Фотореле с нестандартным алгоритмом

Модернизированное фотореле с нестандартным алгоритмом

Аннотация. В статье рассмотрен улучшенный вариант фотореле, полностью исключающий ложные срабатывания от посторонних засветок и необходимость оптической изоляции фотодатчика. Автомат дополнен функциями защиты лампы накаливания и регулятора мощности, что обеспечивает значительное увеличение её срока службы.

Общие сведения. Опыт эксплуатации базового варианта фотореле показал значительное сокращение срока службы лампы накаливания, по сравнению с обычным режимом, когда лампа горит непрерывно. Происходит это из-за, так называемого, «термоциклирования» нити в результате периодического кратковременного отключения лампы в процессе работы фотореле. Существенно облегчить режим работы лампы, а значит, и продлить срок её службы, удалось благодаря ограничению броска тока в момент включения и предварительному разогреву нити накаливания небольшим током. Обеспечивается это благодаря регулятору мощности, входящему в состав фотореле. Ещё больше продлить срок службы лампы накаливания можно, если эксплуатировать её не на максимальной паспортной мощности в 100 процентов, а несколько снизив её, до 75…80 процентов, за счёт встроенного регулятора яркости.

Как и в базовом варианте, данное фотореле работает в циклическом режиме с интервалом отсчёта 20…30 минут, по прошествии которого, лампа кратковременно, на десятые доли секунды погасает, а затем включается вновь, при условии, если уровень внешнего освещения окажется ниже заданного порога. При этом излучение коммутируемой лампы накаливания может быть направлено на фотодиод в режиме работы.

Схема электрическая принципиальная. Схема электрическая фотореле показана на рис.1.

Сигнал с фотодиода VD7 поступает на пороговый компаратор, выполненный на инверторе DD2.1 с триггером Шмитта. Когда уровень внешнего освещения снижается, сопротивление перехода фотодиода возрастает и напряжение на входе элемента DD2.1 также возрастает. Когда оно достигнет порога переключения DD2.1, этот элемент переключается в нулевое состояние, а DD2.2 — в единичное. Уровень лог.1 с выхода DD2.2 через резистор R24 воздействует на вход DD2.3 и приводит к формированию на выходе одновибратора короткого положительного импульса длительностью около 15 мс. Этот импульс обнуляет счётчик DD3 и разблокирует задающий генератор, собранный на элементах DD2.5 и DD2.6. Работу генератора индицирует мигающий светодиод HL1 красного цвета.

Одновременно уровень лог.0 с выхода старшего разряда счётчика DD3 (вывод 1) открывает транзистор VT1 и закрывает VT3. Через резистор R6 начинает заряжаться конденсатор C4. При достижении на нём напряжения около 1,5В открывается транзистор VT2 и параллельно конденсатору C6 подключается цепочка из двух последовательно включенных резисторов R11 и R12.

Для работы регулятора яркости в схему введён узел выделения момента прохождения сетевым напряжением нулевого значения (момента перехода через ноль), собранный на логических элементах DD1.1 и DD1.2. Короткие отрицательные импульсы пилообразной формы, в моменты, когда сетевое напряжение близко к нулю, снимаются с катода стабилитрона VD5 и через делитель R3, R4 подаются на вход одновибратора (DD1.1, DD1.2). Он необходим для формирования стабильных по длительности, но уже прямоугольных отрицательных импульсов, которые открывают транзистор VT4 для последующей подзарядки конденсатора C7 в моменты начала каждого полупериода сетевого напряжения.

Минимальный уровень яркости (для прогрева нити в режиме ожидания) задаётся подстроечным резистором R15. Чем меньше его сопротивление, тем раньше разряжается конденсатор C6, после закрывания транзистора VT4, и формируется управляющий симистором VS1 импульс, а значит, тем больше яркость лампы накаливания. В период отработки таймером временного интервала, параллельно резистору R15 и конденсатору C6 включается цепочка R11-R12. C помощью подстроечного резистора R11 задаётся максимальная (рабочая) яркость лампы накаливания. Таким образом, введённые сопротивления резисторов R11 и R15 определяют постоянную времени разряда конденсатора C6, а значит, результирующую яркость лампы.

После завершения импульса одновибратора и закрывания транзистора VT4, конденсатор C6 начинает разряжаться. Когда напряжение на входе элемента DD1.3 достигает порога переключения, на его выходе формируется положительный перепад, который, дифференцируясь цепочкой C7-R16, вызывает формирование на выходе логического элемента DD1.4 короткого отрицательного импульса длительностью около 8,5 мкс. После инвертирования транзистором VT5 и усиления VT6, открывается симистор VS1, который подключает лампу накаливания к сети.

После достижения счётчиком DD3 своего 2048-го состояния, на выходе его старшего разряда (вывод 1) формируется уровень лог.1, который блокирует работу генератора, закрывает транзистор VT1 и открывает VT3. Конденсатор C4 быстро разряжается через резистор R9 и автомат кратковременно (на доли секунды) переходит в режим ожидания с минимальным током прогрева нити накаливания, определяемым резистором R15.

Если при этом уровень внешнего освещения оказывается недостаточным (в ночное время суток или ранним утром), то вновь срабатывает пороговый компаратор DD2.1, одновибратор (DD2.3, DD2.4), обнуляется счётчик DD3 и перезапускается генератор (DD2.5, DD2.6). Такой циклический режим работы повторяется с интервалами 17 минут и 4 секунды, при частоте генератора 2 Гц, что индицирует мигающий с частотой 1 Гц светодиод HL1. Лампа будет гореть до тех пор, пока уровень внешней освещенности не достигнет порога. Если при очередном кратковременном выключении лампы, сопротивление фотодиода VD7 окажется достаточно низким (высокая освещённость), то напряжение на входе компаратора DD2.1 окажется ниже порога его переключения. Одновибратор (DD2.3, DD2.4) останется в исходном состоянии, а генератор (DD2.5, DD2.6) и счётчик DD3 будут находиться в режиме останова. Автомат будет оставаться в режиме ожидания до очередного снижения уровня освещённости меньше заданного порога.

Конструкция и детали. Фотореле собрано на печатной плате из двухстороннего фольгированного стеклотекстолита толщиной 1,5 мм из квадратной заготовки размерами 78×78 мм (рис.2). От неё впоследствии отрезаются квадратные уголки размерами 13×13 мм для установки в стандартную сетевую пластмассовую разветвительную коробку КЭМ5-10-7 белого цвета. В крышке коробки необходимо предусмотреть отверстия для фотодиода и переключателя SA1.

