Электронный коммутатор нагрузок

Коммутация нагрузок переменного тока

Доброго времени суток.

Речь пойдёт о коммутации нагрузок переменного тока.

На просторах интернета находятся сотни вариантов управления ТЭНами и лампочками через симистор.
Вот типовое решение.

Но симистор имеет несколько важных недостатков:
— Он может сам включится.
— Он не подходит для коммутации мощных нагрузок.

По опыту работы если в качестве С2 использовать CL21(CBB21) 0.01uF 630V», Китай» их будет часто пробивать, что приводит к замыканию цепи управления.
Вот как это западло выглядит на сайте всем известного магазина:

Вот как такой конденсатор может выглядеть в готовом изделии.

На данной схеме резистор R4 не установлен, вся цепь кроме С2 живая. Такой пробой не единичный случай, это просто самый наглядный. Экономить на конденсаторах не выгодно потому как нагрузка разная бывает, может быть и опасно такое включение.

Помимо симисторов существует ещё один вариант.

И это контакторы, которыми можно управлять как раз этими самыми симисторами.
Это как реле, но большое. На рисунке представлен один из самых часто распространнёных и маленьких экземпляров.

Однако, речь дальше пойдёт о тиристорах.

Я не буду приводить здесь теорию про тиристоры, желающие могут почитать здесь.

Основные отличия от симисторов:
— Больший коммутируемый ток (хотя в СССР выпускались симисторы — монстры).
— Большая надёжность коммутации.

Основные отличия от контакторов:
— Меньшие габариты и вес.
— Большая скорость коммутации.

Они выпускаются как в виде отдельных тиристоров:

Обычно они устанавливаются парами на теплоотвод. Выглядит это в железе обычно как-то так:

Так и в виде модулей, состоящих из двух тиристоров в одном корпусе:

В живую они обычно выглядят как блок, установленный на теплоотвод:

Основным отличием от симистора сдрайвером будет необходимость включать тиристоры в каждом полупериоде.
Из всей теории я приведу следующий рисунок:

На нём изображены коммутируемое напряжение (U), коммутируемый ток (i) и импульсы включения тиристоров (iупр.).

Как видно из графика коммутация производится при ноле тока, а не напряжения, что принципиально важно.
Существует множество способов включения тиристоров. Но основным на сегодня является включение тиристора двуполярными импульсами, при этом частота импульсов должна быть больше сетевой. Таким образом когда мы подаём команду включения тиристорам, они включатся во время ближайшего, подходящего импульса. А поскольку частота импульсов большая то включение произойдёт практически мгновенно. И если ток через тиристор меньше тока удержания, то каждый следующий импульс будет снова открывать тиристор, что при большой частоте импульсов не будет заметно для питаемой нагрузки.
Отключение тиристоров происходит при снижении коммутируемого тока ниже тока удержания. Что при пропадании импульсов управления приведёт к скорейшему закрытию тиристора при переходе тока через ноль в конце полупериода.

Схема управление тиристорами похожа на такую:

Во вложении более крупная картинка и схема.

На микросхемах CD4069 и CD4013 собран генератор управляющих импульсов.
В точках А и В получаются вот такие сигналы (осторожно модель)

Этот генератор может быть общим для достаточно большого числа каналов управления. Его всегда можно заменить 2 выводами микроконтроллера, но разумнее микроконтроллер разместить на отдельной плате.

Создание каналов управления производится копирование всего куска поле точек А и В.
Трансформатор Т1 используется в первую очередь как гальваническая развязка. К тому на каком магнитопроводе он будет намотан требования очень расплывчатые.

Всё что идет до VT1 рекомендуется делать на отдельной плате управления. Соединение плат лучше выполнять между VT1 и R10. В случае использования модульных тиристоров в точках обозначенных + и — подпаиваются проводники с наконечниками, при этом цвет проводников + и — должен быть различным иначе очень легко запутаться.

Предохранитель FU1 нужен для обрыва цепи в случае пробоя тиристоров или неправильной их коммутации.

В случае перенапряжений обычно выбивает VD1-VD4 и резисторы на высокой стороне. R11 должен быть в корпусе 2512, остальное допустимо применять в корпусе 1206. Резистор R15 должен быть огнестойкий (серенькие такие). Конденсаторы 1206 все кроме С10.

Вот как-то так. Про цепи измерения и питания будет отдельно ибо мне влом.

Коммутатор нагрузки в автомобиле

Коммутатор нагрузки в автомобиле

На практике довольно часто — встречаются случаи, когда некоторые виды электрической нагрузки (например, лампы накаливания в устройствах световой сигнализации) необходимо эксплуатировать в импульсном режиме, поскольку он не только экономичнее, но часто и эффективнее (мигающая лампа в большей степени привлекает внимание). Сейчас многие автомобилисты хотят установить на машину дополнительные стоп-сигнальные фонари, работающие в импульсном режиме. Как показывает практика, такие фонари повышают безопасность движения. Промышленность и производственные кооперативы быстро откликнулись на удовлетворение спроса в соответствующих фонарях, а вопрос о коммутаторах для них пока остался нерешенным. И тут уж в дело идет все — от термоэлектрических прерывателей до светодинамических установок. Трудно судить, какому именно коммутатору иной автомобилист отдал бы предпочтение. Ясно одно — долговечность, надежность, экономичность могут обеспечить только электронные устройства.

