI = верхняя граница напряжения 6.75В
VO = нижняя граница напряжения 5В
получим:
5 = 6.75 * R5/(R5 + 10K)
R5 = 28.5K и больше (мы выбираем подстроечный резистор 100кОм)

Печатная плата

Как уже было сказано выше, устройство состоит из двух компонентов, соответственно используется 2 разных печатных платы. Это дает возможность использовать выносную индикацию, например на панели авто.

В печатной плате получилась только одна перемычка (отмечена красным цветом).

Скачать проект в Eagle и печатные платы вы можете ниже

Индикатор состояния батареи питания

Индикатор представляет собой облегченную версию схем, встречающихся в сети, построенную на базе микросхемы LM3914(N-1) фирмы National Semicondutor,. При изготовлении индикатора не требуется наличия умения программировать, поскольку все задачи решаются «аппаратно», а его схема обладает прекрасной повторяемостью.

Микросхема содержит все необходимые функциональные узлы: десятиуровневый компаратор напряжения, термостабильный регулируемый источник опорного напряжения, управляемый стабилизатор тока светодиодов, переключатель режима «точка-шкала».

С теорией проектирования устройств на микросхеме LM3914 вы можете ознакомиться в даташите на сайте упомянутой фирмы. Там вы найдете все формулы, необходимые для пересчета индикатора на любое напряжение в пределах 1,25..25 В. Мы же ограничимся двумя конкретными значениями напряжения – 4 и 5-баночные батареи NiСd и NiMh аккумуляторов – основного варианта бортового питания моделей.

Рисунок 1. Схема индикатора.

Предлагаемая схема полностью соответствует типовой. Однако все подстроечные резисторы заменены рассчитанными прецизионными постоянными СМД-резисторами. Диапазон индикации для указанных номиналов составляет от 1,08 до 1,3 В на элемент.

Детали и замены

Детали:

R1 -330 Ом 1 % (3300)
R2-806 Ом 1 % (8060)
R3-470 Ом 1 % (4700)
R4*-18 кОм 1 % (1802)-для4NiCd
R4*-24.9kOm 1 % (2492)-для5NiCd
R5-10 кОм 1 % (1002)
R6-6,8kOm 5% (682)
С1 — 10мкФ/10 В (танталовый)
С2 -10 мкФ /10 В (танталовый)
AL1..AL3 -1206 UEC (красный)
AL4..AL5 — 1206 UYC (желтый)
AL6. AL10 — 1206 UGC (зеленый)
DA1 -LM3914N-1

Применительно к данной компоновке и разводке печатной платы какая-либо замена деталей крайне нежелательна. Однако, изменив печатную плату, можно перейти на обычные детали (резисторы и светодиоды). Если же дополнительно включить в узловые точки подстроечные резисторы, то можно заменить прецизионные резисторы обычными и получить дополнительную возможность изменять в разумных пределах настройки данного индикатора.

Рекомендации по сборке и настройке

Для сборки и настройки нам потребуются: остро заточенный пинцет, паяльник (до 25 Вт) и цифровой мультиметр. Для монтажа SMD-компонентов могут понадобиться «очки часовщика» или линза с подсветкой.

Исходный размер платы – 40х12 мм. Плата – двухсторонняя, желательно заводского изготовления. Также возможно изготовление «утюжно-лазерной» или просто рисованной платы. Это, во-первых, позволит расширить творческую составляющую. А во-вторых, несмотря на явную двухстороннюю сущность, плата содержит всего одно переходное отверстие (там потребуется проволочная перемычка). Переходы с одной стороны дорожек на другую на ножках микросхемы могут быть легко осуществлены аккуратной пропайкой каждой ножки с двух сторон платы без применения проволочных перемычек.

Рис.2. Дорожки и контактные площадки (верх и низ)

Готовые платы должны выглядеть так:

Рис. 3

Собираем индикатор в соответствии с приведенной монтажной схемой.

Рисунок 4. Схема монтажа — верх.

Рисунок 5. Схема монтажа — низ.

