Громкоговорители среднечастотные и высокочастотные

Громкоговорители (динамические головки) – параметры, маркировка и включение

Громкоговорители сейчас чаще называют сокращенно по названию одного из широкораспространенных типов громкоговорителей, электродинамического — «динамик». Основные конструкции громкоговорителей такие же как и у телефонных наушников, но есть и оригинальные конструкции. Громкоговоритель обычно состоит из двух основных частей: головки и акустического оформления. Головка громкоговорителя преобразует электрические сигналы в акустические и является самостоятельным узлом громкоговорителя. Громкоговорители могут содержать одну или несколько излучающих головок, необходимое акустическое оформление, пассивные электрические устройства (фильтры, трансформаторы, регуляторы и др.). Применение акустического оформления позволяет повысить качество излучения звука. Головки различаются как по принципу действия, так и по конструкции.

Громкоговорители и электроакустические головки характеризуются такими основными параметрами: номинальной мощностью, номинальным диапазоном частот, частотной характеристикой, полным электрическим сопротивлением, стандартным звуковым давлением и др.

Громкоговорители обычно делят по следующим основным признакам:

  • принципу электромеханического преобразования сигналов в акустические;
  • типу РЭА, где они используются;
  • ширине воспроизводимого диапазона частот;
  • мощности;
  • величине сопротивления звуковой катушки;
  • конструкции механико-акустической системы.

В настоящее время наиболее широкое распространение имеют электродинамические, электростатические, ленточные и изодинамические громкоговорители.

Электродинамические громкоговорители

Электродинамические громкоговорители катушечного типа имеют наибольшее распространение. Принцип их действия основывается на взаимодействии магнитных полей токов звуковой катушки и постоянного магнита. В зависимости от величины тока в катушке происходят ее колебания. Диффузор, жестко соединенный со звуковой катушкой, повторяет эти колебания и заставляет колебаться окружающий воздух, создавая тем самым звуковые волны. В зависимости от способа создания магнитного поля различают громкоговорители с постоянным магнитом и с подмагничиванием. Преобладающими в РЭА являются электродинамические головки прямого излучения (диффузорные). Классификация этих головок обычно производится в зависимости от воспроизводимого диапазона частот:

Широкополосные…..от 50…100 Гц до 16…20 кГц. Для улучшения воспроизведения высших частот такие головки часто имеют дополнительный диффузор в виде небольшого конуса, вклеенного в основной диффузор головки. Головки с номинальной мощностью 3…4 Вт воспроизводят наиболее широкий диапазон частот, а малой мощности — более узкий.

Низкочастотные……..от 20…40 Гц до 500… 1000 Гц, головки имеют значительные размеры и рассчитаны на подведение электрической мощности 5…50 ВЧА. Эффективность излучения низших частот возрастает с увеличением размера диффузора и повышения гибкости подвижной системы.

Среднечастотные…… 300…500 Гц до 5000…8000 Гц.

Высокочастотные….. 1000…5000 Гцдо 16000…30000 Гц.

Мощность среднечастотных и высокочастотных головок меньше, чем у широкополосных. Это связано с тем, что в реальном звуковом сигнале, содержащем речь, музыку, максимальную энергию несут звуки низших частот.

Использовать электродинамические головки прямого излучения без акустического оформления не рекомендуется. В этом случае происходит резкое ослабление излучения низших частот звукового диапазона.

Головки прямого излучения электродинамического типа имеют достаточно высокие параметры и относительно просты по конструкции. И это при том, что КПД у них довольно низкий и меньше, чем у электромагнитных головок.

Маркировка

Маркировка отечественных громкоговорителей основывается на буквенно-цифровой системе. В нее входят несколько элементов: на первом месте стоит цифра, указывающая номинальную мощность в вольт-амперах, на втором —- буква Г — громкоговоритель, за ней буква, соответствующая типу электромеханической системы преобразования электрических сигналов в акустические (Д — динамическая, J1 — ленточная, Э — электростатическая, П — пьезоэлектрическая и т.д.). Цифры (одна или две), стоящие после этих букв, обозначают номер разработки громкоговорителя данного типа. После номера иногда стоят цифры, соответствующие частоте механического резонанса подвижной системы в герцах. В конце маркировки встречаются буквы Т или Е (Т — тропическое исполнение, Е — для работы при повышенных вибрациях).

Отечественная промышленность выпускает громкоговорители разных типов, различной мощности в зависимости от их применения: для массовых приемников, телевизоров и магнитофонов, для вещания на площадях, улицах и для прочего. Радиолюбители при конструировании радиоэлектронной аппаратуры чаще используют электродинамические громкоговорители, так как они являются более доступными в плане приобретения.

Качество работы громкоговорителя обычно проверяют на слух. Для этого прослушивают качественную фонограмму при достаточной громкости. Звуковоспроизведение должно быть чистым. Не должно быть заметных частотных искажений, хрипов и дребезжания (нелинейные искажения). У хороших громкоговорителей неравномерность частотной характеристики не превышает 10 дБ. Для низкочастотных и широкополосных головок частота резонанса в зависимости от конструкции составляет 30… 100 Гц. Ниже частоты резонанса головка практически не излучает звук. Поэтому, чем ниже частота резонанса, тем лучше качество головки. Наиболее низкую частоту резонанса имеют головки с резиновым гофром диффузора.

Схемы включения громкоговорителей в каскады радиоэлектронных устройств

Громкоговорители могут включаться в радиоэлектронные схемы с помощью трансформатора, конденсатора или непосредственно в выходную цепь. Включение громкоговорителей через трансформатор в транзисторный УЗЧ показано: на рис. 3.14 — однотактный выходной каскад, рис. 3.15 — двухтактный выходной каскад, трансформатор Т1 намотан на сердечнике из пермаллоя 1114×6 мм, обмотки Іа и Іб содержат по 200 витков ПЭВ-2 0,12, а II обмотка имеет 90 витков ПЭЛ 0,25. Автотрансформаторное включение громкоговорителя (рис. 3.16) позволяет повысить мощность выходного каскада примерно в 1,5 раза по сравнению с трансформаторным и расширить полосу воспроизводимых частот до 150… 10000 Гц. В схеме трансформатор Т1 и автотрансформатор Т2 намотаны на сердечниках из пермаллоя ШЗхб мм. Трансформатор Т1 намотан проводом ПЭЛ 0,06, I обмотка содержит 1580 витков, II обмотка — 800 витков с отводом от середины. Автотрансформатор Т2 имеет общее число витков 1000, с отводами от 400, 500 и 600 витков. Секции намотаны проводом: 1-2 ПЭЛ 0,09, 2-3, 3-4 ПЭЛ 0,21, 4-5 ПЭЛ 0,09.