В журнале «Радио» неоднократно были опубликованы описания электронных коммутаторов различной степени сложности и назначения. Но у них всех есть одна общая черта, скорее — недостаток. Он заключается в том, что коммутатор с нагрузкой подключены к источнику питания параллельно, из-за чего общее число проводников в цепях питания коммутатора и нагрузки — не менее трех. Сказанное поясняет функциональная схема на рис. 1, а. Здесь SF1 — выключатель питания (для случая стоп-сигнальных фонарей механически связанный с педалью тормоза); Rн — нагрузка (лампы накаливания); Iк — ток коммутатора; Iн — ток нагрузки. Недостаток такого устройства очевиден. Намного более удобна последовательная схема соединения нагрузки и коммутатора, показанная на рис. 1, б. Во-первых, она обеспечивает минимум соединительных проводов. Во-вторых, если условиться, что коммутирующими элементами в обоих случаях служат ключи с одинаковыми параметрами, то при прочих равных условиях (Uпит, Rн) ток пот -ребляемый устройством по схеме рис. 1, б, меньше, чем по схеме рис. 1, а, на Iк. Именно такой коммутатор и описан ниже.

Представьте себе, что вы приобрели дополнительные фонари стоп-сигналов, соединили их параллельно и установили, как обычно, у заднего стекла в салоне автомобиля. Один из выводов фонарей соединили с корпусом непосредственно в салоне, чтобы не тянуть длинный провод, а другой — провели в багажник и подключили параллельно одной из ламп основного стоп-сигнала. При нажатии на педаль тормоза вместе с основными включаются дополнительные фонари. Следующий этап совершенствования вновь установленной системы — перевод ее работы в режим мигания с низкой частотой при нажатии на педаль тормоза. В случае реализации этого режима по схеме на рис. 1, б достаточно описываемый коммутатор включить в разрыв провода от дополнительных фонарей к корпусу.

Принципиальная схема коммутатора показана на рис. 2. Он состоит из мультивибратора на двух логических элементах DD1.1, DD1.2, буферного формирователя на элементах DD1.3, DD1.4 и электронного ключа на сложном составном транзисторе VT1VT2VT3. Отличительная особенность коммутатора от ближайших прототипов — в способе подачи на микросхему питающего напряжения. Принцип работы коммутатора основан на использовании свойств микросхем структуры КМОП — чрезвычайно высокого входного (до нескольких тысяч мегаом) и относительно большого выходного (до одного килоома) сопротивления, ничтожного потребления тока (от 0,1 до 100 мкА) в статическом режиме при значительном (до 10 мА) выходном токе и, наконец, работоспособности в широком интервале питающего напряжения—2,4. 30 В [I].

В общем случае, когда плюсовой вывод питания микросхемы подключен непосредственно к источнику постоянного напряжения, работа генератора несколько различна в случаях применения микросхем серий 164, К 176 и К561. Длительность выходных импульсов и период колебаний находятся в зависимости не только от произведения номиналов времяза-дающей цепи (R1C1), но и от числа ограничительных (защитных) диодов во входных цепях элементов микросхем. Так, если в генераторе использованы элементы с одним диодом, время зарядки конденсатора С1 через резистор R1 до порогового напряжения равно 0,7R1C1, а разрядки — 1,1 R1C1. Период колебаний будет равен T==1,8R1C1 с. Если же в элементах по два диода, значения времени зарядки и разрядки равны, период равен Т= 1,4R1C1 с [2].

На рис. 3 представлены временные диаграммы, иллюстрирующие работу описываемого коммутатора. Видно, что диаграмма напряжения на левой по схеме обкладке конденсатора С1 (по сравнению с аналогичной диаграммой в [2] на рис. 10, б) имеет характерную особенность: переключение элемента DD1.1 по выходу в состояние 1 происходит при пороговом напряжении Uпoр2′ значительно меньшем, чем Uпор. Объясняется это тем, что в течение времени t2=t3—t2 напряжение питания микросхемы равно падению напряжения на открытом транзисторе VT3 (см. рис. 2). А поскольку оно значительно меньше Uпит, то и переключение элементов в этот промежуток времени происходит при значительно меньшем пороговом напряжении.

Rн, Ом Uкэз.В Uпop1. В Uпор2. В t1, МС t2, МС f, Гц
1 4,2 4,2 1,74 1,4 0,95 425
1.6 3,9 4,2 1,5 1,4 0,96 423
5 3 4,2 1,2 1,4 1,24 378
10 2,7 4,2 1,1 1,4 1,4 357
50 2,44 4,2 0,9 1,4 5 156
100 2,43 4,2 0,6 1,4 9,2 94
500 2,42 4,2 0,3 1,4 22.5 42