Монтаж платы доступен радиолюбителю, имеющему минимальный опыт работы с SMD-компонентами. Собственно, сама сборка достаточно проста и займет не более часа.

Жало паяльника затачивается на пирамидку (угол 30 градусов) для облегчения доступа к точкам пайки. Флюс желательно использовать неактивный сгущенный спирто-канифольный, который капельками наносится на контактные площадки. Припой — импортный трубчатый диаметром 0,5…1 мм с флюсом. Первой паяется сторона светодиодов. Обратите внимание, что светодиод AL1 развернут на 180? по отношению к остальным девяти светодиодам. Во вторую очередь паяются SMD резисторы и конденсаторы с другой стороны платы.

После пайки SMD-компонентов плату следует промыть в изопропиловым спиртом, а затем тщательно проверить качество монтажа и правильность сборки (номиналы резисторов и полярность конденсаторов), потому что после пайки микросхемы доступа к этим элементам уже не будет.

Рисунок 6. SMD-монтаж — верх.

Рисунок 7. SMD-монтаж — низ.

Все в порядке? Тогда впаиваем микросхему и к контактным площадкам подпаиваем провода – красный к плюсу, черный к минусу.

Рисунок 8. Сборка платы — верх.

На другом конце провода монтируется контактная фишка.Настройки индикатор не требует. Сейчас (до затяжки в термоусадку) его можно подключить к батарее для проверки. Еще лучше воспользоваться блоком питания с возможностью регулировки напряжения. В этом случае процесс проверки станет гораздо увлекательнее.

На плату натягиваем прозрачную термоусадочную трубку и прогреваем горячим воздухом из фена. Термоусадка дополнительно зафиксирует провода в точках пайки.

Рисунок 9 После затяжки — верх.

Рисунок 10 После затяжки — низ.

Теперь можно приступать к безжалостной эксплуатации изделия

Эпилог

В данной статье теоретическая часть отсутствует напрочь. Тем не менее, мы очень рекомендуем прильнуть к первоисточнику в лице National Semicondutor. Это позволит вам собрать версию индикатора, например, для литий-полимерного или свинцового аккумулятора, либо для какого-то иного (действительно полезного) приложения типа эквалайзера для музыкального центра или тахометра для любимого автомобиля.В данной статье теоретическая часть отсутствует напрочь. Тем не менее, мы очень рекомендуем прильнуть к первоисточнику в лице National Semicondutor. Это позволит вам собрать версию индикатора, например, для литий-полимерного или свинцового аккумулятора, либо для какого-то иного (действительно полезного) приложения типа эквалайзера для музыкального центра или тахометра для любимого автомобиля.

Индикатор сетевого напряжения на LM3914N-1

В индикаторе сетевого напряжения удобно применить линейку из обычных светодиодов, расположенных на прямой линии или на дуге окружности, имитируя шкалу стрелочного измерительного прибора. Считывание показаний такого индикатора почти так же удобно, как стрелочного. Применение светодиодов разного цвета свечения привлекает внимание при возникновении нештатных ситуаций. За показаниями такого индикатора можно следить при плохом освещении и со значительного расстояния.

Схема предлагаемого индикатора представлена на рис. 1. Он выполнен на микросхеме LM3914N-1, представляющей собой преобразователь постоянного напряжения в десятипозицион-ный код. Выходы микросхемы допускают непосредственное, без ограничивающих ток резисторов, соединение с катодами светодиодов, аноды которых соединены с плюсом источника питания. При необходимости микросхема может управлять и вакуумно-люминис-центными или ЖК индикаторами.

Возможна ее работа в двух режимах: «непрерывной шкалы» (число включенных светодиодов пропорционально входному напряжению) и «плавающей точки» (включен только один свето-диод, номер которого пропорционален входному напряжению). В предлагаемом приборе использован более экономный второй режим (для этого вывод 9 микросхемы LM3914N-1 оставлен свободным).