В устройстве использованы постоянные резисторы типа МЛТ-2 (R1, R2), МЛТ-0,5 (R21, R22), подстроечные (R6, R11, R15, R28) — типа СП3-38б в горизонтальном исполнении, остальные — МЛТ-0,125, конденсаторы неполярные типа К10-17, электролитические типа К50-35 или импортные, интегральный стабилизатор DA1 — типа КР1181ЕН5А (78L05). Мощные двухваттные резисторы R1 и R2, включенные параллельно, можно заменить одним пятиваттным сопротивлением 16…20 кОм. Все ИМС серии КР1564 (74HCxx) заменимы на КР1554 (74ACxx), а КР1564ИЕ20 (74HC4040N) также на КР1561ИЕ20 (CD4040BN). Соответствующие транзисторы VT1…VT5 могут быть из серий КТ502, КТ503, КТ3102, КТ3107 или импортные из серий BC547, ВС557 с любыми индексами. Транзистор VT6 должен быть с рабочим напряжением не менее 400В, например, MJE13003 или аналогичный средней мощности. Стабилитрон VD5 должен быть с напряжением стабилизации обязательно 10В, например, BZX55C10, BZX85C10 или аналогичный. От его напряжения стабилизации зависит правильная работа схемы идентификации нуля. Светодиод — сверхъяркий красный, диаметром 5 мм, фотодиод — типа ФД263. Переключатель SA1 использован типа П1Т-1-1В. Для его распайки на плате предусмотрены отверстия соответствующей конфигурации. Диоды VD1…VD4 — с минимальным рабочим напряжением не менее 400В. Симистор VS1 может быть из серий BT137, BT138, BT139 с рабочим напряжением не менее 400В. При мощности лампы накаливания более 100 Вт его необходимо установить на алюминиевый теплоотвод.

Настройку фотореле производят как в сервисном, так и в основном рабочем режимах. Первое включение фотореле производят, при разомкнутом переключателе SA1 в основном рабочем режиме. При подаче питания должен мигать светодиод HL1. Частоту его вспышек устанавливают резистором R28 около 1 Гц. Если при подаче питания светодиод не мигает, необходимо отключить фотореле от сети, а затем включить его вновь. Такую неопределённость вносит отсутствие в устройстве схемы сброса счётчика. Поэтому он может установиться с равной вероятностью в любое состояние. Отсутствие схемы сброса влияет только на длительность первого интервала отсчёта с момента включения, но на дальнейшей работе в основном режиме никак не сказывается. Далее фотореле переводят в сервисный режим замыканием контактов переключателя SA1. Лампу EL1 направляют на фотодиод и подают питание. В таком режиме лампа должна загораться и кратковременно гаснуть с периодом 2 секунды (задаётся резистором R27). Последовательно подстраивая резисторы R11 и R15, устанавливают максимальный и минимальный уровни яркости, когда лампа загорается и кратковременно гаснет, соответственно. Настройкой резистора R15 добиваются едва заметного свечения лампы, а резистором R11 устанавливают яркость на уровне 70…80 процентов. В завершении процедуры настройки, резистором R6 устанавливают время нарастания яркости в пределах 0,5…1 секунды, т.е. таким образом, чтобы зажигание лампы было визуально заметно. Далее с помощью вспомогательного источника света (например, другой лампы) освещают фотодиод. Мигание лампы EL1 должно прекратиться, а свечение нити лампы должно быть едва заметно. Затем фотореле переводят в основной рабочий режим размыканием (при отключенной сети!) выключателя SA1. На этом настройка завершена. Фотореле готово к работе.

Внимание! Устройство не имеет гальванической развязки от сети! При настройке автомата следует помнить, что все элементы находятся под напряжением сети. Следует избегать прикосновения к элементам схемы! Отвёртку необходимо использовать с ручкой из изоляционного материала!

Отзывы и вопросы по усовершенствованию данного устройства читатели могут направлять в комментарии или через личные сообщения на сайте.

Фотореле с нестандартным алгоритмом

Аннотация. В статье рассмотрен вариант фотореле, полностью исключающий ложные срабатывания, и позволяющий разместить фотодатчик в непосредственной близости от лампы накаливания.

Общие сведения. Классическое фотореле обеспечивает автоматическое управление лампой накаливания: включение лампы при уменьшении уровня естественного освещения и выключение при его возрастании свыше определённого уровня. Существенным недостатком таких автоматов являются ложные срабатывания при засветке фотодатчика светом фар или блеске молнии. Кроме того, на фотодатчик не должно попадать излучение лампы накаливания, что требует дополнительной проводки для оптической изоляции фотодатчика.

Обзор литературных источников показал, что попытки устранить первый из вышеназванных недостатков приводят к значительному усложнению схемотехнической части устройства, в то время как, вопрос оптической изоляции фотодатчика от засветки лампой накаливания до настоящего времени не был решён ни в одной из конструкций и остаётся актуальным.

Предлагаемый вариант фотореле свободен от перечисленных недостатков. Ложные срабатывания от случайных засветок полностью исключены, а фотодатчик размещается в корпусе светильника и не боится прямой засветки лампой накаливания.

Обеспечить данные функциональные преимущества по сравнению с другими конструкциями стало возможным благодаря введению интервала опознавания состояния фотодатчика, длительностью в десятые доли секунды, при длительности паузы около 30 минут. Визуально работа фотореле в тёмное время суток выглядит как кратковременное выключение лампы на десятые доли секунды по прошествии интервала отсчёта, который может быть выбран в диапазоне от 15 минут до 1 часа. Подобные выключения практически незаметны и могут быть расценены сторонним наблюдателем (случайным прохожим) как провалы напряжения в питающей сети.

Принцип работы. Схема электрическая принципиальная устройства показана на рис.1.

В светлое время суток фотодиод VD1 освещён и сопротивление его перехода относительно невелико. Поэтому на входы логического элемента DD1.1 поступает напряжение выше порогового, соответствующее уровню лог.«1». При этом триггер Шмитта, собранный на элементах DD1.1-DD1.2, находится в единичном состоянии.

При первом включении автомата сетевым тумблером (на схеме не показан) таймер на ИМС DD2 запускается независимо от состояния фотодатчика и отрабатывает заданную выдержку времени 30 минут, в течение которой светится лампа накаливания. Если по прошествии указанной выдержки времени уровень естественной освещенности окажется достаточно высоким, к примеру, если фотореле включили слишком рано, то триггер Шмитта останется в исходном единичном состоянии и не переключится. Одновибратор, собранный на элементах DD1.3-DD1.4, также останется в исходном состоянии и перезапуска таймера на ИМС DD2 пока не произойдёт. На выходе ИМС DD2 с открытым стоком (вывод 9) будет присутствовать уровень лог.«0», транзистор VT1 и симистор VS1 будут закрыты, а лампа накаливания обесточена.

При уменьшении уровня освещённости сопротивление перехода фотодиода VD1 начинает возрастать и в какой-то момент напряжение на входах логического элемента DD1.1 достигнет порога его переключения. Триггер Шмитта переключится лавинообразно в нулевое состояние, на выходе элемента DD1.2 сформируется отрицательный перепад напряжения, который приведёт к запуску одновибратора. Короткий положительный импульс с выхода дифференцирующей цепочки C2-R3 приведёт к перезапуску таймера на ИМС DD2. На выходе с открытым стоком (вывод 9), благодаря резистору R6, сформируется напряжение около 0,7 В, достаточное для открывания транзистора VT1. Вслед за ним откроется и симистор VS1, что приведёт к зажиганию лампы накаливания.

