Детектор жучков с шкалой из 8 светодиодов и звуковой индикацией

Детектор жучков схема

Детектор жучков. Простая схема детектора напряженности

Это простая схема прекрасно ловит радио-жучков, но только в частотном диапазоне до 500 МГц, что является существенным минусом. Антенна детектора напряженности выполнена из штыря полуметровой длины диаметром не более 5 мм и изолированного снаружи. Далее сигнал детектируется германиевым диодом VD1, и усиливается транзисторами VT1, VT2). Усиленный УПТ сигнал проходит на пороговое устройство (DD1.1) и звуковой генератор выполненный на элементах DD1.2 — DD1.4, который нагружен на пьезоизлучатель. В качестве индуктивности L1 используется низкочастотный дроссель на ферритовом кольце 2000НМ, содержащий 200 витков провода ПЭЛ 0,1.

Работа прибора тоже достаточно простая. Если приблизить детектор напряженности к к радио-паразиту, то уровень напряженности поля увеличивается, и срабатывает звуковая сигнализация.

Детектор жучков. Радиочастотный искатель с индикацией на светодиодах

Еще одно простое самодельное устройство для поиска радиозакладок , приводится на схеме на рисунке чуть выше. Это широкополосный мостовой детектор высоко частотного напряжения, работающий в диапазоне от 1. 200 МГц и дает возможность найти «жучки» на расстоянии от 0,5 до 1 м.

Для увеличения чувствительности используется проверенный способ измерения малых переменных напряжений с помощью сбалансированного диодно-резистивного моста.

Диоды VD5, VD6 предназначены для обеспечения термостабилизации работы схемы. Трехуровневые компараторы, выполненные на элементах D1.2. D1.4 и к их выходам подсоединены светодиоды, которые используются в качестве индикатора. В качестве стабилизатора напряжения на 1,4 вольта, используются диоды VD1, VD2. Работать с устройством не очень просто и требуются практические навыки, так как схема может реагировать на некоторую бытовую технику, телевизоры и компьютеры.

Для того, чтоб упростить процесс выявления радиозакладок можно применить сменные антенны разной длины , от которых будет меняться чувствительность схемы

При первом включение прибора, нужно резистором R2 добиться свечения светодиода HL3. Это будет уровень начальной чувствительности относительно фона. Затем если мы приблизим антенну к источнику радиосигнала должны загораться и другие светодиоды в зависимости от уровня амплитуды радиосигнала.

Резистором R9 настраивают пороговый уровень чувствительности компараторов. Питается схема от девяти вольтовой батарейки, до тех пор пока она не разрядится до 6 вольт

Резисторы R2 можно взять СПЗ-36 или другие многооборотные, R9 СПЗ-19а, остальные любые; конденсаторы С1. С4 К10-17;.

Светодиоды можно использовать также любые, но с малым током потребления. Конструкция схемы зависит только от вашего воображения

Во время работы любой радио жучек излучает радиоволны, которые фиксируются антенной детектора и попадают на базу первого транзистора через высокочастотный фильтр, который выполнен на конденсаторах C1, C2 и сопротивление R1.

Отфильтрованный сигнал усиливается биполярным транзистором VT1 и через емкость C5 идет на высокочастотный первый диод. Переменное сопротивление R11 регулирует долю сигнала на диоде поступающего на операционный усилитель DD1.3. Он обладает высоким коэффициент усиления, который задается C9, R13, R17.

Если сигнал от радиозакладок отсутствует на антенне, то уровень сигнала на первом выходе ОУ DD1.3 стремится к нулю. Когда возникнет радиоизлучение усиленный сигнал с этого выхода, попадет на генератор звуковой частоты управляемый напряжением, собранный на элементах DD1.2., DD1.4 микросхемы МС3403P и третьем транзисторе. С выхода генератора импульсы усиливаются вторым транзистором и поступают на динамик.

Основой детектора электромагнитного поля слудит микросхема LM3914, которая имеет в своем внутреннем составе десять компараторов и соответственно, столько же выходов для подсоединения светодиодов. Один из выводов каждого компаратора соединен с входом через усилитель сигнала, другой вывод подключен к резистивному делителю в точке соответствующей заданному уровню индикации.

Начало и конец резистивного делителя подключены к выводам 4 и 6. Четвертый подключен к отрицательному полюсу источника, для того чтобы обеспечивать индикацию напряжения с нуля. Шестой подсоединен к выходу опорного напряжения 1,25 вольт. Такое подключение говорит о том, что первый светодиод будет гореть при уровне напряжения 1,25 вольт. Таким образом, шаг между светодиодами будет равен 0,125.