Громкоговоритель можно включать в УЗЧ и без выходного трансформатора. Варианты включения громкоговорителя без трансформатор^ в транзисторные УЗЧ показаны на рис. 3.17. В схеме рис. 3.18 в качестве громкоговорителя использован наушник ДЭМ-4М, а в схеме рис. 3.19 — самодельный громкоговоритель на базе электромагнитного микрофона ДЭМШ-1 А. К мембране микрофона припаяна игла, которая соединяется с диффузором. Интересна схема рис. 3.20, где в коллектор и эмиттер выходного транзистора включены громкоговорители.

Включение громкоговорителя в двухтактный бестрансформаторный транзисторный УЗЧ показано на рис. 3.21. Некоторые такие схемы рассчитаны на высокоомные громкоговорители (рис. 3.22, а). В этой схеме переходной трансформатор Т1 намотан на сердечнике LL14 с толщиной набора 9 мм. Все обмотки трансформатора намотаны проводом ПЭВ 0,06, первичная обмотка I содержит 2500 витков, а каждая из вторичных обмоток II и III содержат по 350 витков. В принципе можно использовать готовый переходной трансформатор от любого малогабаритного транзисторного радиоприемника, разделив его вторичную обмотку на две изолированные секции. Если нет такого громкоговорителя и конденсатора большой емкости, то имеющийся низкоомный громкоговоритель включают по схеме рис. 3.22, б. В этой схеме трансформатор Т1 намотан на сердечнике Ш4х8 мм, I обмотка — 900 витков ПЭВ 0,09, II — 100 витков ПЭВ 0,23. У вторичной обмотки делается несколько выводов с целью лучшего согласования с нагрузкой. С аналогичной целью используется автотрансформатор в УЗЧ с двухтактным выходным каскадом на транзисторах одной проводимости, схема которого представлена на рис. 3.23. Трансформатор Т1 намотан на сердечнике ШЗхб мм, обмотка содержит 200 витков провода ПЭВ-1 0,23 с отводом от середины.

Рис. 3.14. Принципиальная схема однотактного транзисторного УЗЧ с трансформаторным выходом

Рис. 3.15. Принципиальная схема двухтактного транзисторного УЗЧ с трансформаторным выходом

Рис. 3.16. Принципиальная схема двухтактного транзисторного УЗЧ максимальной мощностью 0,150 Вт с автотрансформаторным включением громкоговорителя

Рис. 3.17. Принципиальная схема однотактного транзисторного УЗЧ с непосредственным включением громкоговорителя:

а — в эмиттерную цепь выходного транзистора; б — в коллектор выходного транзистора с питанием 1,5 В

Рис. 3.18. Принципиальная схема однотактного транзисторного УЗЧ с использованием электромагнитного микротелефонного капсюля ДЭМ-4М в качестве громкоговорителя

Рис. 3.19. Принципиальная схема однотактного транзисторного УЗЧ с использованием громкоговорителя, изготовленного на базе электромагнитного микрофона ДЭМШ- 1А

Рис. 3.20. Принципиальная схема однотактного транзисторного УЗЧ с непосредственным включением двух громкоговорителей, одного в коллектор, а другого в эмиттер выходного транзистора

Рис. 3.21. Принципиальная схема двухтактного транзисторного УЗЧ максимальной мощностью 0,5 Вт с бестрансформаторным выходом и двумя источниками питания

Рис. 3.22. Принципиальная схема двухтактного транзисторного УЗЧ максимальной мощностью 0,1 Вт с бестрансформаторным выходом, с одним источником питания:

а — включение громкоговорителя через конденсатор С4 большой емкости, б — включение громкоговорителя через конденсатор С1 небольшой емкости

Рис. 3.23. Принципиальная схема транзисторного УЗЧ с максимальной мощностью 0,16 Вт с двухтактным выходным каскадом на транзисторах одной проводимости и включением громкоговорителя через автотрансформатор

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

Как выбрать частоты среза для ВЧ, СЧ, НЧ/СЧ динамиков

Посчитал, что будет многим полезно и интересно. Информация взята с просторов сети интернет.

ВЧ динамик — он же твиттер, он же пищалка, самый маленький в вашем автомобиле. Как правило установлен в стойках дверей. Размер около 5см в диаметре.

СЧ динамик- среднечастотный динамик.

НЧ- низкочастотный динамик (бидбас)

Один из обязательных этапов настройки звучания в салоне автомобиля — подбор оптимального разделения частот между всеми излучающими головками: НЧ, НЧ/СЧ, СЧ (если есть) и ВЧ. Есть два способа решения этой проблемы.

Во-первых, перестройка, а зачастую и полная переделка штатного пассивного кроссовера, во-вторых — подключение динамиков к усилителю, работающему в режиме многополосного усиления, так называемые варианты включения Bi-amp (двухполосное усиление) или Tri-amp (трехполосное усиление).

Первый способ требует серьезных знаний электроакустики и электротехники, поэтому для самостоятельного применения доступен только специалистам и опытным радиоэлектронщикам-любителям, а вот второй хотя и требует большего числа каналов усиления, доступен и менее подготовленному автолюбителю.

Тем более что подавляющее большинство продаваемых усилителей мощности изначально снабжены встроенным активным кроссовером. У многих моделей он настолько развит, что с успехом и достаточно высоким качеством позволяет реализовать многополосное включение АС с большим числом динамиков. Однако отсутствие развитого кроссовера в усилителе или головном устройстве не останавливает поклонников этого метода озвучивания салона, поскольку на рынке представлено множество внешних кроссоверов, способных решать данные задачи.

Вначале следует сказать, что стопроцентно универсальных рекомендаций мы вам не дадим, поскольку их не существует. Вообще, акустика — это область техники, где эксперименту и творчеству отведена большая роль, и в этом смысле поклонникам аудиотехники повезло. Но для проведения эксперимента, чтобы не получилось, как у того сумасшедшего профессора — со взрывами и дымом, — необходимо соблюдать определенные правила. Первое правило — не навреди, а о других речь пойдет ниже.