Читайте также  Двухканальный usb осциллограф

По прошествии интервала отсчёта (около 30 минут) таймер остановится, транзистор VT1 и симистор VS1 будут закрыты, а лампа обесточена. Если уровень освещённости окажется всё ёщё недостаточно высоким, то при выключении лампы и затемнении фотодиода VD1 вновь переключится триггер Шмитта, который запустит одновибратор, а вслед за ним перезапустится и таймер на ИМС DD2. Таким образом, лампа кратковременно погаснет и опять загорится на 30 минут. Так будет продолжаться до тех пор, пока в момент завершения отсчёта очередного временного интервала таймера уровень освещённости не окажется достаточно высоким. В таком случае, при выключении лампы триггер Шмитта и одновибратор останутся в исходных состояниях, а перезапуска таймера не произойдёт.

В таком состоянии фотореле будет находиться до тех пор, пока уровень естественного освещения не снизится до порогового значения, либо сетевой тумблер не выключат, а затем опять не включат.

Конструкция и детали. Фотореле собрано на печатной плате из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм из квадратной заготовки размерами 65×65 мм. От неё впоследствии отрезаются уголки как показано на рис.2.

Можно использовать круглую заготовку диаметром 70 мм. Готовое в сборе фотореле устанавливают в стандартную сетевую разветвительную коробку желательно белого цвета, с достаточно прозрачной крышкой для освещения фотодиода. Если белой коробки в распоряжении не окажется, то можно использовать и чёрную, если предусмотреть в крышке отверстие для фотодиода.

В устройстве использованы постоянные резисторы типа МЛТ-0,125, конденсаторы неполярные типа К10-17, К73-17 (С6) на напряжение не менее 400 В, электролитические (С4, С5) типа К50-35 или импортные, интегральный стабилизатор — типа КР142ЕН5А. ИМС DD1 типа КР1564ТЛ3 (74HC132N) заменима на КР1554ТЛ3 (74AC132N). ИМС таймера DD2 применена типа КР512ПС10. Транзистор VT1 может быть любым из серии КТ503 или аналогичный маломощный структуры n-p-n из серий КТ315, КТ3102. Стабилитрон VD2 — маломощный может быть с напряжением стабилизации 8…12В, желательно в металлическом корпусе для лучшего охлаждения. Диоды VD3, VD4 — с минимальным рабочим напряжением не менее 400В и током не менее 1А. Симистор VS1 может быть из серий BT137, BT138, BT139 с рабочим напряжением не менее 400В — его необходимо установить на небольшой теплоотвод из алюминиевой пластины площадью на менее 10 см2.

Настройку фотореле производят в сервисном режиме. Для этого устанавливают перемычку «P1», подключают лампу и подают питающее напряжение. Свет лампы должен попадать непосредственно на фотодиод. Подбором элементов С3 и R5 (при установленной перемычке) добиваются кратковременного погасания (мигания) лампы с частотой около 1 Гц (период 1 сек). Подбором резистора R1 при необходимости задают необходимый порог чувствительности. Работу фотореле проверяют, имитируя естественное освещение, к примеру, с помощью дополнительной лампы накаливания. Если лампа мигает при отсутствии внешней засветки и перестаёт мигать при её появлении, то перемычку «P1» можно исключить из устройства. Фотореле готово к работе.

Схемы фотореле для управления освещением

Одной из задач, выполняемых при помощи фотодатчиков, является управление освещением. Такие схемы называются фотореле, чаще всего это простое включение освещения в темное время суток. С этой целью радиолюбителями было разработано немало схем, вот некоторые из них.

Наверное, самая простая схема показана на рисунке 1. Количество деталей в ней, невелико, меньше уже не получится, а эффективность, читай чувствительность, достаточно высокая.

Это достигнуто тем, что транзисторы VT1 и VT2 включены по схеме составного транзистора, называемой также схемой Дарлингтона. При таком включении коэффициент усиления равен произведению коэффициентов усиления составляющих транзисторов. Кроме того, такая схема обеспечивает высокий входной импеданс, что позволяет подключать высокоомные источники сигнала, как показанный на схеме фоторезистор PR1.

Рисунок 1. Схема простого фотореле

Работа схемы достаточно проста. Сопротивление фоторезистора PR1 с увеличением освещенности уменьшается до нескольких КОм (темновое сопротивление несколько МОм), что приведет к открыванию транзистора VT1. Его коллекторный ток откроет транзистор VT2, который включит реле K1, которое своим контактом включит нагрузку.

Диод VD1 защищает схему от ЭДС самоиндукции, возникающей в момент выключения реле K1. Таким образом, очень маломощный сигнал фоторезистора преобразуется в сигнал достаточный для включения обмотки реле.

Чувствительность этой простой схемы достаточно высока, иногда просто избыточна. Чтобы ее уменьшить, и регулировать в необходимых пределах можно добавить с схему переменный резистор R1, показанный на схеме пунктиром.

Напряжение питания указано в пределах 5…15В, — зависит от рабочего напряжения реле. Для напряжения 6В подойдут реле РЭС9, РЭС47, а для напряжения 12В РЭС49, РЭС15. При указанных на схеме транзисторах ток обмотки реле не должен превышать 50мА.

Если вместо транзистора VT2 поставить, например, КТ815, то выходной ток может быть больше, что позволит применить более мощные реле. А вообще, чем выше напряжение питания, тем выше и чувствительность фотореле.

Схема фотореле с фотодиодом

Схема этого фотореле показана на рисунке 2.

Рисунок 2. Схема фотореле с фотодиодом

Как и предыдущая, она также содержит минимальное количество деталей, благодаря применению операционного усилителя (ОУ). В данной схеме ОУ включен по схеме компаратора (сравнивающего устройства). Нетрудно видеть, что фотодиод LED1 включен в фотодиодном режиме, — питание подано так, что фотодиод смещен в обратном направлении.

Поэтому, при снижении уровня освещенности сопротивление светодиода Led1 возрастает, что приводит к уменьшению падения напряжения на резисторе R1, а следовательно и на инвертирующем входе компаратора OP1.

Напряжение на неинвертирующем входе ОУ устанавливается при помощи переменного резистора R2, и является пороговым — задает порог срабатывания. Как только напряжение на инвертирующем входе станет меньше, чем пороговое, на выходе компаратора появится высокий уровень напряжения, который откроет транзистор T1, который включит реле K1.