Схема работает в режиме «Точка», то есть определенному уровню напряжения соответствует свечение одногосветодиода. Если же этот контакт подключить к плюсу источника питания, то индикация будет осуществлятся в режиме «Столбик», будет светиться светодиод заданного уровня и все ниже. Изменяя значение R1 можно регулировать чувствительность детектора. В качестве антенны можно взять кусок медной проволоки.

Собрать данную схему-приставку способен каждый, умеющий держать в руках паяльник и имеющий элементарные технические понятия.

рассмотрим еще одну приставку-детектор, собрав ее, вы сразу же узнаете работает ли у вас радиомикрофон или нет. Кроме того данная схема реагирует на излучение с мобильного телефона.

Собрать схему детектора, благодоря ее простоте можно навесным монтажом, в роли антенны используем отрезок медного провода. Основным компонентом являются два кремниевых диода 1N4148 (КД522) и два керамических конденсатора, на 100 pF(101) и на 100 nF(104).

После сборки, подключите получившуюся приставку к мультиметру. На нем выставите диапазон измерения постоянного напряжения (DCV), на 2000 миливольт.

Детектор жучков с шкалой из 8 светодиодов и звуковой индикацией

В данном устройстве имеется усилитель ВЧ и детектор на сбалансированном резистивно-диодном мосте. Отличительной особенностью данного детектора поля является: фильтр высокой частоты на входе, усилитель постоянного тока на двух операционных усилителях, звуковой генератор, линейная светодиодная шкала и индикатор разряда батареи. Все это делает данное устройство несомненно более простым и удобным в эксплуатации. Принципиальная схема детектора поля приведена на рисунке.

Сигнал, принимаемый антенной, поступает на фильтр высокой частоты на элементах С 2, LI, C3, L2, необходимый для подавления сигналов частотой менее 20 МГц. Это необходимо для уменьшения уровня низкочастотных сигналов, обычно составляющих фоновое радиоизлучение. С ФВЧ сигналы частотой более 20 МГц поступают на вход апериодического широкополосного усилителя высокой частоты, собранного на транзисторе VT1 типа КТ3101. С нагрузки усилителя — резистора R2 — напряжение высокой частоты через конденсатор С5 по ступает на диоды VD1, VD2 типа ГД507, входящие в состав резистивно-диодного моста. Для балансировки моста используется резистор R4. Работа моста уже была подробно описана выше.

Продетектированное низкочастотное напряжение, сглаженное конденсатором С6, поступает на усилитель постоянного тока, выполненный на двух операционных усилителях DA1.1 и DA1.2, входящих в состав микросхемы К1401УД1. С выхода элемента DA1.1 постоянное напряжение поступает на генератор звуковой частоты, выполненный на операционном усилителе DA1.3. Частота генератора зависит от уровня постоянного напряжения на неинвертирующем входе элемента DA1.3, которое, в свою очередь, зависит от уровня входного сигнала. Таким образом, чем больше уровень входного сигнала, тем выше частота генератора звуковой частоты. С выхода генератора звуковой сигнал поступает на базу транзистора VT4 типа КТ315, в коллекторную цепь которого включен пьезокерамический преобразователь ZQ1 типа ЗП-1.

Микросхемы DA2 и DA3 типа К1401УД1 составляют основу линейной шкалы. Операционные усилители, входящие в состав этих микросхем, включены по схеме компараторов напряжения. На неинвертирующие входы этих компараторов поступает опорное напряжение с линейки резисторов R14-R21. Другие входы компараторов соединены вместе, на них поступает постоянное напряжение с выхода усилителя постоянного тока DA1.2. При изменении этого напряжения от 0 до максимального значения происходит переключение компараторов, на выходе которых включены светодиоды VD5-VD14, образующие линейную светоизлучающую шкалу. Чем выше уровень сигнала на входе, тем больше светодиодов включено. Для уменьшения потребляемого светодиодной шкалой тока используется принцип динамической индикации. Для этого на базу транзистора VT2 типа КТ315 поступают импульсы с генератора звуковой частоты DA1.3, вызывая поочередное закрывание и открывание транзистора VT2. При закрывании транзистора VT2 положительное напряжение источника питания через резистор R32 поступает на катоды светодиодов VD5-VD14, что приводит к запиранию последних. Ток через светодиоды не течет и они гаснут. При открывании транзистора VT2 катоды светодиодов замыкаются на минус источника питания, и те светодиоды, на аноде которых присутствует положительное напряжение, загораются. Благодаря инерционным свойствам человеческого глаза мигание светодиодов становится незаметным. Индикатор разряда батареи выполнен на элементе DA1.4 и светодиодах VD13, VD14. При снижении напряжения источника питания уменьшается ток, протекающий через стабилитрон VD15 и светодиод VD13 и, соответственно, напряжение на аноде VD13. Это вызывает включение светодиода VD14. Уровень срабатывания устанавливается подстроечным резистором R33 при настройке. Все устройство питается от стабилизатора, собранного на элементах VT3, VD15, VD13, R34, С8.