В таблице представлены основные параметры коммутатора, снятые при постоянном напряжении источника питания Uпит=12 В. Для удобства снятия параметров значение R1C1 было взято в пятьсот раз меньше указанного на принципиальной схеме (т. е. измерения проводили на более высокой частоте, чем рабочая частота коммутатора). Из полученных результатов следует, что при Uпит=const параметры устройства зависят в основном от сопротивления коммутируемой нагрузки (при прочих равных условиях они будут несколько отличаться от указанных в таблице в случае использования других типов мощных транзисторов и микросхем). Кроме того, нижний предел напряжения питания (2,4 В), при котором еще сохраняется переключающая способность элементов структуры КМОП, делает заметным превышение напряжения на открытом транзисторе VT3 от напряжения насыщения этого транзистора. Однако это вряд ли можно считать препятствием для использования коммутатора с такими нагрузками, как устройства световой сигнализации — дополнительных стоп-сигналь-ных фонарей, указателя поворотов и т. п. Скорее наоборот, поскольку напряжение бортовой сети автомобиля при работающем двигателе, как правило, равно 14 В, т. е. больше номинального. Вполне достаточная яркость свечения ламп выгодно сочетается с более мягким режимом накала из-за падения напряжения на коммутаторе. Зависимость времени зарядки конденсатора С1 от напряжения источника питания менее заметна, чем от сопротивления нагрузки. Так, при R„= 1,6 Ом и изменении Uпит от 14 до 5 В время коммутации нагрузки увеличивается менее чем на 10 %. Примерно на столько же уменьшается частота коммутации.

Резистор коммутатора — ВС, МЛТ, ОМЛТ или УЛМ. Конденсатор лучше использовать КМ-6, однако подойдут и К53-1, К50-3, К50-12 и др. Номиналы резистора и конденсатора могут отличаться от указанных на схеме. Важно лишь, чтобы параметры времязадающей цепи удовлетворяли необходимому ритму коммутации. Транзисторы КТ315 могут быть любыми из этой серии; возможна их замена на один транзистор КТ3142А (в этом случае выходы буферного формирователя необходимо объединить). Транзистор КТ818Б — также любой из этой серии. Вместо К561ЛА7 можно использовать микросхемы К561ЛЕ5, 564ЛА7 или 564ЛЕ5. Возможность использования аналогичных микросхем серии К 176 или 164 должна быть экспериментально проверена, поскольку в устройстве безусловно, применимы лишь микросхемы с элементами, оснащенными двумя защитными диодами (так как только они работают в указанных пределах питающего напряжения).

Конструктивно коммутатор выполнен в виде герметичного блока (рис. 4). Из листового металла с хорошей теплопроводностью (медь, алюминиевый сплав, латунь) вырезают прямоугольную пластину-основание размерами 50Х20Х4 мм. Толщину пластины выбирают из соображений обеспечения необходимой жесткости констукции. К пластине винтом или заклепкой крепят мощный транзистор VT3, после чего к его выводам припаивают остальные детали. Микросхему на пластину кладут выводами вверх (рис. 5).

Затем из плотной бумаги склеивают прямоугольную форму, которую отогнутыми краями приклеивают к пластине так, чтобы детали оказались внутри формы. Высота стенок формы должна быть на 1,5. 2 мм больше высоты смонтированного узла. К эмиттеру мощного транзистора припаивают гибкий вывод длиной 15. 20 см из многожильного провода сечением 1 мм 2 . Вывод пропускают через отверстие, предварительно проткнутое шилом в стенке формы в соответствующем месте. Вторым выводом служит пластина-основание. В форму заливают эпоксидный клей и, слегка наклоняя пластину, дают возможность всплыть пузырькам воздуха. После затвердевания смолы блок обтачивают напильником с трех сторон.

ЛИТЕРАТУРА
1. Алексеев С. Применение микросхем серии К176.—Радио, 1984, № 4, с. 25—28.
2. Алексеев С. Формирователи и генераторы на микросхемах структуры КМОП.—Радио, 1985, № 8, с. 31—35.

Тиристорные коммутаторы нагрузки (10 схем)

Для включения и отключения нагрузки (ламп накаливания, обмоток реле, электродвигателей и т.п.) зачастую используют тиристоры. Особенность этого вида полупроводниковых приборов и основное их отличие от транзисторов заключается в том, что они обладают двумя устойчивыми состояниями, без каких-либо промежуточных.

Это состояние «включено», когда сопротивление полупроводникового прибора минимально, и состояние «выключено», когда сопротивление тиристора максимально. В идеале эти сопротивления приближаются к нулю или бесконечности.

Для включения тиристора на его управляющий электрод достаточно хотя бы кратковременно подать управляющее напряжение. Отключить тиристор (запереть) можно кратковременным выключением питания тиристора, сменой полярности питающего напряжения либо уменьшением тока в нагрузке ниже тока удержания тиристора.

Обычно включают и отключают тиристорные коммутаторы двумя кнопками. Значительно меньшее распространение получили однокнопочные схемы управления тиристорами.

Здесь подробно рассмотрены методы однокнопочного управления тиристорными коммутаторами. Принцип работы тиристорных однокнопочных управляющих устройств основан на динамических зарядно-разрядных процессах в цепи управления тиристора [EW 4/01-299].

Схема однокнопочного управления тиристором

На рисунке 1 показана одна из простейших схем однокнопочного управления тиристорным коммутатором. В схеме (здесь и далее) используют кнопки без фиксации положения. В исходном состоянии нормально замкнутые контакты кнопки шунтируют цепь управления тиристором.