Больше всего трудностей вызывает включение СЧ- и (или) ВЧ-компонентов. И дело здесь не только в том, что именно эти диапазоны несут максимальную информационную нагрузку, отвечая за формирование стереоэффекта, звуковой сцены, а также сильно подвержены интермодуляционным и гармоническим искажениям при неправильной установке частоты разделения, но и в том, что от этой частоты непосредственно зависит и надежность работы СЧ- и ВЧ-динамиков.

Включение ВЧ-головки.

Выбор нижней граничной частоты диапазона сигналов, подаваемых на ВЧ-головку, зависит от числа полос акустической системы. Когда применяется двухполосная АС, то в наиболее типичном случае, т.е. при расположении НЧ/СЧ-головки в дверях, для поднятия уровня звуковой сцены граничную частоту желательно выбрать как можно ниже. Современные высококачественные ВЧ-динамики с низкой резонансной частотой FS (800-1500 Гц) могут воспроизводить сигналы уже с частоты 2000 Гц. Однако большинство используемых ВЧ-головок имеют резонансную частоту 2000-3000 Гц, поэтому следует помнить, что чем ближе к резонансной частоте мы устанавливаем частоту разделения, тем большая нагрузка ложится на ВЧ-динамик.

Читайте также  Проводка на роликах в деревянном доме

В идеале, при крутизне характеристики затухания фильтра 12 дБ/окт, разнос между частотой разделения и резонансной частотой должен быть больше октавы. Например, если резонансная частота головки 2000 Гц, то с фильтром такого порядка частота разделения должна быть установлена равной 4000 Гц. Если очень хочется выбрать частоту разделения 3000 Гц, то крутизна характеристики затухания фильтра должна быть выше — 18 дБ/окт, а лучше — 24 дБ/окт.

Есть еще одна проблема, которую необходимо учитывать при установке частоты разделения для ВЧ-динамика. Дело в том, что после согласования компонентов по воспроизводимому диапазону частот вам необходимо еще согласовать их по уровню и фазе. Последнее, как всегда, является камнем преткновения — вроде бы все сделал правильно, а звук «не тот». Известно, что фильтр первого порядка даст сдвиг фазы на 90°, второго — 180° (противофаза) и т.д., поэтому во время настройки не поленитесь послушать динамики с разной полярностью включения.

К диапазону частот 1500-3000 Гц человеческое ухо очень чувствительно, и для того, чтобы передать его максимально хорошо и чисто, следует быть крайне осторожным. Сломать (разделить) звуковой диапазон на этом участке можно, но следует подумать, как потом правильно устранить последствия неприятного звучания. С этой точки зрения более удобная и безопасная для настройки — трехполосная акустическая система, а используемый в ней СЧ-динамик позволяет не только эффективно воспроизводить диапазон от 200 до 7000 Гц, но и более просто решить проблему построения звуковой сцены. В трехполосных АС ВЧ-динамик включают на более высоких частотах — 3500-6000 Гц, то есть заведомо выше критичной полосы частот, а это позволяет снизить (но не исключить) требования к фазовому согласованию.

Включение СЧ-головки.

Прежде чем обсудить выбор частоты разделения СЧ- и НЧ-диапазонов, обратимся к конструктивным особенностям СЧ-динамиков. В последнее время у инсталляторов очень популярны СЧ-динамики с купольной диафрагмой. По сравнению с конусными СЧ-динамиками они предоставляют более широкую диаграмму направленности и проще в установке, поскольку не требуют дополнительного акустического оформления. Основной их недостаток — высокая резонансная частота, лежащая в пределах 450-800 Гц.

Проблема в том, что чем выше нижняя граничная частота полосы сигналов, подаваемых на СЧ-динамик, тем меньше должно быть расстояние между СЧ- и НЧ-головками и тем более критично, где именно стоит и куда сориентирован НЧ-динамик. Практика показывает, что купольные СЧ-динамики без особых проблем с согласованием можно включать с частотой разделения 500-600 Гц. Как видите, для большинства продаваемых экземпляров это достаточно критичный диапазон, поэтому, если вы решились на такое разделение, порядок разделительного фильтра должен быть достаточно высоким — например, 4-й.

Следует добавить, что в последнее время стали появляться купольные динамики с резонансной частотой 300-350 Гц. Их можно использовать, начиная с частоты 400 Гц, но пока стоимость таких экземпляров достаточно высока.

Резонансная частота СЧ-динамиков с конусным диффузором лежит в пределах 100-300 Гц, что позволяет использовать их, начиная с частоты 200 Гц (на практике чаще используется 300-400 Гц) и с фильтром невысокого порядка, при этом НЧ/СЧ-динамик полностью освобождается от необходимости работать в СЧ-диапазоне. Воспроизведение без разделения между динамиками сигналов с частотами от 300-400 Гц до 5000-6000 Гц дает возможность добиться приятного, высококачественного звучания.

Включение НЧ/СЧ-динамика.

Постепенно мы добрались до НЧ-диапазона. Современные СЧ/НЧ-динамики позволяют эффективно работать в полосе частот от 40 до 5000 Гц. Верхняя граница его рабочего диапазона частот определяется тем, откуда начинает работать высокочастотник (в 2-полосной АС) или СЧ-динамик (в 3-полосной АС).

Многих волнует вопрос: стоит ли ограничивать его диапазон частот снизу? Что же, давайте разберемся. Резонансная частота современных НЧ/СЧ-динамиков типоразмера 16 см лежит в пределах 50-80 Гц и благодаря высокой подвижности звуковой катушки эти динамики не столь критичны к работе на частотах ниже резонансной. Тем не менее воспроизведение частот ниже резонансной требует от него определенных усилий, что приводит к снижению отдачи в диапазоне 90-200 Гц, а в двухполосных системах еще и качества передачи СЧ-диапазона. Поскольку основная энергия ударов бас-бочки приходится на диапазон частот от 100 до 150 Гц, то первое, что вы теряете, четко выраженный панч (punch — удар). Ограничивая снизу при помощи ФВЧ диапазон воспроизводимых НЧ-головкой сигналов на 60-80 Гц, вы не только позволите ей работать намного чище, но и получите более громкое звучание, другими словами — лучшую отдачу.

Сабвуфер.