Постоянное напряжение, подаваемое на вход микросхемы, формируется из переменного сетевого с помощью од-нополупериодного выпрямителя из диодов VD6, VD7. Оно уменьшается до необходимого уровня с помощью регулируемого резистивного делителя напряжения R3R4. Высоковольтный (150 В) стабилитрон VD4 устраняет избыток напряжения «растягивая» шкалу прибора. Стабилитрон VD5 ограничивает до безопасного для входа микросхемы значения всегда возможные в сети кратковременные выбросы напряжения.

Емкость сглаживающего конденсатора С5 выбрана такой, что амплитуда пульсаций выпрямленного напряжения достаточна для того, чтобы при промежуточных значениях сетевого напряжения светился не один, а два соседних светодиода Это увеличивает точность оценки напряжения «на глаз».

Учтите, что в режиме «плавающая точка» светодиод HL1 не гаснет при включении других светодиодов, а лишь светит с пониженной яркостью, позволяя видеть «начало» шкалы. Он гаснет полностью лишь при напряжении ниже соответствующего его свечению с полной яркостью.

Резисторы R7-R9 предназначены для выравнивания яркости свечения светодиодов разного типа. Если в этом нет необходимости, от резисторов можно отказаться, заменив их перемычками. Можно и установить такие резисторы в цепи других светодиодов.

Напряжение питания микросхемы и светодиодов получено с помощью выпрямителя на диодах VD1, VD2 с гасящими конденсаторами С1, С2. Оно ограничено до нужного значения (12 В) стабилитроном VD3. Резистор R1 уменьшает зарядный ток конденсаторов С1, С2 при включении прибора в сеть Резистор R2 разряжает эти конденсаторы после отключения от сети

Читайте также  Потолочный плинтус под проводку

Индикатор был смонтирован на плате из листового изоляционного материала 90×70 мм Ее фотоснимок показан на рис. 2. Детали размещены таким образом, что все соединения удалось выполнить с помощью их выводов и нескольких перемычек из монтажного провода Навесной монтаж снижает вероятность пробоя по поверхности печатной платы между тонкими краями проводников, имеющих большую разность потенциалов В промышленных приборах эту проблему решают не только увеличением зазоров между проводниками, но и специально расположенными на пути возможных поверхностных пробоев воздушными промежутками в диэлектрике платы

Резистор R1 желательно использовать проволочный или специальный импортный в корпусе матово-серого цвета. Резисторы МЛТ и подобные здесь непригодны Их проводящий слой может прогореть до обрыва уже после нескольких включений прибора в сеть.

Подстроечный резистор R4 желательно использовать многооборотный, например СП5-22 Подстроечные резисторы СПЗ-38 и другие в открытом исполнении для этого прибора не подходят из-за низких надежности и стабильности. Для повышения плавности регулировки и ее стабильности можно применить подстроечный резистор меньшего, чем указано на схеме номинала, включив последовательно с ним подобранный постоянный резистор.

Конденсаторы С1, С2 — пленочные К73-17, К73-24, К73-39 на постоянное напряжение не менее 630 В Импортные аналоги этих конденсаторов обычно менее надежны Оксидные конденсаторы — К50-35 или импортные. Керамический конденсатор С4 — для поверхностного монтажа. Его припаивают непосредственно к выводам питания микросхемы DD1

Диоды 1N4007 можно заменить на 1 N4006, КД243Ж, КД247Д, КД257Д. Стабилитрон R2K — на R2M или любой другой маломощный с напряжением стабилизации 140. 155 В. Такие стабилитроны широко используются в современных кинескопных телевизорах, и их приобретение обычно не вызывает проблем. Стабилитрон 1N4738A можно заменить на КС182Ц, КС182Ц1, 2С175Ц, 2С175К1, КС175Ц. Подойдет и транзистор серий КТ315. КТ3102 — вывод его эмиттера подключают к плюсовому выводу конденсатора С5, вывод базы — к минусовому, а вывод коллектора оставляют свободным. Стабилитрон Д815Д заменят два соединенных последовательно стабилитрона 1 N5341

Аналог микросхемы LM3914N-1 — LM3914V, выполненный в корпусе для поверхностного монтажа. Подойдут и микросхемы LM3915, LM3916. Светодиоды указанных на схеме типов при необходимости можно заменить любыми другими, подходящими по цвету и яркости свечения, а также размерам корпуса. Их не стоит располагать слишком тесно, это затруднит интерпретацию показаний индикатора.