Реле и транзистор в этой схеме можно подобрать, руководствуясь рекомендациями к схеме, показанной на рисунке 6. В качестве компаратора можно использовать ОУ типа К140УД6, К140УД7 или подобные. Источник питания для схемы подойдет любой, можно даже бестрансформаторный, без гальванической развязки от сети. В этом случае при наладке следует быть внимательным, соблюдать правила техники безопасности. Идеальным вариантом следует считать использование для настройки схемы разделительного трансформатора или, как его иногда называют трансформатора безопасности.

Настройка устройства сводится к установке порогового напряжения таким образом, чтобы включение происходило уже при наступлении сумерек. Чтобы не дожидаться этого природного момента, можно в затемненной комнате засвечивать фотодиод лампой накаливания, включенной через тиристорный регулятор мощности. Эта же методика пригодна для настройки и других схем фотореле.

Возможно, что при срабатывании фотореле релюшка будет дребезжать. Избавиться от этого явления можно присоединив параллельно катушке электролитический конденсатор на несколько сотен микрофарад.

Фотореле на микросхеме

Специализированная микросхема КР1182ПМ1 представляет собой фазовый регулятор мощности, то же самое, что обычный тиристорный. Весьма важным и ценным свойством такого регулятора мощности является то, что он включается в схему как двухполюсник, не требуя для себя дополнительного провода питания: просто включил параллельно выключателю и все уже работает! На рисунке 4 показано, как на этой микросхеме можно построить несложное фотореле.

Рис. 3. Микросхема КР1182ПМ1

Рисунок 4 . Схема фотореле на микросхеме КР1182ПМ1

Управляющие выводы микросхемы 3 и 6. Если между ними подключить просто обычный однополюсный выключатель, то при его замыкании нагрузка будет отключаться! Если его разомкнуть, то нагрузка подключится. Кстати, без дополнительных внешних тиристоров или симистора, и даже без радиатора, микросхема выдерживает нагрузку до 150Вт. Это в случае, если при включении нагрузки нет бросков тока, как у ламп накаливания. Лампу накаливания в таком варианте можно включать мощностью не более 75Вт.

Просто выключатель к этим выводам подключать как бы ни к чему, если только в комплексе с другими деталями. Если не обращать внимания на фототранзистор и электролитический конденсатор, мысленно оставить только переменный резистор R1, то получается просто фазовый регулятор мощности: при перемещении его движка вверх по схеме выводы 3 и 6 замыкаются накоротко, тем самым отключая нагрузку, как упомянутым выше контактом. При перемещении движка вниз по схеме мощность в нагрузке изменяется от 0…100%. Тут все понятно и просто.

Если к этим выводам подключить электролитический конденсатор (считаем, что фототранзистора в схеме пока нет), то получится просто плавное включение нагрузки. Каким образом?

Сопротивление разряженного конденсатора невелико, поэтому поначалу управляющие выводы микросхемы 3 и 6 практически замкнуты накоротко и нагрузка отключена. По мере заряда сопротивление конденсатора возрастает (достаточно вспомнить проверку конденсаторов омметром), напряжение на нем тоже растет, мощность в нагрузке плавно увеличивается. Получается устройство плавного включения нагрузки. Причем мощность в нагрузку будет подана на столько, насколько введен движок переменного резистора R1. При отключении устройства от сети конденсатор разряжается через резистор R1, подготавливая устройство к следующему включению. Если конденсатор разрядиться не успеет, то плавного включения не будет.

Вот теперь и добрались до самого главного, до фотореле. Если теперь к управляющим выводам 3 и 6 подключить фототранзистор, то получится фотореле. Работает оно следующим образом. Днем при высокой освещенности фототранзистор открыт, поэтому сопротивление его участка коллектор – эмиттер невелико, выводы 3 и 6 замкнуты между собой, нагрузка отключена.

При плавном уменьшении освещенности в вечерние часы фототранзистор плавненько будет открываться, постепенно увеличивая мощность в нагрузке, то есть в лампе. Никаких пороговых элементов в этой схеме нет, поэтому лампа будет зажигаться и гаснуть постепенно.

Чтобы фотореле не сработало в тот момент, когда включится своя же лампа, фототранзистор желательно защитить от такой подсветки. Проще всего это сделать с помощью пластиковой трубки.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Три схемы фотодатчиков на фоторезисторах

Различные схемы фотореле, опубликованные в радиолюбительской литературе, что называется на любой вкус и цвет. С трудом можно найти какое-нибудь свежее решение.

Фотореле на микросхеме КР1564ТЛ2

Предлагаемая схема (рис. 1), как нам представляется, оригинальна. В качестве фотодатчика служит распространенный фоторезистор СФЗ-1.

Рис.1. Принципиальная схема фотореле на фоторезисторе.

Он преобразует световой сигнал, улавливаемый чувствительной поверхностью, в электрические колебания, которые затем поступают на вход порогового детектора на одном элементе микросхемы D1.1 типа КР1564ТЛ2.

Эта микросхема состоит из шести однотипных элементов-логических инверторов с триггерами Шмитта. На втором элементе D1.2 реализована схема задержки времени включения нагрузки.

Чувствительность схемы (порог переключения триггера Шмитта) плавно регулируется переменным резистором R1, который совместно с фотодатчиком образует делитель постоянного напряжения. Желательно применить многооборотистый прибор, типа СП5-1.

Когда темно-инвертирующий выход D1.1 (выв. 2) в состоянии высокого логического уровня (лог. 1) и конденсатор С2 быстро разряжается через резистор R4, благодаря диоду VD1. Когда освещение попадает на фоторезистор PR, — на выв. 2 элемента лог. 0.

Далее сигнал поступает на схему временной задержки. В результате зарядки конденсатора С2 через резистор R3 до напряжения порога срабатывания элемента D1.2 выдержка времени существенно может изменяться в зависимости от номиналов С2 и R3 от нескольких секунд до минут.

Зарядившись, конденсатор С2 перебрасывает триггер в другое устойчивое состояние, и на выходе D1.2 (выв. 4) оказывается высокий логический уровень (лог. 1). Транзистор VT1 открывается, на реле К1 поступает напряжение питания и реле коммутирует нагрузку. Диод VD2 препятствует броскам обратного тока при включении/выключении реле.

Схема очень проста и не требует настройки, кроме установки резистором R1 порога срабатывания триггера в зависимости от освещенности конкретного объекта.

Транзистор VT1 можно заменить на КТ312(А“В), КТбОЗ(А-Б), КТ608Б, КТ801(А, Б). К1 -маломощное реле РЭС15, паспорт (003), или аналогичное, на напряжение срабатывания сообразно напряжению питания схемы.

Питание схемы некритично и осуществляется от любого стабилизированного блока питания с выходным напряжением 9. 14 В. Ток, потребляемый схемой от источника питания в пассивном режиме (фоторезистор не освещается), не превышает 2. 3 мА. При включении реле, ток увеличивается до 20 мА.