Сопротивление тиристора максимально, ток через нагрузку не протекает. Диаграммы основных процессов, протекающих в схеме на рис. 1, рассмотрены на рис. 2.

Для включения тиристора (ON) нажимают на кнопку SB1. При этом нагрузка оказывается подключенной к источнику питания через контакты кнопки SB1, а конденсатор С1 заряжается через резистор R1 от источника питания.

Скорость заряда конденсатора определяется постоянной времени цепи R1C1 (см. диаграмму). После того как кнопку отпустят, конденсатор С1 разряжается на управляющий электрод тиристора. Если напряжение на нем равно или превышает напряжение включения тиристора, тиристор отпирается.

Рис. 1. Принципиальная схема управления тиристором с помощью одной кнопки.

Рис. 2. Диаграммы основных процессов, протекающих в схеме с тиристором.

Отключить нагрузку (OFF) можно кратковременным нажатием на кнопку SB1. При этом конденсатор С1 не успевает зарядиться. Поскольку контакты кнопки шунтируют электроды тиристора (анод — катод), это равноценно отключению источника питания тиристора. В результате нагрузка будет отключена.

Следовательно, для включения нагрузки необходимо с большей продолжительностью нажать на управляющую кнопку, для отключения — еще раз кратковременно нажать ту же кнопку.

Простые силовые ключи на тиристорах

На рис. 3 и 4 показаны варианты схемной идеи, представленной на рис. 1. На рис. 3 использована цепочка последовательно соединенных диодов VD1 и VD2 для ограничения максимального напряжения заряда конденсатора.

Рис. 3. Вариант схемы управления тиристором одной кнопкой.

Это позволило заметно снизить рабочее напряжение (до 1,5. 3 В) и емкость конденсатора С1. В следующей схеме (рис. 4) резистор R1 включен последовательно с нагрузкой, что позволяет создать двухполюсный коммутатор нагрузки. Сопротивление нагрузки должно быть намного ниже, чем сопротивление R1.

Рис. 4. Схема электронного ключа на тиристоре с последовательным подключением нагрузки.

Тиристорный коммутатор с двумя кнопками

Тиристорное устройство управления нагрузкой (рис. 5) может быть использовано для включения и выключения нагрузки любой из нескольких последовательно включенных кнопок, работающих на разрыв цепи. Принцип действия тиристорного коммутатора заключается в следующем.

При включении устройства напряжение, подаваемое на управляющий электрод тиристора, недостаточно для его включения. Тиристор, и, соответственно, нагрузка отключены. При нажатии на любую из кнопок SB1 — SBn (и удержании ее нажатой) конденсатор С1 заряжается через резистор R1 от источника питания. Цепь управления тиристора и сам тиристор при этом отключены.

Рис. 5. Схема простого тиристорного коммутатора нагрузки с двумя кнопками.

После отпускания кнопки и восстановления цепи питания тиристора накопленная конденсатором С1 энергия оказывается приложенной к управляющему электроду тиристора. В результате разряда конденсатора через управляющий электрод тиристор включается, подсоединяя тем самым нагрузку к цепи питания.

Для отключения тиристора (и нагрузки) кратковременно нажимают на любую из кнопок SB1 — SBn. При этом конденсатор С1 не успевает зарядиться. В то же время цепь питания тиристора размыкается, тиристор запирается.

Величина резистора R2 зависит от напряжения питания устройства: при напряжении 15 В его сопротивление — 10 кОм при 9 В — 3,3 кОм при 5 6-1,2 кОм.

Схема с эквивалентом тиристора на транзисторах

При использовании вместо тиристора его транзисторного аналога (рис. 6) величина этого резистора меняется, соответственно, от 240 кОм (15 В) до 16 кОм (9 В) и до 4,7 кОм (5 В).

Рис. 6. Схема электронного коммутатора нагрузки с транзисторным эквивалентом тиристора.

Аналог многокнопочного переключателя на тиристорах

Тиристорное устройство, позволяющее создать аналог многокнопочного переключателя с зависимой фиксацией положения и использующее для управления кнопочные элементы, работающие без фиксации, показано на рис. 7. В схеме может быть использовано несколько тиристоров, однако, для упрощения схемы, на рисунке показано лишь два канала. Другие каналы коммутации могут быть подключены аналогично предыдущим.

Рис. 7. Принципиальная схема аналога многокнопочного переключателя с использованием тиристоров.

В исходном состоянии тиристоры заперты. При нажатии на кнопку управления, например, кнопку SB1, конденсатор С1 относительно большой емкости оказывается подключенным к источнику питания через диоды VD1 — VDm и сопротивления нагрузки всех каналов.

В результате заряда конденсатора возникает импульс тока, приводящий к кратковременному замыканию анодов всех тиристоров через соответствующие диоды VD1 — VDm на общую шину.

Любой из тиристоров, если он был включен, отключается. В то же время конденсатор накапливает энергию. После отпускания кнопки конденсатор разряжается на управляющий электрод тиристора, отпирая его.

Для включения любого другого канала нажимают соответствующую кнопку. Происходит отключение (сброс) ранее задействованной нагрузки и включение новой нагрузки. В схеме предусмотрена кнопка SB0 общего отключения всех нагрузок.