Регулировку и проверку индикатора удобно проводить с помощью регулируемого автотрансформатора (ЛАТР). Установив напряжение ровно 220 В, подстроенным резистором R4 добиваются, чтобы включен на полную яркость был только светодиод HL5 (как уже было сказано, светодиод HL1 при этом светит «вполнакала»). Небольшое отклонение напряжения от номинала должно приводить к включению с небольшой яркостью соседних светодио-дов HL4 или HL6. Далее, изменяя подаваемое на индикатор напряжение, отмечают его значения, соответствующие серединам зон свечения с максимальной яркостью каждого из светодиодов. Именно эти значения следует написать у светодиодов готового прибора, те, что указаны на схеме, — ориентировочны

Следует учитывать, что дешевые цифровые мультиметры серий 830-838 измеряют переменное напряжение, значение которого лежит около 220 В с абсолютной погрешностью, доходящей до ±10 В. Поэтому в качестве образцового вольтметра при градуировке индикатора желательно пользоваться более точным прибором. Расширить или сузить интервал значений напряжения которые показывает индикатор, можно подборкой стабилитрона VD4 соответственно с меньшим или большим напряжением стабилизации. Если соединить выводы 9 и 3 микросхемы LM3914N-1, индикатор станет работать в режиме «непрерывная шкала», в котором одновременно включаются все светодиоды от HL1 до соответствующего измеряемому напряжению. Поскольку потребляемый прибором ток в этом случае значительно возрастет, необходимо удвоить емкость конденсаторов С1 и С2, а стабилитрон VD3 снабдить тепло-отводом площадью около 50 см2. Номинал резистора R5 следует увеличить до 18 кОм и повторить градуировку светодиодной шкалы

При работе с индикатором нужно помнить, что его элементы находятся под напряжением сети, и соблюдать необходимую осторожность и меры безопасности.

10шт. LM3914N-1 DIP18 LM3914N LM3914 светодиодные драйвера.

10шт. LM3914N-1 DIP18 LM3914N LM3914 светодиодные драйвера.

Описание:

LM3914 — монолитная интегральная схема, которая считывает аналоговые уровни напряжения и управляет 10 светодиодами, обеспечивая линейный аналоговый дисплей. Данный драйвер светодиодов отрегулирован и программируем, избавляя от необходимости использовать резисторы. Напряжение сигнала меньше 3V.
Канал содержит свою собственную корректируемую справочную информацию и точный делитель напряжения с 10 шагами. Буфер управляет 10 независимыми компараторами, которые подключены к делителю точности. Нелинейность индикации может составлять 1/2 %, даже при широком диапазоне температур.
Многосторонность была спроектирована в LM3914 таким образом, чтобы можно было легко добавлять сетодиоды в индикатор. Канал может управлять светодиодами разных цветов, или лампами накаливания низкого электрического тока. Много микросхем LM3914s могут быть «соеденены в цепь», чтобы сформировать дисплеи от 20 до более чем 100 сегментами. Оба конца делителя напряжения доступны внешне так, чтобы 2 драйвера могли быть соедены в один.
LM3914 очень просто применить как аналоговый индикатор канала. 1.2V полномасштабный индикатор требует только 1 резистора и питание от 3V до 15V в дополнение к 10 светодиодам дисплея. Если 1 резистор — переменный, это превращается в светодиодный регулятор яркости. Упрощенная блок-схема иллюстрирует эту чрезвычайно простоту.
Большая часть гибкости дисплея происходит из-за того, что все выводы независимы, и регулируются токи цифровой системой управления. Различные эффекты могут быть достигнуты, модулируя эти электрические токи. Индивидуальные выводы могут управлять транзистором так же, как и светодиодом, таким образом функции контроллера могут быть расширены.
LM3914 разработан для работы в диапазоне температур от 0°C до +70°C.