Читайте также  Полудуплексное переговорное устройство

Надежное фотореле на микросхеме К561А7

При управлении мощной нагрузкой или нагрузкой в сети 220 В необходимо применять другое реле, обеспечивающее надежность и безопасность работы устройства.

На рис. 2. показана аналогичная схема чувствительного фотоавтомата с применением логических элементов микросхемы КМОП К561А7. Устройство имеет отличительную особенность -при затемненности фоторезистора PR реле К1 включено. Подразумевается, что своими контактами реле коммутирует исполнительную цепь нагрузки.

При резком освещении фоторезистора (например, включении света в помещении) триггер Шмитта на логических элементах D1.1-D1.3 переключается, реле К1 отпускает и нагрузка обесточивается.

А вот при плавном увеличении освещенности, таком как рассвет устройство включает нагрузку также резко -при достижении сигнала на входе триггера порогового уровня переключения триггера Шмитта. Усилитеь на транзисторе VT1 преобразует изменение сопротивления фоторезистора PR (СФЗ-1) в электрический ток.

Рис. 2. Схема надежного фотореле на микросхеме К561А7.

Когда чувствительная поверхность фоторезистора освещена -транзистор ѴТ1 открыт и сигнал высокого уровня через развязку на диодах VD1, VD2 поступает на вход независимых инверторов.

Цепь R4C1R5 обеспечивает задержку в 2,5-3 мин, из-за чего сигнал высокого уровня, проходящий свободно через диод VD2, поступает на вход элемента D1.2 только после того, как зарядится через резистор R4 конденсатор С1, обеспечивающий временнную составляющую задержки.

После этого на выв. 8 элемента D1.3 будет лог. 1 и на его выв. 9 — тот же уровень. Соответственно на выходе этого инвертора (выв. 10) окажется низкий логический уровень, а на выходе элемента D1.4 — высокий логический уровень.

В результате открывается ключевой транзистор ѴТ2 и включается реле. Благодаря задержке включения устройство может испоьзо-ваться с любым типом реле — дребезг контактов отсутствует.

Применение этой схемы эффективно в ситуациях с плавным изменением освещенности объекта. Переменный резистор R1 регулирует чувствительность фотодатчика.

Фотореле с бестрансформаторным питанием

Схема на рис. 3отличается бестрансформаторным сетевым питанием и тиристорным управлением активной нагрузки. В основе ве — транзисторный переключатель с бестрансформаторным питанием от сети 220 В, включающий лампу освещения HL1.

Рис. 3. Схема фотореле с бестрансформаторным питанием.

Мощность лампы имеет ограничение в 100 Вт, что обусловлено параметрами мощности тиристора VS1, управляющего лампой. Такая мощность лампы достаточна для освещения любого предмета, находящегося на антресоли.

На лампу HL1 выпрямленное напряжение поступает с выпрямителя, включенного по мостовой схеме на диодах VD4-VD7. Вместо указанных на схеме диодов можно использовать готовый выпрямительный мост, рассчитанный на обратное напряжение не менее 300 В, например КЦ405А.

Тиристор включается триггером Шмитта, состоящим из составных транзисторов ѴТ1, ѴТ2 и транзистора ѴТЗ. С наступением сумерек под влиянием изменяющегося сопротивления фоторезисторов PR1, PR2 (они включены параллельно для лучшей чувствительности) потенцил базы транзисторов ѴТ1, ѴТ2 возрастает и они открываются.

Колекторное напряжение транзистора ѴТ2 в это время уменьшается, вследствие чего транзистор ѴТЗ оказывается закрытым. Коллекторное напряжение транзистора ѴТЗ через диод VD1 открывает тиристор VS1, который включает лампу HL1.

Кремниевый диод VD2 в эмиттерной цепи транзистора ѴТЗ служит для уменьшения гистерезиса (разницы пороговых уровней переключения) триггера Шмитта. Благодаря этому порог переключения мал, т. е. лампа не мерцает и не мигает в переходный момент освещенности фотоэлементов.

При освещении фоторезисторов триггер Шмитта переключается, изменяя свое первоначальное состояние. Тиристор закрывается, прекращая подачу питания на лампу HL1. Триггер Шмитта и часть схемы с чувствительным фоторезистором питаются стабилизированным напряжением +10. +14 В.

Этот параметр зависит от номинала стабилитрона VD3. Уровень чувствительности узла (срабатывания фотопереключателя) регулируется изменением сопротивления переменного резистора R8.

При размещении фотоэлемента в корпусе устройства необходимо следить за тем, чтобы свет зажженной лампы не попадал на светочувствительную поверхность фоторезисторов, так как в таком случае из-за оптической связи лампа HL1 будет постоянно включаться и выключаться (мигать) в зависимости от параметров (постоянной времени) фоторезисторов.

Собранная без ошибок с исправными радиодеталями схема не нуждается в настройке и начинает работать сразу. Все резисторы, кроме R1, — типа МЛТ-0,25, МЛТ-0,5, а резистор R1 мощностью рассеивания 2 Вт.

Фоторезисторы СФЗ-1 могут быть заменены на другие приборы, сопротивление которых при полной темноте составляет не менее 1МОм, а при освещенности падает до 50 кОм и меньше.

Фоторезисторы можно монтировать как в корпусе основного устройства (авторский вариант), так и с подключением через разъем, — на расстоянии. Главное — провода соединения фотоэлементов со схемой не должны быть длиннее 1 м.

Это условие необходимо выполнить для уменьшения влияния посторонних наводок, провоцирующих узел на ложные срабатывания. В качестве лампы HL1 можно использовать любую активную нагрузку мощностью до 100 Вт.

Литература: А. П. Кашкаров, А. Л. Бутов — Радиолюбителям схемы, Москва 2008.

Делаем фотореле своими руками

Одним из многочисленных автоматов, в общем смысле слова, является фотореле. Оно визуально незаметно, малофункционально и применяется во многих нишах. Устройство обладает единственной реакцией на внешний фактор наличия или отсутствия света — соединение или разрыв линии, по которой идет ток. Последнее используется как напрямую для отключения или активации потребителей, так и в качестве сигнального импульса. Встретить фотореле можно во многих сферах жизни, от контрольных линий производства или турникетов метро, до их присутствия в роли элементов выключателей освещения различного плана.

Турникеты в метро:

Многие не раз попадали в ситуации, когда в темноте не видно расположения предметов. Причем это мешает не только процессу личного перемещения, но и создает неудобство, когда нужно что-то найти в темноте. Вопрос вполне решаем установкой лампы. Вот только сразу выявляется проблема с ее включением в темноте. Здесь в роли автомата может применятся фотореле, включающее освещение именно в те моменты, когда наступает темнота.

Упомянутая ниша использования не единственная. На основе реакции датчика на видимое излучение, построены и считающие единицы товара приборы, и охранные устройства. Оба названых типа определяют пересечение луча света объектом. На том же принципе бывают выполнены системы автоматического открытия дверей, ворот или шлагбаумов.