Многокнопочный переключатель с транзисторным аналогом тиристоров

Вариант схемы, выполненный на транзисторных аналогах тиристоров и диодно-емкостных зарядных цепочках с использованием малогабаритных конденсаторов, показан на рис. 8, 9.

Рис. 8. Схема эквивалентной замены тиристора транзисторами.

В схеме предусмотрена светодиодная индикация включенного канала. В этой связи максимальный ток нагрузки каждого из каналов ограничен значением 20 мА.

Рис. 9. Схема многокнопочного переключателя с транзисторным аналогом тиристоров.

Устройства, аналогичные представленным на рис. 7 — 9, а также на рис. 10 — 12, можно использовать для систем выбора программ радио- и телеприемников.

Недостатком схемных решений (рис. 7 — 9) является то, что в момент нажатия на любую из кнопок все нагрузки оказываются хотя бы на мгновение подключенными к источнику питания.

Схемы многопозиционных переключателей

На рис. 10 и 11 показан тиристорный коммутатор разрывного типа с неограниченным количеством последовательно включенных элементов.

При нажатии на одну из кнопок управления цепь питания аналогов тиристоров размыкается по постоянному току. Конденсатор С1 оказывается включенным последовательно с аналогом тиристора.

Рис. 10. Схема базового элемента для самодельного многопозиционного коммутатора нагрузки.

Рис. 11. Принципиальная схема самодельного многопозиционного коммутатора нагрузки.

Одновременно управляющее напряжение (нулевого уровня) через задействованную кнопку и резистор R2 (рис. 10) подается на управляющий электрод аналога тиристора.

Поскольку в первые мгновения при нажатии кнопки последовательно с аналогом тиристора оказывается включенным полностью разряженный конденсатор, такое включение равносильно короткому замыканию в цепи питания соответствующего тиристора. Следовательно, тиристор отпирается, включая тем самым соответствующую нагрузку.

При нажатии на любую другую кнопку ранее задействованный канал отключается, и включается другой канал. При длительном (порядка 2 сек) нажатии на любую из кнопок конденсатор С1 заряжается, что равнозначно размыканию цепи и приводит к запиранию всех тиристоров.

Схема усовершенствованного электронного переключателя

Рис. 12. Принципиальная схема тиристорного коммутатора для множества нагрузок.

В ряду тиристорных коммутаторов наиболее совершенной представляется схема, показанная на рис. 12. При нажатии кнопки управления возникает бросок тока, эквивалентный короткому замыканию.

Происходит отключение ранее задействованных тиристоров и включение тиристора, соответствующего нажатой кнопке. В схеме предусмотрена светодиодная индикация задействованного канала, а также кнопка общего сброса.

Вместо конденсаторов большой емкости могут быть использованы диодно-конденсаторные цепочки (рис. 12). Принцип действия схемы сохраняется. В качестве нагрузки можно использовать низковольтные реле, например, РМК 11105 сопротивлением 350 Ом на рабочее напряжение 5 В.

Резистор R1 ограничивает ток короткого замыкания и ток максимального потребления величиной 10. 12 мА. Количество каналов коммутации не ограничено.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Управляющий коммутатор

Управляющий коммутатор нагрузки — тиристорная схема

Управляющий коммутатор нагрузки — в этой статье приведены схемы и рассмотрены принципы работы беспроводных релейно-тиристорных коммутаторов нагрузки, управляемых лучом лазерной указки. Приведенная информация может быть полезна как начинающим, так и опытным радиолюбителям. Разновидностей устройств дистанционного управления нагрузками существует не так уж много.

Это коммутаторы с радиочастотным управлением, акустическим и оптическим. У каждого из них имеются свои достоинства и недостатки. Достоинством описываемых ниже коммутаторов является то, что они не создают помех в эфире. И самое главное, в качестве пульта управления можно использовать широко распространенные лазерные указки без каких-либо доработок.

Примечание редактора

В приведенных ниже схемах в качестве фотодатчиков используются фототранзисторы типа L-53P3C. Они имеют всего два вывода: эмиттер и коллектор, а освещаемая внешним светом база «висит в воздухе». Поэтому во всех схемах все фотодатчики автор обозначил как фотодиоды. Это допущение не отразилось на объяснении работы схемы.

На рис.1 показана схема управления релейно-тиристорным коммутатором с раздельными фотоприемниками включения и отключения, то есть управляющий коммутатор.

Луч лазерной указки

Включение управляющего коммутатора производится кратковременным направлением луча лазерной указки на фотодиод (фототранзистор) VD4. Его сопротивление резко снижается, ранее открытый транзистор VT2 закрывается, и на управляющий электрод тиристора VS1 через резистор R3 поступает управляющий сигнал. Тиристор VS1 включается, подключая к источнику питания реле К1, контакты которого включают нагрузку. Отключают коммутатор направлением луча лазерной указки на фотодиод (фототранзистор) VD1. В результате транзистор VT1 кратковременно открывается, шунтируя анод-катод тиристора VS1. Тиристор и соответственно нагрузка отключаются.