Воспроизведение сигналов с частотами ниже 60-80 Гц лучше возложить на отдельный динамик — сабвуфер. Но помните, что звуковой диапазон ниже 60 Гц в автомобиле не локализуется, а значит, место установки сабвуфера не столь существенно. Если вы это условие выполнили, а звук сабвуфера все равно локализуется, то в первую очередь необходимо увеличить порядок ФНЧ. Не следует также пренебрегать и фильтром подавления инфранизких частот (Subsonic, или ФИНЧ). Не забывайте, что у сабвуфера тоже есть своя резонансная частота и, отсекая частоты, лежащие ниже нее, вы добиваетесь комфортного звучания и надежной работы сабвуфера. Как показывает практика, погоня за глубокими басами существенно удорожает стоимость сабвуфера. Поверьте, если собранная вами звуковая система с хорошим качеством воспроизводит звуковой диапазон от 50 до 16 000 Гц, этого вполне достаточно, чтобы комфортно слушать музыку в автомобиле.

Способы сопряжения головок.

Довольно часто возникает вопрос: следует ли иметь одинаковый порядок фильтров НЧ и ВЧ? Вовсе не обязательно, и даже совсем не обязательно. Например, если вы установили двухполосную фронтальную АС с большим разнесением динамиков, то чтобы компенсировать провалы ЧХ на частоте разделения, НЧ/СЧ-головку зачастую включают с фильтром меньшего порядка. Более того, даже не обязательно, чтобы частоты срезов ФВЧ и ФНЧ совпадали.

Скажем, для компенсации избыточной яркости в точке разделения НЧ/СЧ-головка может работать до 2000 Гц, а высокочастотник — начиная с 3000 Гц. Важно помнить, что при использовании фильтра первого порядка разность между частотами среза ФВЧ и ФНЧ должна быть не больше октавы и уменьшаться с увеличением порядка. Такой же прием используется при сопряжении сабвуфера и мидвуфера для ослабления стоячих волн (бубнения басов). Например, при настройке частоты среза ФНЧ сабвуфера на 50-60 Гц, а ФВЧ НЧ/СЧ-головки на 90-100 Гц, по заверениям знатоков, полностью устраняются неприятные призвуки, обусловленные естественным подъемом АЧХ в этой частотной области из-за акустических свойств салона.

Так что если и работает в car audio правило перехода количества в качество, то подтверждается оно только в отношении стоимости отдельных компонентов и человеко-лет, определяющих опыт и мастерство установщика, который заставит систему раскрыть свой звуковой потенциал.

Типы динамиков для акустической системы

В предыдущем материале мы разобрали основные составляющие любого динамика. В этом материале стоит детальнее остановиться на специфике конструкции каждой разновидности этих устройств.

Типы динамика исходя из своей спецификации можно условно разделить на низкочастотные (басовики), среднечастотные и высокочастотные (твитеры). Для создания качественного звукового фронта все эти варианты должны быть сбалансированы. Перекос с акцентом тех или иных частот, как правило, не приветствуется и реализуется только сознательно – если таковы индивидуальные предпочтения владельца либо требования музыкального жанра.

Также существует вариант, при котором весь спектр частот воспроизводится одним драйвером – широкополосным. Последний вариант подразумевает отсутствие деления аудиосигнала на полосы. Такой вариант воспроизведения сегодня встречается все реже, закономерно вытесняясь акустическими системами с устройствами, воспроизводящими разделенный сигнал. С него как появившегося первым в ходе развития технологий и начнем.

Широкополосные динамики акустики

Широкополосные динамики воспроизводят весь спектр частот, доступный человеческому уху – от 20 Гц до 20 кГц. Но проблема, которая заставила инженеров работать над созданием СЧ, НЧ и ВЧ спикеров, заключается в эффективности работы широкополосников на границах воспроизводимого диапазона частот.

Почему? Для воспроизведения звука очень важно синхронное колебание всей плоскостью диффузора. Для низов (около 40 Гц) его размеры достаточно велики – минимум порядка 300 мм. Но при росте частоты вибрации до верхних границ спектра такой большой диаметр диффузора не будет успевать передавать эти колебания всей своей поверхностью.

Отсюда – необходимость «придумать что-то еще». Так, в частности, для улучшения звучания «верхов» диффузор снабжается дополнительным приспособлением. Оно называется «конус-визер» («рупорок», «дудка») и вклеивается в центр динамика. В то время, как основная плоскость диффузора воспроизводит «низы» при медленных колебания, компактный конус-визер воспроизводит верхние частоты.

Перечисленные слабые места широкополосных драйверов – предмет активного приложения современной инженерной мысли на грани с искусством. Чаще всего они решаются путем поиска и применения различным материалов или их сочетаний, приближающих полноценное звучание всего диапазона аудиосигнала, что способно различить человеческое ухо.

Как правило, по причине отсутствия кроссоверов, акустика с широкополосным драйвером обеспечивает воспроизведения звука в диапазоне 60 Гц – 16 кГц и чувствительностью до 92-95 дБ. Исходя из этих характеристик она идеально дополняет ламповые усилители, в большинстве своем имеющие небольшую мощность. Для этого катушки широкополосных драйверов выполняются с высокими значениями показателей сопротивления. Для всех остальных спикеров акустических систем они варьируются в пределах 2-8 Ом.

Твитер

Твитер (высокочастотный динамик, пищалка) и следующие спикеры – результат того, что широкополосник не способен воспроизвести весь диапазон слышимых ухом частот эффективно. А значит, остается их разделять и возлагать функции воспроизведения различных спектров частот на несколько раздельных драйверов.

Пищалка характеризуется небольшой площадью диффузора. При этом мембрана отличается малым весом и высокой жесткостью – ей предстоит осуществлять колебания с высокой частотой.

Если говорить про конструктивные исполнения подобных элементов, то чаще всего акустические системы оснащаются ВЧ-динамиками купольного типа. При этом варианте центральное тело «пищалки» занимает почти всю площадь излучающей звук мембраны. Последняя изготавливается чаще всего из ткани, пропитанной для повышения жесткости специальными составами. Хотя для устройства динамиков высоких частот многие производители используют и более жесткие материалы – например, бериллий.

Очень важным для пищалки является частота собственного резонанса, что должна быть ниже полосы воспроизводимых частот. В противном случае, на близких к нему частоту система «усилитель-динамик» обеспечивает ощутимые искажения сигнала в слышимой ухом человека части звукового спектра. Для этих целей используется кроссовер, ограничивающий рабочий диапазон частот высокочастотника и обрезающий частоты его резонанса.