Простота конструкции позволяет легко изготовить комплекс из реагирующей части и фотореле своими руками, о чем и пойдет речь в статье. Будут рассмотрены виды соединения готовых сборок, выпускаемых промышленностью и их схемы, раскрывающие сущность названых частей, от самых элементарных, до использующих в своей основе микроконтроллер.

Схема простого фотореле

Начнем с простого устройства наподобие ночника. Когда светло, он выключен, но чем темнее становится, тем ярче горит лампа. Сразу маленькое напоминание — питание устройства 220 В, так что нужно быть аккуратнее и внимательнее при его сборке и проверке.

Чем меньше освещенность фоторезистора, тем сильнее открыт семисторный ключ Q6004LT. Соответственно, больше тока предоставляется нагрузке, в роли которой выступает маломощная лампа накаливания.

Есть вариант описанной схемы, использующий уже 5 элементов. В ней лампа просто загорается в темноте на максимальную яркость и гаснет в моменты попадания света на фоторезистор.

Простая схема фотореле:

Настройка чувствительности выполняется подбором значения R1. Изменять в какую-либо сторону его нужно в относительно небольших пределах. Мощность резистора выбирается для всех случаев равной 1 Вт. Семистор КУ208Г можно сменить на КУ601Г без потери функциональности конечного устройства, но в любом случае, на названый элемент схемы нужно ставить теплоотвод — при использовании указанной нагрузки, он сильно греется.

Другой несложной конструкцией можно назвать использование фотореле в связке с несколькими транзисторами. Приведенная схема изначально рассчитана на подключение потребителей через линию размыкания электромагнитного реле.

Фоторезистор PR1 с подстроечником R1 выступают в роли делителя напряжения, управляющего состоянием транзистора VT1, который в свою очередь открывает или закрывает VT2. Последний, и производит пропуск тока на реле K1, размыкающее или соединяющее линию питания нагрузки. Диод VD1 шунтирует скачки тока в моменты срабатывания электромагнитного элемента, защищая транзисторы.

Обратите внимание! Указанное устройство питается уже не от сети 220 В, а имеет свой токовый ввод от 5 до 15 В. Что касается функций подстроечника R1 — он нужен для установки чувствительности к потоку света, приводящего к срабатыванию самого устройства.

Повторяемый промышленный вариант

В качестве своеобразного эталона рассмотрим схему фотореле ФР-602 от компании EIK. Большая часть представленных на рынке устройств аналогичного плана конструктивно похожи, отличаясь лишь в мелочах.

Принципиальная схема фотореле вместе с печатной платой:

Как видно, конструкция проста и может быть выполнена в домашних условиях. Элементарная база:

Обозначение на схеме Модель/тип Характеристики Аналоги
С2 Конденсатор 0.7мкф, 400 В
C4 Электролитический конденсатор 100 мкф, 50 В
C5 47 мкф 25 В
R2 Резистор 1.5 МОм, 0.125 Вт
R3 220 Ом, 2 Вт
R4 1 МОм, 0.125 Вт
R5 560 кОм, 0.125 Вт
R6 200 кОм, 0.125 Вт
R7 100 кОм, 0.125 Вт
R8 75 кОм, 0.125 Вт
R9 33 кОм, 0.125 Вт
WL Построечный резистор 2.2 мОм
ZD1 Стабилитрон 1N4749 24 В 3 последовательно соединенных Д814А, или 2 Д814Д
D1-D5 Выпрямительный диод 1N4007
VD1 Выпрямительный диод 1N4148
Q1, Q2 Биполярный транзистор BC857A КТ3107Б
PH Фотоэлемент (фоторезистор) До 110 кОм
Rel Реле SHA-24VDC-S-A (Rel1)

Схема подключения классических фотореле к линии потребления

Все виды выпускаемых промышленностью или сделанных самостоятельно реле, требуют отдельного питания. Соответственно, и два контакта устройства будут предназначены названым целям. Причем встречаются модели фотореле без встроенного преобразователя напряжения, что означает подачу питания к ним не от сети 220 В, а через отдельный понижающий блок. Линий, идущих к потребителям может быть несколько, в зависимости от количества внутренних электромагнитных переключателей. Причем ввод может быть и раздельным для каждого контакта, — объединенным между прочими — или вообще интегрированным с питанием самого фотореле.

Датчик света у большинства моделей встроен в корпус самого устройства, но существуют и раздельные варианты, позволяющие выносить его в сторону от самого аппарата. Последнее нужно для случаев исключения засветки фотоприемника от управляемых ламп, чтобы система не превращалась в стробоскоп. То есть, когда темно — аппарат включает лампы. Становится светло — он их отключает. Опять срабатывает на мрак. И так по кругу.

Одинарная

Описанная ранее модель ФР-602 и аналогичные ей подключаются к линии следующим образом:

На большое количество потребителей энергии

Для управления мощной нагрузкой, например, при подключении прожектора или многочисленных ламп, лучше использовать промежуточные реле. В роли последних выбираются соответствующие приборы, которые выдерживают прохождение большого тока, достаточного для питания. Примером могут стать РК-1p/2p (Un), МРП-2, IEK ORM-41F-1, DEKraft ПР-102 и им подобные. Обратите внимание, что часть из реле аналогичного плана рассчитаны на управление переменным током (AC), в то время как другие постоянным (DC). Кроме того, напряжения включения может отличаться в нижнюю сторону от номинала розетки. Последние два фактора важно учитывать при проектировании монтажной схемы. Если реле-посредник питается от постоянного тока, то фотореле должно управлять подачей электричества к блоку преобразования. Который уже включившись, приведет в действие электромагнитный контактор, активирующий основную линию питания клиентских устройств.

Использование иных моделей фотореле

Здесь представлена схема подключения фотореле для другого варианта исполнения конечного автомата — с выносным датчиком чувствительности к свету и раздельными контактными линиями. Изначально она подготовлена для ФР-7Е, но подходит и для аналогичных моделей иных производителей.

Обратите внимание, что представленное фотореле и упомянутое ранее, различаются корпусом, а в частности защитой устройства от внешних факторов. ФР-601/602 можно безболезненно размещать под открытым небом на улице, а у ФР-7Е для аналогичного действия требуется установка дополнительного кожуха. Но устройства подобного плана установки выпускаются со всеми необходимыми креплениями в стандартный электротехнический щиток, включая подготовленные места монтажа к DIN-рейке.

Расширение функциональности с добавлением реле времени

Планируя использовать фотореле для уличного освещения своими руками, можно слегка расширить его функциональность, добавив таймер отключающий свет через установленное время. Причина проста — не нужно тратить электричество на работу ламп всю ночь, когда они точно никому не нужны. С целью реализации можно использовать реле отключения, наподобие IEK ORT-A2-AC230V, THC-B1 или аналогичные.