Характеристики:

Драйвер светодиодов
Линейный или точечный режим отображения, который настраивается пользователем
Расширяемый дисплей до 100 раз
Внутренняя справочная информация напряжения от 1.2V до 12V
Работает с единственной поставкой меньше чем 3V
Выходной электрический ток от 2 мА до 30 мА
Никакого мультиплексного переключения или взаимодействие между выводами
Ввод противостоит ±35V без повреждения или ложных выводов
Светодиодные выводы драйвера текущие отрегулированный, открытые коллекторы
Выводы могут соединены с логикой при помощи интерфейса CMOS или ТТЛ
Внутренний делитель с 10 шагами является плавающим и может быть настроен на широкий диапазон напряжений

Индикация схемы измерителя VU 10 с использованием LM3914

Это цепь, которая применяется часто в используемых стандартов. В интегральной схеме LM3914 является преимуществом диапазон напряжения. Это разделение на четыре ноги. Напряжение на ножке 6 является низким и разделителем опорного напряжения.

При повышении мощности питания цепи звуковой сигнал через диод D1 который пропускает только положительный сигнал проходя через C1 и R1 фильтр сигнал сглаживается. Затем мощность света направляется через R2 доступ к входному контакту 5 IC, IC для отображения сигнала начинается от выходного контакта 1 или LED1 прилежащей к ноге 10 или LED10. Вы можете выбрать две формы отображения в виде отображения полосы или точечное отображение, для этого необходимо использовать переключатель S1. VR1, который изменяет напряжение IC и R3 текущей функции ограничения вывода. Если значение в котором R3 LED1-LED10 очень светлые.

Особенности LM3914

-Диски светодиоды, LCDs или вакуумные флуоресцентные лампы

-Линейный или точка режим отображения внешне выбираемые пользователем

-Расширяемая дисплеев 100 шагов

-Внутренние напряжения от 1.2V- 12V

-Работает с одной поставки менее чем 3V

-Выходной ток программируемых диодов от 2 мА до 30 мА

-Нет мультиплекс коммутации или взаимодействие между выходами

-Ввод выдерживает 35V без повреждения или отказа выходов

-Светодиодные драйвера выходы являются регулируемых, открытой токосъемников

-Выходы могут взаимодействовать с логики TTL или CMOS

Внутренний делитель 10-шаг является плавающей и может ссылаться на широкий диапазон напряжений

Светодиодный измеритель VU на IC LM3914

В цепи светодиодного измерителя VU используем IC1 LM3914 и транзистор BC109C, по цепи будет шоу уровеня звукового сигнала (мощность музыка) — «дБ» в шести уровне светодиодный дисплей, или также известен как VU-ИЗМЕРИТЕЛЕМ. для стерео системы. В этом: измеритель VU 10 LED с помощью LM3914 базово может контролировать 10 привели, но использовать для высоких сигнала, когда мы добавляем Q1-BC109 на входной секции для повышения до ток для низкого уровня сигнала Входа. Как вы видите схема для моно цепи, но если вы будет нуждаться в стерео, вам необходимо сделать другой. Все детали изображены на схеме.

Читайте также  Монтаж проводки по полу

Светомузыка на основе LM3914

Это просто свет, запустив музыку на вход этой цепи не трудно, при помощи нескольких аксессуаров. Может подключаться к выходу CD или магнитофона.

Функционирование цепи. Начинает ввод через VR1. Схема будет функционировать нормально, при поступлении сигнала. D1 пропускает только положительные сигналы, для активации Q1. Сигнал распространяется через Q1 ввода 5 IC1. По C1 идет задержка IC не включает светодиод (подключенных к выходной. IC1) немедленно.

Можно измерить напряжение на контакте 5 IC1 отображения светодиод на контакты 1-19 IC, который находится в пределах диапазона. по сравнению с несколько стандартных цепей напряжения. Цепи могут действовать эффективно. В R1, который будет определять, тока, протекающего через светодиод. Чтобы предотвратить повреждение LED.