Устройство динамика средних частот

Следующий рассматриваемый тип динамиков для акустической системы – мидренч (среднечастотный спикер). Его функциональная задача – четкое воспроизведение диапазона частот, соответствующих наиболее слышимой нашим ухом части спектра.

Здесь сложности, возникшая в свое время перед инженерами, заключалась в возникновении изгибной волны — деформаций диффузора, природой которого является разная скорость колебаний периферийной и центральной частей. В результате этого негативно сказывается на воспроизведении голосов и других звуков в определенном диапазоне частот.

Отсюда разработчикам необходимо решить два противоречивых требования – диффузор среднечастотника должен быть одновременно легким и жестким, чтобы исключить саму возможность изгибной волны. Это решается поиском соответствующих решений в плоскости «конструкция/материал».

В качестве последнего чаще всего используются стекловолокно, углеволокно, кевлар, целлюлоза с пропиткой различными наполнителями. Реже используется бериллиевые версии мидренча.

Низкочастотный динамик для акустической системы

Низкочастотный динамик для акустической системы, называемый также вуфером или басовиком, является самым крупным излучателем в любой системе. Для полноценной колонки диаметр НЧ-спикера обычно варьируется в пределах 300 мм. Исходя из вышеописанных явлений, становится очевидным, что такая большая площадь излучения при своей работе должна двигаться цельной конструкцией. Отсюда главное требование к конструкции вуфера – максимально возможная жесткость, которой приносится в жертву фактор минимального веса излучателя.

Читайте также  Проводка открытым способом в квартире

Таким образом, движущаяся часть басового динамика может весить до 200 г и даже больше. Зачастую они имеют сложную пространственную конструкцию из многослойного композита и заполнением ячеистой структурой.

Для ряда дорогих акустических систем вес вуфера стараются минимизировать, но пи этом обеспечить ему самую большую амплитуду колебаний. В таком случае реализуются внешний резиновый подвес и удлиненная голосовая катушка. В итоге смещение диффузора басовика от центральной точки становится максимальным.

Коаксиальные драйверы

В двух- или трехполосной акустической системе с разнесенными твитером, мидренчем и басовиком при небольшом пространстве помещения возникает негативный эффект. Мозг улавливает, что источники звука различной частоты находятся в разных точках, и это нарушает общий эффект звучания.

В этой связи может использоваться коаксиальный тип динамика, являющийся некоторым вариантом совмещения других спикеров в рамках одной конструкции. В двухполосном варианте «пищалка» размещается в центре вуфера. Но это довольно трудно выполнить на практике ввиду технологических особенностей. Тем не менее, акустика с такими излучателями создает наиболее сильный стереоэффект и занимает при этом минимальное пространство. Поэтому ряд брендов оснащает выпускаемые колонки динамиками коаксиального типа.

Динамик для специальной акустической системы

Существует широкий спектр специализированной акустики – всепогодная для эксплуатации в условиях внешней среды, ландшафтная, акустика для помещений с повышенной влажностью или высокой степенью запыленности и так далее. Влага, пыль, интенсивная инсоляция и другие факторы воздействия требуют особых решений. Как правило, к этой категории колонок предъявляются совершенно иные требования. Многие требования, предъявляемые к АС домашних кинотеатров и стереосистем, для специализированной акустики являются неприоритетными.

Исходя из этого, упор в создании динамиков для таких колонок делается прежде всего на их долговечность и надежность. А они достигаются прежде всего внушительными конструктивными изменениями и подбором соответствующих материалов для их изготовления. Также особое внимание разработчиков уделяется поиском и защите наиболее уязвимых элементов.

Динамики наушников

Очевидно, что при разработке излучателей для наушников во главе угла стоит принцип минимизации их размеров. Для внутриканальных их диаметр варьируется в пределах 6-12 мм, для накладных – 40-60 мм. Разумеется, в подавляющем большинстве они являются широкополосниками.

С одной стороны, при таком варианте успешно решается одновременного движения всей мембраны. С другой стороны, малые размеры излучателей усложняют их производство из материалов, что используются для изготовления драйверов колонок. Чаще всего, для этой цели используются гамма синтетических материалов, реже – целлюлоза. Небольшие габариты магнитной системы позволяют применять неодимовые магниты. Это значительно повышает максимальный показатель чувствительности (до 120 дБ) но при этом стоимость таких наушников ощутимо растет.

Кроме того, динамики наушников должны иметь намного большее сопротивление, нежели излучатели активной или пассивной акустики. Если последние имеют значения сопротивления в пределах 2-16 Ом, то спикеры наушников – от 16 и выше. У профессиональных наушников эти значения могут доходить до 800 Ом.

Теперь, имея определенное представление про типы динамиков различных устройств, Вам будет проще выбирать соответствующую акустическую продукцию из нашего каталога. Мы будем рады помочь Вам в удовлетворении любых аудиофильских желаний!

Уличные громкоговорители: особенности, разновидности, советы по выбору и установке

  1. Особенности
  2. Применение
  3. Разновидности
  4. Популярные модели
  5. Советы по выбору
  6. Рекомендации по установке и использованию

Громкоговоритель — это устройство, предназначенное для усиления воспроизводимого звукового сигнала. Прибор очень быстро преобразует электрический сигнал в звуковые волны, которые распространяются по воздуху при помощи диффузора или диафрагмы.

Особенности

Технические характеристики громкоговорителей детально прописаны в нормативных документах — ГОСТ 9010-78 и ГОСТ 16122-78. А также некоторая информация имеется в акте №268-5, который был разработан «Международным электротехническим комитетом».

Согласно этим документам наиболее важными особенностями громкоговорителей являются:

  1. характеристическая мощность — это показатель уровня звукового давления, равный 94 дБ на расстоянии 1 м (интервал диапазона частот при этом должен составлять от 100 до 8000 Гц);
  2. шумовая мощность — это средний уровень звука, который может выдавать громкоговоритель на специальном испытательном стенде в течение 100 часов;
  3. максимальная мощность — наибольшая сила исходящего звука, которую воспроизводит громкоговоритель в течение 60 минут без каких-либо повреждений в корпусе;
  4. номинальная мощность — сила звука, при которой линейные искажения в информационном потоке не ощущаются.

Еще одна важная особенность — чувствительность громкоговорителя является обратно пропорциональным показателем относительно его характеристической мощности.