Читайте также  Светильник с подвеской к смонтированной тросовой проводке

Расширенная схема питания уличного освещения:

Микропроцессорное фотореле

Современные технологии коснулись и фотореле. Все чаще начинают применяться устройства на базе микроконтроллеров, которые позволяют не только производить определение наличия светового потока, но и совмещать множество других функций. Причем расширение не требует сильного изменения аппаратной составляющей, достаточно модифицировать внутреннюю программу.

Микроконтроллер — маленький компьютер, изначально ориентированный на управление устройствами в зависимости от внешних факторов и алгоритма. Кроме того, его возможностей вполне достаточно для присоединения к общей цифровой сети, объединяющей группы оборудования различного плана.

Также стоит упомянуть о промышленных образцах фотореле, оснащенных «умной» частью. Но их функциональность обычно ограничена производителем. Поэтому лучше рассмотреть другую систему. К примеру, Arduino. Его возможностей вполне достаточно для осуществления контроля света, отключения линии днем и ночью, отправки сообщений о текущем используемом режиме или сигнализации о нарушениях в работоспособности лампы.

На аппаратной стороне, все что непосредственно не касается функций контроля, возлагается на дополнительно подключаемые «шилды» к Arduino. В приведенной схеме последнее будет относиться к часам, датчику света и самому реле. Вопрос отправки статуса конечному владельцу решается за счет GSM модуля связи, который и будет отсылать SMS о текущем режиме работы системы.

Принципиальная схема конструкции достаточно проста:

Есть примечание, касающееся приведенной сборки. Обратите внимание, что релейный модуль имеет стороннее питание. Это сделано в целях избежания скачков тока, так как шилд берет много электричества из общей линии и может вызвать «просадку» напряжения при переключениях. Отдельное питание рекомендуется и SIM800L (на приведенной схеме он подключен напрямую к самому Arduino). Также модуль GSM-связи достаточно потребляющий элемент — ему нужно выработать определенную мощность для соединения с сотовой вышкой, а взять энергию с названой целью он может только из линии снабжения.

Что касается программной части, написать соответствующий алгоритм сможет любой, знакомый с программированием микроконтроллеров Arduino. Тем более, есть множество кодов в интернете.

Несмотря на функциональную простоту фотореле, ниш применения у него достаточно. Тем более, что малые возможности расширяются добавлением новых за счет небольшого усложнения схемы и использования микроконтроллеров.

Видео по теме

ПРОСТОЕ ФОТОРЕЛЕ НА ТРАНЗИСТОРЕ

Конструкция реле

Основным элементом реле является фотодатчик, в схемах могут применяться фоторезисторы, диоды, транзисторы, фотоэлектрические элементы. При изменении освещенности на фотоэлементе соответственно изменяются и его свойства, такие как сопротивление, состояния P-N перехода в диодах и транзисторах, а также напряжения на контактах фоточувствительного элемента. Далее сигнал усиливается и происходит переключение силового элемента, коммутирующего нагрузку. В качестве выходных управляющих элементов используют реле или симисторы.

Почти все покупные элементы собраны по схожему принципу и имеют два входа и два выхода. На вход подается сетевое напряжение 220 Вольт, которое, в зависимости от установленных параметров, появляется и на выходе. Иногда фотореле имеет всего 3 провода. Тогда ноль – общий, на один провод подается фаза, и при нужной освещенности она соединяется с оставшимся проводом.

При подключении фотореле необходимо ознакомится с инструкцией, обратить особое внимание на максимальную мощность подключаемой нагрузки, тип ламп освещения (накаливания, газоразрядные, светодиодные лампочки). Важно знать, что реле освещения с тиристорным выходом не смогут работать с энергосберегающими лампами, а также с некоторыми видами диммеров из-за конструктивных особенностей. Этот нюанс необходимо учитывать, чтобы не повредить оборудование.

Давайте рассмотрим несколько схем для самостоятельной сборки сумеречного выключателя в домашних условиях. Для примера разберем, как сделать симисторный ночник с фотоэлементом.

Самое простое фотореле

Две схемы наиболее простых фотореле показаны на рис. 3.5 и 3.6. Первой рассмотрим схему на рис. 3.5.

На транзисторах VT1 и VT2 собран эмиттерный повторитель. Такое схемное решение позволяет усиливать незначительный входной ток (сигнал) для управления нагрузкой с током потребления до 50 мА. В качестве нагрузки транзисторного каскада применяется маломощное электромагнитное реле К1 на рабочее напряжение, соответствующее напряжению питания узла. Для напряжения питания +12 В подойдет реле РЭС15 (паспорт РС4.591.004) или РЭС10 (РС4.524.302). Диод VD1 препятствует обратному току через обмотку реле. Источник питания для данного узла любой, в том числе бестрансформаторный. Чем больше напряжение питания схемы — тем чувствительнее она к световому потоку.

Рис. 3.5. Чувствительное фотореле на транзисторах

Световой поток, воздействующий на фоторезистор PR1, уменьшает его сопротивление до единиц кОм. Благодаря этому транзистор VT1 приоткрывается. Протекающий через переход эмиттер—коллектор ток открывает транзистор VT2. Многократно усиленный ток оказывается достаточным для срабатывания реле К1. Реле (подразумевается) своими контактами замыкает цепь нагрузки. Ток в цепи нагрузки не должен превышать максимального тока, указанного в паспортных данных реле. Для РЭС15 он составляет 0,2 А.

В вышеописанном случае чувствительность узла максимальна. В схему можно ввести узел регулировки на переменном резисторе R1 (показан пунктиром). Тогда в нижнем (по схеме) положении движка переменного резистора R1 чувствительность узла минимальна (равна нулю, так как транзисторы заперты), а в верхнем (по схеме) положении движка R1 — чувствительность стремится к максимальной.

На рис. 3.6 представлена аналогичная схема с транзистором прямой проводимости (р-п-р). Принцип ее работы тот же. Однако следует заметить, что чувствительность второй схемы будет ниже, чем первой, из-за применения в первом варианте эмиттер- ного повторителя, но все равно достаточной для применения фотореле в бытовых условиях.

Каждый радиолюбитель может поэкспериментировать с этими схемами. При направлении светового потока на рабочую поверхность фоторезистора (например, от настольной лампы) срабатывает реле. Это можно услышать по характерному щелчку. При загораживании светового потока, например рукой, реле (и нагрузка) обесточиваются.

Рис. 3.6. Второй вариант транзисторного фотореле

На основе этих простейших узлов можно конструировать приборы любой сложности, от фотореле до охранных систем. Именно по такому принципу работают турникеты в метро.

Вместо фоторезисторов можно применять термисторы — терморезисторы с отрицательным температурным коэффициентом сопротивления. Теперь датчик будет реагировать не на свет, а на изменение температуры. Следует учитывать инерционность изменения сопротивления в зависимости от температуры среды в большинстве популярных и доступных приборах типа KMT, ММТ.