Читайте также  Блок питания антенного усилителя

В устройстве использованы резисторы типа МЛТ-0,125. Светодиоды VD5-VD14 могут быть любыми. Диоды VD1-VD4 — любые высокочастотные германиевые. Катушки L1 и L2 бескаркасные, диаметром 8 мм, намотанные проводом ПЭВ 0,6 мм. Катушка L1 — 8 витков, катушка L2 — 6 витков. Резистор R4 — любой переменный резистор с линейной характеристикой. Транзисторы VT2-VT4 могут быть типа КТ3102. Стабилитрон VD15 можно заменить на КС147, КС168, КС170. Пьезокерамический преобразователь ZQ1 — любой. Можно также использовать динамическую головку сопротивлением более 50 Ом, резистор R36 при этом можно из схемы исключить.

Настройка схемы особенностей не имеет. Перед началом работы необходимо настроить детектор на максимальную чувствительность резистором R4. Вращением движка резистора R4 добиваются свечения 1-2 светодиодов и выключения звуковой сигнализации. Прибор готов к работе.

Детектор жучков с шкалой из 8 светодиодов и звуковой индикацией

Схема является широкополосным мостовым детектором ВЧ напряжения. Он перекрывает диапазон частот 1—200 МГц (при использовании в качестве D01—D06 диодов СВЧ диапазона рабочая полоса может быть расширена) и позволяет обнаруживать «жучки» на расстоянии примерно 0,5–1 м (это зависит от мощности передатчика).

Примечание.

Известно, что измерение ВЧ напряжений с уровнем меньше 0,5 В затруднено тем, что уже при 0,2–0,3 В все полупроводниковые диоды при детектировании становятся неэффективны из-за особенности их вольтамперной характеристики.

Рис. 4.11. Радиочастотный искатель подслушивающих устройств.

В данной схеме применен известный способ измерения малых переменных напряжений с использованием сбалансированного диодно-резистивного моста. Небольшой ток, протекающий через диоды D3, D4, улучшает условия детектирования (повышает чувствительность) и позволяет отодвинуть нижнюю границу уровня измеряемых напряжений до 20 мВ при равномерной амплитудно-частотной характеристике.

Диоды D5, D6 образуют второе плечо моста и обеспечивают термостабилизацию схемы. На элементах микросхемы U1.2—U1.4 собраны трехуровневые компараторы, к выходам которых подключены светодиодные индикаторы HL1—HL3.

Диоды Dl, D2 применены как стабилизаторы напряжения 1,4 В, что необходимо для устойчивой работы схемы в широком диапазоне изменения питающих напряжений.

Примечание.

требует определенных навыков, так как схема довольно чувствительна и способна улавливать вблизи любые радиоизлучения, например, работу гетеродина приемника или телевизора, а также вторичное переизлучение токопроводящими поверхностями.

Для облегчения поиска «жучка» используют сменные антенные штыри с разной длиной, которые позволяют снизить чувствительность схемы. Например, возможно применение сменных штырей длиной 400–700—1200 (мм).

При использовании устройства, после его включения, необходимо резистором R2 добиться свечения индикатора HL3. Этим устанавливается уровень начальной чувствительности относительно фона. При поднесении антенны к источнику радиоизлучения должны начинать светиться светодиоды HL2 и HL1 по мере увеличения амплитуды принятого сигнала.

Регулировку схемы подстроечным резистором R9 выполняют один раз (при первоначальной настройке устройства от него зависит уровень порогов чувствительности компараторов). Схема сохраняет работоспособность при изменении питания от 6 до 10 В.

Схема № Детектор жучков с логарифмической шкалой на 12 светодиодах и звуковой индикацией рассмотрен на http://www.radioland.net.ua/sxemaid-62.html. В состав детектора поля входят ФВЧ, усилитель ВЧ, диодный детектор, усилитель постоянного тока с логарифмической зависимостью коэффициента усиления, звуковой генератор с изменяющейся частотой и светодиодная шкала из 12 светодиодов.