Использование должен быть подключен к входу цепи. Разъемы динамика, измените значение R3 10 k и IC1 можно выбрать для отображения двух типов «Полоса», когда контакт 9 подключен к источнику питания. Чтобы показывалось движение точек на 9-контакте понизить напряжение.

Моргание света с помощью музыки с стерео мультисистемы.

Эта схема используется во многом оборудовании. Вы можете выбрать запуск линии или запустить с точкой.

Функционирование цепи. Основное устройство IC номер LM3914N готов показать эффекты мощности, как линия или точку. IC1 и IC2 аналогичные цепи R2, R3, VR1 подключены методом разделения напряжения на, через D1 5 ПИН. R1 и C1 являются ожидания задержки. Входной контакт 5 чтобы не скоро исчезнут. Сигнал для вывода каждого IC pin подключен к трем LED для ограничения потока. Но если вы хотите светодиод лунного света только придется подбирать сопротивление. S1, S2, необязательный формат отображения индикатора.

Индикатор напряжения для сборок литевых батарей 1-7S

  • Цена: $0.90-1.00
  • Перейти в магазин

Иногда заказываю для сборок аккумуляторов небольшие измерители и вот дошли руки протестировать их, ну и заодно написать микрообзор.
Осмотр, немножко тестов и выводов, надеюсь что будет полезно.

К сожалению доставка в магазине платная, потому заказывал сразу по нескольку штук чтобы компенсировать это.
На момент заказа у продавца вроде были только четыре версии, 1S, 2S, 3S, 4S, но сейчас появились 6S и 7S, при этом странно что нет в продаже версии 5S, подозреваю что скоро появится.

Большая часть измерителей отдал товарищу, но по одной штучке оставил и себе.
Каждый измеритель упакован в отдельный пакет, из отличий только наклейка с маркировкой на китайском и указанием диапазона измеряемого напряжения.
1S — 3.3-4.3 Вольта
2S — 6.6-8.4 Вольта
3S — 11.1-12.6 Вольта
4S — 13.2-16.8 Вольта

Также имеется маркировка цвета свечения (предположительно), но у продавца они только в одном варианте.

Если покупается несколько разных вариантов, то лучше их пометить сразу, так как сами по себе они ни маркировки, ни внешних отличий нет.

На одной из сторон платы есть место под кнопку, скорее всего для включения индикатора, но ни кнопки, ни сопутствующих компонентов на плате нет.

Когда получил индикаторы, то немного удивил размер, почему-то я ожидал что они будут меньше, тем более зная как в китайских магазинах любят делать фото.
Размеры самого индикатора — 31.5х20 мм, общие размеры — 43.5х20х9.5мм, расстояние между крепежными отверстиями — 36мм.

Чтобы не запутаться где какой индикатор, пришлось маркером сделать отметки на каждом из них.

Общее качество на троечку, есть следы флюса, пайка так себе, индикатор на некоторых платах припаян криво относительно самих плат.

Схемотехника довольно проста, стабилизатора напряжения питания нет, потому яркость зависит от напряжения питания. Имеется источник опорного напряжения на базе регулируемого стабилитрона TL431, а также защита от неправильной подачи питания.
Что за чип занимается измерением я определить не смог, сначала думал что это четырехканальный компаратор LM339, но у него выходы выведены на 1, 2, 13 и 14 контакты, а у чипа обозреваемой платы на 1, 7, 8, 14 выводы.

Ниже на фото две платы, 1S и 4S, чтобы понять в чем между ними отличия.
1. Резисторы через которые питаются сегменты индикатора (R1-R5).
2. Резистор R9.

Все остальные компоненты идентичны на всех платах.
При этом номинал резистора питания TL431 одинаков для всех плат и из-за этого ток потребления будет зависеть от входного напряжения.