Вместо указанных кремниевых транзисторов подойдут также любые маломощные кремниевые и германиевые приборы. Хорошие результаты (по уровню чувствительности) удалось получить при использовании в этих схемах, соответственно, германиевых приборов МП35 и МП41. Германиевые транзисторы имеют изначально высокий начальный ток, но это не мешает использовать их именно в этой разработке. Такие транзисторы ненужным «хламом» лежат в запасниках радиолюбителей. Они могут еще найти полезное применение. Чем выше коэффициент передачи тока транзисторов И21э — тем чувствительнее оказывается весь электронный узел. Для большей чувствительности также можно соединить несколько фоторезисторов параллельно друг другу.

В литературе для радиолюбителей описано множество различных по сложности схем (включающих датчики в виде фото- и терморезисторов), со сложными усилительными каскадами и с применением микросхем, но на самом деле для большинства самодельных приборов в быту вполне подходят такие простые варианты, которые представлены на рис. 3.5 и 3.6.

  • Предыдущая запись: Источники тока, батареи, аккумуляторы
  • Следующая запись: УСИЛИТЕЛЬ МОЩНОСТИ НЧ 80 Вт

Похожие посты:

Принципиальная схема

Схема (рис.1,а) содержит такие же узлы, как и предыдущая, но с некоторыми изменениями:

  • изменена схема питания фотодатчика;
  • триггерная схема выполнена с эмит-терной связью между транзисторами;
  • выходное электромагнитное реле притянуто в светлое время суток.

Питание цепи фотодатчика R1 (точка «G») стабилизировано нелинейным делителем напряжения R4VD1. Стабилизированное питание подведено к потенциометру R2, с его движка часть напряжения через балластный резистор R5 подается на точку входа триггера «B».

Рис. 1. Принципиальная схема фотореле для освещения.

Эта точка соединена с «нулем» через последовательно соединенные резистор R6 и фотодатчик R1. В зависимости от положения движка R2 и номинала R5 (подбирается в зависимости от R1), а также освещенности фотодатчика к точке «В» подводится большее или меньшее напряжение.

Если фоторезистор R1 затемнен, входное напряжение (напряжение на затворе VT1) больше напряжения на его истоке (точка «D») — транзистор VT1 открыт, а выходной транзистор триггера VT2 закрыт — реле K1 обесточено. Ток в цепи R9 очень мал -светодиод HL1 не горит (состояние схемы — «ночь»). Нормально замкнутые контакты реле К1 подводят к выходу схемы (точке «Н») сетевое напряжение 220 В для включения освещения.

При освещенном фотодатчике схема работает наоборот: реле К1 притянуто, к точке «Н» напряжение не подводится, так как освещение включать не нужно, светодиод HL1, запитанный большим током, светится (состояние схемы — «день»). Триггер Шмитта (триггер с эмиттерной связью для фиксации устойчивых состояний включено и выключено) имеет несколько особенностей.

Входной каскад выполнен на полевом транзисторе с изолированным затвором (нет потребления тока с входа схемы) для обеспечения работы с высокоомными фотодатчиками (даже с вакуумными фотоэлементами). В цепи исток-эмиттер транзисторов включен стабилитрон VD4 для создания стабильного порога переключения схемы.

Гистерезис (различие порогов включения/выключения) обеспечен резисторами R8 и R9, включенными «почти в параллель» (через R9 запитывается светодиод HL1). Суммарное сопротивление параллельных ветвей пропорционально величине гистерезиса схемы.

Токи различных реле К1 различаются в десятки раз, поэтому для обеспечения нормального питания светодиода может потребоваться изменение номиналов R8 и R9. Поскольку выходное реле работает противофазно со схемой [1], светодиод зеленого цвета свечения выдает сигнал о солнечном освещении (день).

Такая индикация очень удобна, так как днем видно свечение светодиода, а ночью — фонарей освещения. Без индикатора режима работы схемы настройка фотореле затрудняется. Совсем не обязательно при настройке фотореле «щелкать» лишние разы мощным пускателем системы освещения.

Цепь эмиттера VT2 содержит стабилитрон VD3 для обеспечения работы первого транзистора в режиме напряжения стока несколько вольт (достаточно напряжения от 3 до 12 В). При таком напряжении VT1 обладает высокой крутизной и переключение триггера происходит быстро (транзисторы быстро меняют состояние открыт/за-крыт и наоборот, поэтому на них рассеивается малая тепловая мощность).

Цепь защиты входа схемы от перенапряжения выполнена на симметричном стабилитроне VD2, потому что затвор полевого транзистора VT1 имеет высокое сопротивление для обеих полярностей входного напряжения, а изоляция затвора «пробивается» напряжением в несколько десятков вольт. «Новым» элементом схемы является конденсатор С1, обеспечивающий сглаживание входного напряжения. Теперь импульсные засветки и подсветка фотодатчика мигающими газонаполненными лампами вносят меньше помех в управление системой освещения.

Резистор R3 предназначен для ограничения минимального напряжения в цепи фотодатчика (иначе в «нижнем» положении движка R2 даже при полностью затемненном фотодатчике невозможно автоматическое включение освещения). Введение в схему R3 позволяет более плавно настроить фотореле и устранить зону нечувствительности движка R2. Можно не подбирать R3, а для удобства настройки подсоединить нижний (по схеме) вывод R2 к стабилитрону VD4 (рис.1,6).

В схеме выпрямления применен мощный диод VD6 с допустимым обратным напряжением 600 В (можно выполнить и по схеме рис.1). Элементы фотореле можно скомпоновать, как показано на рис.1,в, использовав карболитовое основание от промышленного промежуточного (РП250) или реле времени (ЭВ-100, ЭВ-200).

Подходящий по размеру кусок фольгированного стеклотекстолита может крепиться винтами к основанию реле. Крепежные винты одновременно соединяют плату с контактными зажимами основания реле. Можно закрепить на фольгированной плате и крупные детали — выходное реле и конденсатор С2. В таком случае плату необходимо приподнять, закрепив ее с помощью «шпилек».

Фотодатчик устанавливают, как правило, в «неудобных» местах, обязательно защитив его от прямых солнечных лучей, осадков, «засветок» от фар транспорта и фонарей освещения. В помещениях ТП крепят фотодатчик в вентиляционных «окнах» либо на косяке двери. Удобно крепить круглый фоторезистор в отрезке изоляции кабеля подходящего диаметра (рис.1,г).

Отрезок изоляции разрезан вдоль, место разреза находится внизу для отвода капель дождя. Закрепить его можно хомутиками, куском жести и даже гвоздями изнутри (изоляция легко разворачивается и сворачивается).

Трубку-датчик необходимо закрепить с небольшим наклоном наружу, чтобы в ней не задерживались мелкие предметы и вода. Если хватает чувствительности схемы, желательно «спрятать» фотодатчик подальше от края конструкции, что уменьшит вредные воздействия (в том числе и чрезмерную «засветку»).