Принцип работы коммутатора

На рис.2 приведена схема коммутатора с использованием только одного фотоприемника как для управления включением, так и выключением нагрузки. Работает управляющий коммутатор следующим образом. При первом, более продолжительном, облучении фотоприемника транзистор VT1 запирается, цепь питания тиристора VS1 разрывается. Конденсатор С1 через резистор R1 заряжается. После прекращения облучения фотоприемника транзистор VT1 восстанавливает цепь питания тиристора VS1. Конденсатор С1 разряжается на управляющий переход тиристора, включая тем самым его.

Отключают тиристор и нагрузку кратковременным повторным облучением фотоприемника. Цепь питания тиристора вновь прерывается, выключая тем самым его, а конденсатор С1 за столь малый промежуток времени зарядиться не успеет.

Многоканальный коммутатор нагрузки

На рис.3 показан базовый узел многоканального коммутатора нагрузки с дистанционным оптическим управлением. Принцип его работы очевиден — при освещении фотоприемника VD2 транзистор VT1 открывается, включая тиристор VS1. Подобных узлов в составе коммутатора может быть несколько. Для сброса включенного состояния коммутатора используется узел сброса, рис.4. А общая блок-схема, по которой собран многоканальный управляющий коммутатор нагрузки с несколькими каналами включения тиристоров и узлом сброса показана на рис.5.

Узел сброса работает следующим образом. При освещении фотоприемника VD1 узла сброса (рис.4) транзистор VT1 открывается, шунтируя цепь питания коммутаторов нагрузки и, тем самым, отключая их. Цепочка C1R2 является элементом задержки и позволяет затянуть во времени включенное состояние транзистора VT1, исключая случайные сбросы.

Резистор R1 (рис.5) введен в схему для того, чтобы исключить короткое замыкание источника питания при включении транзистора VT1 узла общего сброса. Второе назначение этого резистора — ограничение тока нагрузки для того, чтобы одновременно можно было включить только один из каналов коммутатора, а для включения второго канала не хватало напряжения питания за счет увеличения падения напряжения на R1 (рис.5).

Электронные коммутаторы

Коммутатор это микросхема, позволяющая переключать различные сигналы между своими входами и выходами. Для цифровых сигналалов коммутаторы часто называют мультиплексорами и демультиплексорами. Мультиплексорами называются устройства, которые позволяют подключать несколько входов к одному выходу. Демультиплексорами называются устройства, которые позволяют подключать один вход к нескольким выходам. В простейшем случае такую коммутацию можно осуществить при помощи механических ключей:


Рисунок 1. Коммутатор, собранный на механических ключах

Такой коммутатор одинаково хорошо будет работать как с аналоговыми, так и с цифровыми сигналами. Однако скорость работы механических ключей оставляет желать лучшего, да и управлять ключами часто требуется автоматически при помощи какой-либо схемы.

В цифровых схемах управлять ключами удобнее всего при помощи логических уровней. То есть нужно подобрать устройство, которое могло бы выполнять функции электронного ключа с электронным управлением цифровым сигналом.

Особенности построения электронных коммутаторов на ТТЛ элементах

Попробуем заставить работать в качестве электронного ключа уже знакомые нам логические элементы. Рассмотрим таблицу истинности логического элемента «2И». При этом один из входов логического элемента «2И» будем рассматривать как информационный вход электронного ключа, а другой вход — как управляющий. Так как оба входа логического элемента «2И» эквивалентны, то не важно какой из них будет управляющим входом.

Пусть вход X будет управляющим, а Y — информационным. Для простоты рассуждений, разделим таблицу истинности логического элемента «И» на две части в зависимости от уровня логического сигнала на управляющем входе X.

По таблице истинности отчетливо видно, что пока на управляющий вход X подан нулевой логический уровень, сигнал, поданный на , на выход Out не проходит. При подаче на управляющий логической единицы, сигнал, поступающий на вход Y, появляется на выходе Out.

Это означает, что логический элемент «2И» можно использовать в качестве электронного ключа. При этом не важно какой из входов элемента «2И» будет использоваться в качестве управляющего входа, а какой — в качестве информационного. Остается только объединить выходы элементов «2И» в один выход. Это делается при помощи логического элемента «ИЛИ» точно так же как и при построении схемы по произвольной таблице истинности. Получившийся вариант схемы коммутатора с управлением логическими уровнями приведен на рисунке 2.


Рисунок 2. Принципиальная схема электронного коммутатора, выполненая на логических элементах

В схемах, приведенных на рисунках 1 и 2, можно одновременно включать несколько входов на один выход. Однако обычно это приводит к непредсказуемым последствиям. Кроме того, для управления таким коммутатором требуется много входов, поэтому в состав принципиальной схемы электронного коммутатора обычно включают двоичный дешифратор, как показано на рисунке 3. Это позволяет управлять переключением информационных входов при помощи двоичных кодов, подаваемых на управляющие входы. Количество информационных входов в таких схемах выбирают кратным степени числа два.


Рисунок 3. Принципиальная схема электронного коммутатора, управляемого двоичным кодом

Условно графическое обозначение четырёхвходового электронного коммутатора с двоичным управлением приведено на рисунке 4. Входы A0 и A1 являются управляющими входами электронного коммутатора, определяющими адрес входного сигнала, который будет подключен к выходу коммутатора Y. Сами входные сигналы обозначены как X0, X1, X2 и X3.