Индикатор пятисегментный, один общий в виде символа батарейки и четыре сегмента для индикации уровня заряда (собственно потому я и думал что здесь применен LM339), но при этом существует и индикатор с пятью сегментами уровня заряда, мне такой попадался на Таобао.
Мало того, есть еще и много вариантов цветов индикации.

Размеры индикатора платы в обзоре и показанного выше очень похожи, 30.8х17.8мм против 31.5х20мм у обозреваемой платы.

Теперь немного тестов.
Индикатор обозреваемой платы имеет два цвета свечения, символ батарейки — красный, сегменты — синий. При этом символ батарейки состоит из шести параллельно включенных светодиодов.

Яркость достаточная, но у самой низковольтной версии сильно зависит от напряжения питания, но это вполне предсказуемо, остальные ведут себя гораздо стабильнее.
Есть и небольшая сложность, из-за того что цвета свечения синий и красный, то лучше использовать нейтральный светофильтр.
Для примера ниже четыре варианта —
1. Без светофильтра
2. Зеленый светофильтр, видны все сегменты, но яркость сильно падает и становятся более заметны светодиоды подсветки символа батарейки.
3. Красный светофильтр — виден только символ батарейки
4. Синий светофильтр, отлично видны сегменты, но символ батарейки почти не виден.

Измерения, для начала ток потребления.
Ниже на фото результат измерений для четырех режимов из пяти — только символ батарейки, + один сегмент, + два сегмента и + четыре сегмента, фото с тремя сегментами выкладывать не стал, но думаю что можно принять среднее между третьим и четвертым фото.
На всех фото где включены сегменты измерен ток сразу после его включения.
1-4, 1S
5-8, 2S
9-12, 3S
13-16, 4S

Видно что ток постоянно растет, хотя номиналы резисторов, через которые питаются светодиоды сегментов, разные. Происходит это из-за того, что резистор питания TL431 один и тот же на всех платах. Если необходимо уменьшить ток потребления, то можно номинал этого резистора (R14) пропорционально увеличить, например для платы 2S поставить 2кОм.

А теперь напряжение включения сегментов. Сразу сделаю отступление, гистерезиса или нет или он очень мал, потому у самой низковольтной версии бывает «дрожание» яркости, хотя в тесте я поднимал напряжение с дискретностью в 10мВ.

Также я сделал пересчет зависимости напряжения индикации к одному аккумулятору в зависимости от версии измерителя и у меня получилось:
1S. 2S. 3S. 4S
3.35 — 3.36 — 3.43 — 3.37
3.57 — 3.53 — 3.64 — 3.57
3.72 — 3.70 — 3.81 — 3.76
3.92 — 3.90 — 4.03 — 3.97

Видно что результаты немного «плавают», но в целом картина довольно ясна, диапазон измерения примерно 3.4-4.0 Вольта, что примерно соответствует почти полностью разряженному и заряженному аккумулятору. Напряжение литиевого аккумулятора обычно резко снижается с 4.2 до 4 Вольт, затем идет относительно плавное снижение до 3.3-3.4 Вольта и далее опять более резкое падение. Я бы сказал, что индикатор отображает примерно диапазон от 15 до 90%.

По итогам осмотра и тестов могу сказать, что индикаторы вполне работоспособны и полезны, но есть несколько замечаний:
1. Заметны отдельные светодиоды у символа батарейки
2. Ток потребления заметно растет с ростом напряжения, исправляется заменой резистора R14
3. Нет кнопки включения.

По последнему пункту поясню. Так как нет кнопки «программно» включающей индикатор, то сделать это можно только подачей питания, но обычно нет смысла держать его всегда включенным, а обычная мелкая кнопка имеет относительно высокое сопротивление и результат измерения будет сильно зависеть как от силы нажатия не кнопку, так и от срока ее службы.

В остальном вещь полезная и на мой взгляд недорогая, а большой выбор вариантов дает возможность использовать в разных устройствах, например в шуруповерте, повербанке и т.п.
Недавно покупал еще раз, вышло чуть дешевле — ссылка.

На этом у меня все, надеюсь что обзор был полезен, как всегда жду вопросов и просто комментариев.