Применение

Громкоговорители широко распространены в различных сферах жизни. Их используют в быту, в культурных и спортивных мероприятиях различного масштаба (для громкого звучания музыки или объявлениях о старте), в транспорте и в промышленности. В настоящее время большое распространение громкоговорители получили в сфере безопасности. Так, эти устройства используются для оповещения людей о пожаре и других чрезвычайных ситуациях.

Часто громкоговорители используют для доведения до людей какой-либо информации рекламного характера. В этом случае их устанавливают в местах большого скопления народа, например, на площадях, в торговых центрах, в парках.

Разновидности

Существует множество разновидностей громкоговорителей. Эти устройства отличаются друг от друга благодаря наличию или отсутствию некоторых параметров.

  1. По способу излучения громкоговорители бывают двух видов: прямого и рупорные. При прямом излучении громкоговоритель подает сигнал непосредственно в среду. Если громкоговоритель рупорный, то передача осуществляется непосредственно через рупор.
  2. По способу подключения: низкоомные (подключение осуществляется через выходной каскад усилителя мощности) и трансформаторные (подключаются к выходу трансляционного усилителя).
  3. По частотному диапазону: низкочастотные, среднечастотные и высокочастотные.
  4. В зависимости от конструктивного исполнения: накладные, врезные, корпусные и фазоинверторные.
  5. По типу преобразователя громкости: электретные, катушечные, ленточные, имеющие неподвижную катушку.

А также они могут быть: с микрофоном или без него, всепогодными, водонепроницаемыми, используемые только в закрытом помещении, уличными, ручными и с креплениями.

Популярные модели

На современном рынке представлено много громкоговорителей, достойных внимания. Но наиболее качественными и демократичными по цене являются несколько моделей.

  • Рупорный громкоговоритель PASystem DIN-30 — является всепогодным устройством, предназначенным для трансляции музыки, объявлений рекламного и другого характера, а также может быть использован для оповещения населения в чрезвычайных ситуациях. Страна-производитель Китай. Стоимость около 3 тысяч рублей.

  • Громкоговоритель рупорный маленький — очень удобная модель за небольшую цену (всего 1700 рублей). Изделие выполнено из пластика, имеет удобную ручку и ремень.

  • Show ER55S/W – ручной мегафон с сиреной и свистком. Оригинальное устройство весом чуть более 1,5 кг. Стоимость в среднем 3800 рублей.

  • Громкоговоритель настенный Roxton WP-03T — качественная и одновременно недорогая модель (порядка 600 рублей).

  • Громкоговоритель пылезащищенный 12ГР-41П — выполнен из алюминия, что обеспечивает высокую прочность. Может быть установлен как в помещении, так и на улице, поскольку оснащен системой защиты от пыли. Стоимость около 7 тысяч рублей.

Несмотря на то что большинство громкоговорителей производятся в Китае, их качество остается на должном уровне.

Советы по выбору

При выборе громкоговорителя важно учитывать не только его внешний вид и технические характеристики, но и рассчитать площадь озвучивания. В помещениях закрытого типа рекомендуется устанавливать потолочные устройства, поскольку они способны равномерно распределять звук.

В торговых центрах, галереях и каких-либо других протяженных помещениях лучше установить рупорные. На улицу нужны низкочастотные устройства, имеющие защиту от влаги и пыли.

При проектировании системы оповещения нужно обязательно учитывать уровень шума, характерного для помещения. Значения уровня шума для наиболее распространенных помещений:

  • производственное помещение — 90 дБ;
  • торговый центр — 60 дБ;
  • поликлиника — 35 дБ.

Специалисты рекомендуют выбирать громкоговорители, основываясь на том, чтобы уровень его шумового давления превышал уровень шума в помещении на 3-10 дБ.

Рекомендации по установке и использованию

Как уже было сказано выше, в длинных помещениях коридорного типа рекомендуется устанавливать рупорные громкоговорители. При этом они должны быть направлены в разные стороны, чтобы звук распространялся по помещению равномерно.

Следует помнить, что устройства, расположенные друг к другу слишком близко, будут создавать мощную помеху, что поспособствует неправильной работе.

Подключить громкоговоритель можно самостоятельно, поскольку к каждому устройству прилагается инструкция, где подробно расписаны все схемы. Если сделать это не получается, то лучше обратиться за помощью к специалисту.

Видеообзор уличного громкоговорителя Гр-1Е представлен далее.

Громкоговорители среднечастотные и высокочастотные

Все знают, что высокочастотные громкоговорители или твитеры («пищалки» — как их называли радиолюбители старой закалки) для качественного воспроизведения звука устройства совершенно необходимые. «Все знают, что полезно, но не все помнят, почему». Что же такое современные твитеры, какие технологии сегодня используются при их производстве, и какими характеристиками они обладают?

Что такое твитеры?

Помнится, ещё в детстве учитель труда говорил нам: «Пилить древесину вдоль или поперёк волокон можно универсальной пилой, но если вам нужно пилить действительно ХОРОШО, то лучше иметь две специальные пилы, чем одну универсальную». С годами стало очевидно, что это относится не только к ножовочным полотнам. Широкополосная акустика не даёт звука сопоставимого с трехполосными схемами: сотрясать воздух с частотой в 20 герц и в 20 килогерц — задачи различные на три порядка. Для решения этих задач обычно используются громкоговорители трех диапазонов: низкочастотные (сабвуферы), среднечастотные и высокочастотные (твитеры).

Твитеры, как и прочие динамические головки, состоят из следующих основных частей: корпус, магнит, звуковая катушка и диффузор. Первое, что бросается в глаза — это различие в размерах твитеров и низкочастотных головок. Ясно, что чем выше частота сигнала, тем линейные размеры диффузора должны быть меньше. Но здесь уже вступают в силу законы перехода количества в качество: твитеры — это не просто уменьшенные в размерах копии сабвуферов.

Магниты чаще всего содержат примесь редкоземельного металла неодима, что позволяет уменьшить их линейные размеры, так как характеристика напряженности магнитного поля неодимовых магнитов в несколько раз выше, чем обычных ферромагнитов. .

Из-за малого хода диффузора (не более 0,3 мм) звуковая катушка работает в тяжелых условиях. Для улучшения теплопередачи предусмотрена система охлаждения с помощью ферромагнитной жидкости (смесь силиконовой смазки и мельчайшего порошка ферромагнитного материала), отводящей тепло от звуковой катушки. Сама катушка чаще всего наматывается проводом из меди с высокой степенью очистки. .