Рисунок 4. Условно графическое обозначение четырёхвходового электронного коммутатора

В условно-графическом обозначении названия информационных входов A, B, C и D заменены названиями X0, X1, X2 и X3, а название выхода Out заменено на название Y. Такое название входов и выходов более распространено в отечественной литературе. Адресные входы обозначены как A0 и A1.

Особенности построения электронных коммутаторов на КМОП элементах

При работе с КМОП логическими элементами электронный ключ очень легко получить на одном или двух МОП транзисторах, поэтому в КМОП микросхемах логический элемент «2И» в качестве электронного ключа не используется. Схема электронного ключа, выполненного на МОП транзисторах с разной проводимостью канала, приведена на рисунке 5.


Рисунок 5. Схема электронного ключа, выполненного на КМОП транзисторах с разной проводимостью

Такой электронный ключ может коммутировать как цифровые, так и аналоговые сигналы. Сопротивление открытых транзисторов составляет , а сопротивление закрытых транзисторов превышает десятки мегом. В этом есть как преимущества, так и недостатки. То, что ключ, собранный на МОП транзисторах, не является обычным логическим элементом, позволяет объединять выходы электронных ключей в точном соответствии со схемой, приведённой на рисунке 1. Это явно упрощает схему устройства.

Кроме того КМОП электронный коммутатор может быть использован для коммутации аналоговых сигналов. При этом только следует не забывать, что схема не выдерживает отрицательных напряжений. Это означает, что для аналоговых сигналов необходимо использовать схему смещения, так чтобы значения аналогового сигнала находились в диапазоне от потенциала общего провода схемы до напряжения питания микросхемы электронного коммутатора.

В то же самое время в цифровых устройствах, при работе с КМОП коммутатором, приходится ставить на его входе и выходе логические элементы. Только в этом случае цифровая схема в целом будет функционировать правильно. Следует отметить, что в большинстве случаев это условие выполняется автоматически.

Теперь вспомним, что в коммутаторе требуется подключать к выходу только один из входных сигналов. Точно также как и в ТТЛ микросхемах для управления электронными ключами двоичным кодом в его состав вводится дешифратор. Схема такого коммутатора приведена на рисунке 6.


Рисунок 6. Схема коммутатора с применением электронных ключей на МОП транзисторах

Условно-графическое обозначение коммутаторов не зависит от технологии изготовления микросхем, КМОП коммутатор обозначается так, как показано на рисунке 4.

В отечественных микросхемах коммутаторы электронных сигналов обозначаются буквами КП, следующими непосредственно за номером серии микросхем. Например, микросхема К1533КП2 является сдвоенным четырёхканальным коммутатором, выполненным по ТТЛ технологии, а микросхема К1561КП1 является сдвоенным четырёхканальным коммутатором, выполненным по КМОП технологии.

Дата последнего обновления файла 03.04.2018

Понравился материал? Поделись с друзьями!

  1. Микушин А.В. Занимательно о микроконтроллерах. СПб, БХВ-Петербург, 2006.
  2. Микушин А.В., Сажнев А.М., Сединин В.И. Цифровые устройства и микропроцессоры. СПб, БХВ-Петербург, 2010.
  3. Угрюмов Е. П. Цифровая схемотехника. СПб, БХВ-Петербург, 2004.
  4. Шило В. Л. Популярные цифровые микросхемы. М, Радио и связь, 1987.

Вместе со статьей «Виды двоичных дешифраторов» читают:

Электронный коммутатор обмоток трансформатора лабораторных источников питания.

В первой части нашего повествования, была рассмотрена схема коммутатора вторичной обмотки силового трансформатора, выполненная на электромагнитных реле. Для тех, кто мало работает с блоком питания в режиме стабилизации тока, и не изменяет выходное напряжение под нагрузкой — схема вполне подойдёт и прослужит очень долго, но и у неё имеются определённые недостатки.
При регулировке выходного напряжения БП слышны щелчки срабатываемых реле. Так как коммутация обмоток происходит с прерыванием тока, контакты реле могут обгорать, особенно в режиме стабилизации тока с подключенной нагрузкой.
Всех этих недостатков не имеет электронный вариант коммутатора вторичных обмоток трансформатора ЛБП, рассматриваемый ниже.

Схема электронного коммутатора выполнена на симисторах и работает в режиме вольт добавки. Ей абсолютно всё равно, в какой момент полупериода переменного напряжения включится или выключится симистор, и сколько включится симисторов. Она просто добавляет или уменьшает (но не прерывает) входное напряжение на блок питания, которое зависит от количества включенных симисторов и соответственно выходного напряжения блока питания.
Идея использования вольт добавки, предложенная kotosob-ом с форума сайта «Паяльник», я здесь лишь предлагаю свой вариант её исполнения.

Схема этого варианта коммутатора, так же, как и в первой части, собрана на микросхеме К555ИВ3. Без неё было бы трудно реализовать алгоритм переключения симисторов, да и увеличилось бы количество отводов вторичной обмотки силового трансформатора и используемых в схеме диодов и симисторов, при аналогичных пределах переключений и используемых напряжений.
В силовой части коммутатора используются четыре симистора (соответственно четыре симисторных оптрона) и три диодных моста, которые при применении симисторов в изолированных корпусах, можно установить на общий радиатор.