Детектор способен регистрировать работающие радиомикрофоны в диапазоне частот 20—600 МГц. Принципиальная схема прибора приведена на рис.

Сигнал, наводимый в антенне, фильтруется ФВЧ на элементах С2, L1, СЗ, L2 и поступает на широкополосный апериодический усилитель. Последний выполнен на высокочастотном транзисторе VT1 типа КТ3101.

Рис. 4.12. Детектор жучков с логарифмической шкалой на 12 светодиодах и звуковой индикацией

Нагрузкой усилителя служит эмиттерный повторитель на транзисторе VT2 типа КТ3101. Сигнал, снимаемый с регулятора чувствительности — резистора R4, поступает через конденсатор С6 на диодный детектор, собранный на диоде VD1 типа Д9Б.

Высокочастотные составляющие фильтруются RC-фильтрами R5, С7 и R6, С8. Низкочастотный сигнал поступает на усилитель на микросхеме DA1 типа КР140УД1208. Коэффициент усиления этого усилителя определяется значением резистора R9. При малом уровне входного сигнала усилитель на DA1 имеет большое усиление. По мере увеличения сигнала происходит открывание диода VD2 типа КД522, сопротивление которого изменяется по логарифмическому закону. Это приводит к изменению сопротивления обратной связи также по логарифмическому закону. С выхода усилителя на микросхеме DA1 сигнал поступает на светодиодный индикатор и звуковой генератор.

Звуковой генератор выполнен на транзисторе VT3 типа КТ315 и микросхеме DD1 типа К561ЛА7. Конденсатор С9 заряжается через резистор R11 до напряжения открывания транзистора VT3. Это приводит к смене уровня логической единицы на уровень логического нуля на коллекторе транзистора VT3. При этом катод диода VD3 типа КД522 оказывается подключенным через резистор R18 к минусу источника питания.

Конденсатор С9 быстро разряжается через цепь VD3, 18, что ведет за собой закрывание транзистора VT3. Конденсатор С9 снова начинает заряжаться и весь процесс повторяется. Прямоугольные импульсы преобразуются пьезокерамическим преобразователем ZQ1 типа ЗП-22 в звуковые.

При увеличении напряжения на выходе усилителя DA1 уменьшается время заряда конденсатора С9 до напряжения открывания транзистора VT3, а это, в свою очередь, приводит к увеличению частоты следования импульсов генератора. Таким образом, при увеличении уровня входного сигнала происходит повышение тональности звукового сигнала.

Основой светодиодного индикатора является микросхема DA2 типа КМ1003ПП2. Микросхема КМ1003ПП2 является специализированной и выполняет функцию управления светодиодной шкалой, обеспечивая высвечивание столбика на шкале из 12 светодиодов, которые загораются поочередно при изменении входного напряжения от минимального до максимального значения. Яркость свечения светодиодов поддерживается постоянной.

Входной сигнал, через делитель напряжения на резисторах R13, R16, поступает на вход микросхемы DA2 (вывод 17). На выводы 16 и 3 микросхемы DA2 подаются уровни опорного напряжения, определяющие, соответственно, минимальное (светодиоды не горят) и максимальное (горят все светодиоды) значения входного сигнала.

Питается устройство от источника питания напряжением 5,6 В. Светодиод VD4 типа AЛ307 служит для индикации включения прибора.

Все используемые детали малогабаритные. Детали ФВЧ описаны выше. Микросхема DA1 может быть заменена на КР1407УД2 или любой другой операционный усилитель со своими цепями коррекции. Вместо микросхемы DD1 можно применить K561ЛE5. При замене диода VD1 на ГД507 диапазон прибора может быть увеличен до 900 МГц.

Детектор жучков с линейной шкалой из восьми светодиодов, регулировкой чувствительности и звуковой индикацией представлена на http://cxem.net/indicator/indicator5.php.

Отличительной особенностью данного детектора поля является: фильтр высокой частоты на входе, усилитель постоянного тока на двух операционных усилителях, звуковой генератор, линейная светодиодная шкала и индикатор разряда батареи. Все это делает данное устройство, несомненно, более простым и удобным в эксплуатации. Принципиальная схема детектора поля приведена на

Сигнал, принимаемый антенной, поступает на фильтр высокой частоты на элементах С2, L1, СЗ, L2, необходимый для подавления сигналов частотой менее 20 МГц.

Примечание.

Это необходимо для уменьшения уровня низкочастотных сигналов, обычно составляющих фоновое радиоизлучение.