Материал диффузора высокочастотной головки — совокупность компромиссов. Он должен быть достаточно жестким и в то же время легким. Жесткость необходима для того, чтобы при работе твитера не изменялась форма диффузора, что приведет к искажению сигнала. Легкость нужна для уменьшения момента инерции — слишком инерционный диффузор невозможно будет «раскачать» с частотами в десятки килогерц. Твитеры в компонентной акустике высокого класса чаще всего делают с тканевой (обычно шелковой) мембраной, титановой или алюминиевой. Встречаются купола из керамики (из окислов металлов). Используются даже такие экзотические материалы как бериллий или алмаз. .

Диаграмма направленности у твитеров много уже чем у низко- или среднечастотных головок и для ее расширения используются рассекатели. Обычно, это вертикальные рассекатели для расширения диаграммы в горизонтальной плоскости. .

Чаще всего твитеры классифицируют по форме диффузора. Рассмотрим основные типы. .

Конусные твитеры

На первых порах твитеры имели такой же конический диффузор, как и среднечастотные динамические головки, только меньшего размера. Конус делался тоньше и легче, чтобы мог двигаться с большей скоростью, катушки наматывались очень тонким проводом, для уменьшения веса и индукции. Сегодня конусные твитеры в высококачественной акустике практически не используются.

Читайте также  Как сделать наружную проводку в квартире?

Купольные твитеры

Этот высокочастотный громкоговоритель обычно не имеет корзины (диффузодержателя). Купол является выпуклой (реже — вогнутой) полусферой-диффузором, непосредственно к которому и крепится звуковая катушка.

Ленточные твитеры

Основаны на работе Оскара Хейла «Преобразователь движения воздуха» от 1972 года. Мембрана состоит из зигзагом сложенной диафрагмы, складки которой перемещаются согласно току в звуковой катушке, таким образом, сжимая и разряжая воздух. Все другие конструкции громкоговорителей, управляются ли они звуковой катушкой, электростатикой, пьезоэлектрически или магнитостатикой, действуют подобно поршню, перемещающему воздух с коэффициентом 1:1. Это неэффективно, так как вес воздуха много меньше веса диффузора. Ленточная технология достигает соотношения 4:1 — воздух перемещается в четыре раз быстрее, чем мембрана. Еще одно преимущество — площадь диффузора. Если площадь конического или купольного диффузора — это площадь видимого круга, то активная площадь ленточного твитера — это полная развертка сложенной мембраны (эффективная площадь в 2,5 раз больше площади проекции сложенной ленты). Таким образом, для получения необходимого уровня звукового давления требуется меньшее перемещение диффузора, что позволяет исключить динамическое сжатие.

Твитеры сегодня

Что же предлагается нам сегодня. Рассмотрим несколько популярных компаний, производителей акустики.

B&W Bowers&Wilkins (www.bwspeakers.com). Несомненно, главной особенностью твитеров в составе компонентной акустики серии 800 с индексом «D» являются алмазные купола («D» — diamond, алмаз). Прочность алмаза несомненна, а значит отсутствие деформаций диффузора во всем диапазоне частот и точность воспроизведения высокочастотных сигналов гарантированы. Алмаз легок и невероятно прочен, прозрачен для ультрафиолета и инфракрасного излучения, хорошо проводит и поглощает тепло. Единственной проблемой оставалось одно — как же сделать твитер из алмаза? На помощь пришли достижения полупроводниковой технологии за последнее десятилетие — выращивание кристаллов и вакуумное напыление. В компании B&W разработали метод, позволяющий осаждать из паровой фазы чистый алмаз в сложные формы, что и позволило появиться на свет алмазным твитерам. Это наиболее естественно звучащие высокочастотники, оправдывающие самые высокие эпитеты – «знаковый успех в искусстве звука».

В моделях с индексом «S» используются вновь разработанные твитеры с алюминиевыми куполами. Они исполнены в том же дизайне, что и их алмазные «братья», что также позволяет точно синхронизировать движения купола с сигналом на катушке.

ADAM Professional Audio (www.adam-audio.com). В серии акустики ADAM A.R.T. используются оригинальные ленточные твитеры, созданные по технологии A.R.T. (Accelerated Ribbon Technology — ленточная технология быстрого срабатывания), что позволяет получать частоты до 35000 герц. Ленточная, сложенная «гармошкой», мембрана очень эффективна (ее площадь больше площади купольного диффузора на порядок) и дает более широкую диаграмму направленности. Новый подход к геометрии дизайна излучателей и использование недоступных прежде материалов позволило ADAM переосмыслить оригинальную идею Оскара Хейла и создать твитер с уникальными характеристиками: средняя эффективность 93 дБ/Вт/м, линейное во всем диапазоне воспроизводимых частот сопротивление 3,2 ± 0,05 Ом и фазовый сдвиг ± 1 градус, хорошую диаграмму направленности. Ленточный твитер размерами 2 на 3 дюйма дает тепловое излучение сопоставимое с тем, что дает купольный твитер диаметром в 1 дюйм.

Audiovector (www.audiovector.ru). С 1985 года, с изобретением собственного твитера LCT (Low compression tweeter — твитер низкого давления), компания использует в компонентной акустике только высокочастотники собственного производства. Кроме купольных, Audiovector производит и ленточные твитеры серии Avantgarde AMT – «высокочастотник без проблем с массой». Гофрированная лента-мембрана двигается из стороны в сторону, в результате чего получается более быстрый и точный отклик на сигнал частотой до 50000 герц. Вот почему звук твитера такой детализированный, невесомый и мощный. В основе технологии также лежат идеи Оскара Хейла. Годы «полировки» и развития его основной идеи дали в результате новый вид твитера, способный с превосходной точностью отслеживать сигналы высоких частот. «Звучание такое, как будто твитера нет вовсе. Звуки идут ниоткуда. Они невесомы» — Lyd & Bilde 2001.

Boston Acoustics (www.bostonacoustics.com). Твитеры, производимые компанией, содержат жесткий и очень легкий купол из анодированного алюминия. Охлаждение осуществляется ферромагнитной жидкостью и дополнительно литым алюминиевым радиатором на тыльной стороне корпуса. Компактные размеры твитеров получены благодаря применению неодимовых магнитов, которые на порядок легче и меньше обычных.