Схема блока переключения обмоток трансформатора.

Как видно из схемы, она похожа на релейный вариант коммутатора, рассмотренного в первой части.
Для задания порогов переключения, здесь так же используются стабилитроны на рабочее напряжение 6,2 — 6,8 вольт. Лучше конечно использовать стабилитроны на рабочее напряжение 6,8 вольт, тогда пороги переключений будут следующие — 6,8 v; 13,6 v; 20,4 v; 27,2 v; 34 v; 40,8 v.

В электронном коммутаторе используются четыре симистора, которые коммутируют вторичные обмотки силового трансформатора таким образом, что выходное напряжение с моста, подаваемое на вход блока питания (на электролитические конденсаторы фильтра), изменяется от 8-ми до 44 вольт, с пределом изменения в 6 вольт, в зависимости от выходного напряжения блока питания, то есть равняется 8, 14, 20, 26, 32, 38, 44. Необходимое напряжение вторичных обмоток силового трансформатора для данного варианта блока питания, указано на схеме силовой части коммутатора.
С таким коммутатором можно построить блок питания с выходным напряжением, изменяемым от 0 и до 40-45 вольт, с током нагрузки 5-10 ампер с хорошим КПД во всём диапазоне выходных напряжений.

Схема силовой части.

Если в фильтре блока питания применить электролитические конденсаторы на рабочее напряжение 80 вольт, то можно построить блок питания, максимальное выходное напряжение которого, может достигать 55-65 вольт.
Для этого необходимо будет намотать силовой трансформатор, первые три секции которого (I, II, III) имеют выходное напряжение по 8 вольт, две последующие (IV, V) по 16 вольт, соответственно проводом, рассчитанным на необходимый ток нагрузки. Напряжения, подаваемые на вход блока питания в этом случае будут следующие — 8, 16, 24, 32, 40, 48, 56 вольт. Так же все стабилитроны необходимо будет заменить на стабилитроны с напряжением стабилизации 7,5 — 8,2 вольта, для расширения порогов переключения электронного коммутатора.

Работа электронной схемы, аналогична схеме релейного коммутатора, описанного в первой части, а силовая часть работает следующим образом.
Если выходное напряжение БП не превышает 6,2-6,8 вольт (рабочее напряжение стабилитрона), то все симисторы закрыты, и на вход БП поступает напряжение 8 вольт с III-части вторичной обмотки силового трансформатора. При повышении выходного напряжения, открывается первый стабилитрон, на выходе 1 (вывод 9) микросхемы К555ИВ3 появляется логический ноль, загорается светодиод оптрона U3, открывается симистор VS3.
К диодам второго моста VD9-VD10 подключается II-часть вторичной обмотки и к 8-ми вольтовой обмотке добавляется 6 вольт. В итоге выходное напряжение повышается на 6 вольт (8+6).
Выпрямительные диоды VD7-VD8 при этом запираются поступающим на них повышенным обратным напряжением с диодов VD9-VD10 и исключаются из работы.
В дальнейшем при повышении выходного напряжения БП, открывается второй стабилитрон. На выходе 2 (вывод 7) микросхемы К555ИВ3 — появляется логический ноль, на выходе 1 (вывод 9) — логическая единица.
Загорается светодиод оптрона U2, симистор VS2 открывается, а светодиод оптрона U3 гаснет и симистор VS3 — закрывается.
В работу вступают диоды VD3-VD4 (и VD7-VD8), которые запирают диоды VD5-VD6. К 8-ми вольтовой обмотке добавляется 12 вольт, а 6 вольт (VS3, VD9-VD10) отключается. Итоговое напряжение на входе БП повышается ещё на 6 вольт (8+12).

В дальнейшем при повышении выходного напряжения БП — симисторы VS1-VS3 (точнее будет VS3-VS1), срабатывают в двоичном коде и напряжение ступенями по 6 вольт повышается до максимума. Последним открывается симистор VS4. При уменьшении выходного напряжения блока питания, всё происходит в обратном порядке.

Переключатель обмоток собран на печатной плате, размером 56х77 мм.

Печатная плата коммутатора.

Печатную плату для коммутатора любезно предоставил пользователь нашего сайта Анатолий Соколов ( anatolurew ). Печатная плата в формате Sprint-Layout от Анатолия Соколова добавлена к статье в прикреплении (архиве) для скачивания.

Зарубежные аналоги для микросхемы К555ИВ3, как указывалось в первой части — 74LS/HC/HCT 147.
В качестве диодных мостов (VD1-VD4, VD5-VD8, VD9-VD12) и силовых симисторов, можно применить любые симисторы и диодные мосты, а так же отдельные диоды, рассчитанные на требуемый ток и соответствующее напряжение. В качестве транзисторов — любые маломощные транзисторы. Оптроны так же можно применять любые из имеющихся, но только симисторные. транзисторные и диодные не подойдут. Можно вместо них в крайнем случае поставить и маломощные электромагнитные (герконовые) реле. Резисторы по 330 ом, которые включены последовательно со светодиодами оптронов в этом случае исключаются, а контакты реле подключаются вместо симисторов оптронов.

Скачать архив.