Раньше широко использовались ВЧ-головки с куполом из титана, обладавшие еще более высокой прочностью, но их акустические характеристики перестали удовлетворять строгим требованиям компании, и сегодня подобные твитеры встречаются только в предыдущих моделях.

Гибкий материал диффузора не позволит отслеживать колебания сигнала с частотами до 20000 герц, а жесткие дают паразитный «звон» на резонансных частотах. Для решения этой проблемы, в серии Boston Rally для куполов стал использоваться кортек (kortec) — материал плотно сплетенный из шелковистой ткани, усиленный с изнанки специальным патентованным отвердителем. Мягкость материала снаружи и жесткость изнутри устраняют нежелательные резонансы и позволяют добиться очень высоких частот, дают плавный, мягкий и очень «живой» звук с точной проработкой высокочастотных деталей общей звуковой картины.

Focal (www.focal.tm.fr). Особенность куполов твитеров Focal в том, что они не выпуклые, а вогнутые. Тем самым специалистам компании удалось повысить отдачу твитера на 4-5 дБ.

Бериллиевые купола имеют уникальное сочетание жесткости и малого веса (18 мг), что позволяет получать рабочий диапазон от 1 до 40 килогерц. Столь малый вес достигается тем, что толщина купола составляет всего 25 микрон. Бериллиевые купола не имеют пиков и резонансов в своих частотных характеристиках как купола из других металлов.

Твитеры завтра

В будущем твитеров видится два основных направления: поиск новых материалов для изготовления диффузоров и развитие принципиально новых конструкций.

Если еще несколько лет назад словосочетания «золотой» или «алмазный твитер» могли быть всего лишь восторженными эпитетами для качественных образцов, то сегодня такие характеристики следует понимать буквально. Похоже, все возможные «чистые» материалы уже перепробованы (включая редкий бериллий, которого в мире в год добывают всего-то килограммов 400) и нас ждут новые композиты по примеру кортека или кевлара.

Возможно, новые конструкции будут основаны на совершенно иных технологиях, где в качестве диффузора выступает сам воздух. Это и «плазменные» твитеры, и твитеры «виртуальные» (или «воздушные»).

Плазма нагревает воздух так, что он начинает звучать. Представьте себе дугу плазменной сварки, модулируемую токами звуковой частоты. Никаких движущихся частей, а, значит, и резонансов. Главный недостаток — повышенное образование озона. «Если бы эти твитеры изобрели в 60-х, мы бы все умерли от рака кожи!» — пугают нас эксперты NewForm Reseach (www.newformresearch.com). Ну, сегодня мы ведь как-то боремся с озоном лазерных принтеров….

В «воздушных» твитерах звук образуется «ниоткуда», прямо в воздухе, на пересечении двух очень мощных ультразвуковых лучей. При пересечении двух узких лучей с частотами, скажем, 200 и 205 килогерц, интермодуляцией образуется разностный тон с частотой 5 килогерц. Проблема в том, что для получения уровня 100дБ в звуковом диапазоне, комнату заполнят ультразвуковые лучи с частотами свыше 200 килогерц и мощностями до 150дБ, что смертельно для случайно подвернувшегося под такой луч. Хочется верить, что эти недостатки скорее технологические, чем принципиальные. Если бы на заре электричества сказали, что в бытовых приборах будущего потребуется напряжение в несколько киловольт (цветной телевизор), тогдашние изобретатели сочли бы такой прибор смертельно опасным.

Громкоговорители среднечастотные и высокочастотные

Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Архив статей и поиск
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(500000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
▪ Ваши истории
▪ Викторина онлайн
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Голосования
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

Перевод:
Наталья Кузнецова

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua


сделано в Украине

Головки громкоговорителей среднечастотные и высокочастотные. Справочные данные

Наименов.,
ГОСТ9010-
6773.78
Наименов.,
ОСТ4.383
.001-85
Rном,
Ом
Fрез,
Гц
Диапазон
частот, кГц
Чувствит.,
дБ
Pном., Вт Pнорм.
Гарм., Вт
Pmax,
шум.,
Вт
Pmax,
долг.,
Вт
Pmax,
кратк.,
Вт
Звуковое
давление
при P=Pш, дБ
ЗГД-1 8 120 200-5,0 93,5 3 4* 99,5
4ГД-6 8 160 200-5,0 90 4 5* 97,0
20ГДС-1 4/8/16 110 200-5,0 89 10 20 25 30 102,0
15ГД-11А 20ГДС-3 8 100 200-5,0 88,5-92 15 15 20 20 30 101,5-105,0
15ГД-11 20ГДС-4 8 120 200-5,0 89 15 15 20 20 40 102,0
З0ГДС-1 8 250 500-6,3 92 2,5 30 50 100 106,8
З0ГДС-3 4/8/16 110 200-5,0 89 1,25 30 35 40 103,8
1ГД-3 12,5 4500 5,0-18,0z 93,5 1 2* 96,5
1ГД-56 1ГДВ-1 8 3000 6,3-16,0 88 1 1 1 1,5 3 88,0
2ГД-36 ЗГДВ-1 8 1600 3,15-20,0 90 2 2 3 3 6 94,8
ЗГД-2 6ГДВ-1 16/25 4500 5,0-18,0 90/92,5 3 6 6 6 6 97,8/100,3
ЗГД-31 5ГДВ-1 8 3000 3,0-18,0 90 3 3 5 8 15 97,0
ЗГД-47 4ГДВ-1 8 3000 3,0-18,0 91 3 4 97,0
4ГД-56 6ГДВ-2 8 1600 3,15-20,0 90 4 4 6 6 12 97,8
6ГД-11 8 2000 3,0-20,0 90 6 6 97,8
6ГД-13 6ГДВ-4 8 3000 3,0-25,0 93,5 6 1,25 6 6 6 101,3
10ГД-35 6ГДВ-6 16/25 3000 5,0-25,0 91 10 2 6 8 10 98,8
6ГДВ-7 16 5,0-25,0 92 2,5 6 6 20 99,8
6ГДВ-9 16 5,0-25,0 91 2 6 10 20 98,8
10ГД-35Б 10ГДВ-2 16 2800 5,0-25,0 92 10 5 10 10 20 102,0
10ГИ-1 4/8 2000 2,5-25,0 87 10 10 15 15 25 98,8
25ГДВ-1 4/8 2000 2,5-30,0 88 25 102,0

Смотрите другие статьи раздела Справочные материалы.

Читайте и пишите полезные комментарии к этой статье.