Рис. 4.13. Детектор жучков с линейной шкалой из восьми светодиодов, регулировкой чувствительности и звуковой индикацией

Детектор жучков с линейной шкалой из восьми светодиодов,регулировкой чувствительности и звуковой индикацией

Данное устройство имеет некоторое сходство с описанным выше. Так, имеется усилитель ВЧ и детектор на сбалансированном резистивно-диодном мосте. Отличительной особенностью данного детектора поля является: фильтр высокой частоты на входе, усилитель постоянного тока на двух операционных усилителях, звуковой генератор, линейная светодиодная шкала и индикатор разряда батареи. Все это делает данное устройство несомненно более простым и удобным в эксплуатации. Принципиальная схема детектора поля приведена на рисунке.

Сигнал, принимаемый антенной, поступает на фильтр высокой частоты на элементах С 2, LI, C3, L2, необходимый для подавления сиг налов частотой менее 20 МГц. Это необходимо для уменьшения уровня низкочастотных сигналов, обычно составляющих фоновое радиоизлучение. С ФВЧ сигналы частотой более 20 МГц поступают на вход апериодического широкополосного усилителя высокой частоты, собранного на транзисторе VT1 типа КТ3101. С нагрузки усилителя — резистора R2 — напряжение высокой частоты через конденсатор С5 по ступает на диоды VD1, VD2 типа ГД507, входящие в состав резистивно-диодного моста. Для балансировки моста используется резистор R4. Работа моста уже была подробно описана выше.

Читайте также  Аппарат для сварки проводки

Продетектированное низкочастотное напряжение, сглаженное конденсатором С6, поступает на усилитель постоянного тока, выполненный на двух операционных усилителях DA1.1 и DA1.2, входящих в состав микросхемы К1401УД1. С выхода элемента DA1.1 постоянное напряжение поступает на генератор звуковой частоты, выполненный на операционном усилителе DA1.3. Частота генератора зависит от уровня постоянного напряжения на неинвертирующем входе элемента DA1.3, которое, в свою очередь, зависит от уровня входного сигнала. Таким образом, чем больше уровень входного сигнала, тем выше частота генератора звуковой частоты. С выхода генератора звуковой сигнал поступает на базу транзистора VT4 типа КТ315, в коллекторную цепь которого включен пьезокерамический преобразователь ZQ1 типа ЗП-1.

Микросхемы DA2 и DA3 типа К1401УД1 составляют основу линейной шкалы. Операционные усилители, входящие в состав этих микросхем, включены по схеме компараторов напряжения. На неинвертирующие входы этих компараторов поступает опорное напряжение с линейки резисторов R14-R21. Другие входы компараторов соединены вместе, на них поступает постоянное напряжение с выхода усилителя постоянного тока DA1.2. При изменении этого напряжения от 0 до максимального значения происходит переключение компараторов, на выходе которых включены светодиоды VD5-VD14, образующие линейную светоизлучающую шкалу. Чем выше уровень сигнала на входе, тем больше светодиодов включено. Для уменьшения потребляемого светодиодной шкалой тока используется принцип динамической индикации. Для этого на базу транзистора VT2 типа КТ315 поступают импульсы с генератора звуковой частоты DA1.3, вызывая поочередное закрывание и открывание транзистора VT2. При закрывании транзистора VT2 положительное напряжение источника питания через резистор R32 поступает на катоды светодиодов VD5-VD14, что приводит к запиранию последних. Ток через светодиоды не течет и они гаснут. При открывании транзистора VT2 катоды светодиодов замыкаются на минус источника питания, и те светодиоды, на аноде которых присутствует положительное напряжение, загораются. Благодаря инерционным свойствам человеческого глаза мигание светодиодов становится незаметным. Индикатор разряда батареи выполнен на элементе DA1.4 и светодиодах VD13, VD14. При снижении напряжения источника питания уменьшается ток, протекающий через стабилитрон VD15 и светодиод VD13 и, соответственно, напряжение на аноде VD13. Это вызывает включение светодиода VD14. Уровень срабатывания уста навливается подстроечным резистором R33 при настройке. Все устройство питается от стабилизатора, собранного на элементах VT3, VD15, VD13, R34, С8.

В устройстве использованы резисторы типа МЛТ-0,125. Светодиоды VD5-VD14 могут быть любыми. Диоды VD1-VD4 — любые высокочастотные германиевые. Катушки L1 и L2 бескаркасные, диаметром 8 мм, намотанные проводом ПЭВ 0,6 мм. Катушка L1 — 8 витков, катушка L2 — 6 витков. Резистор R4 — любой переменный резистор с линейной характеристикой. Транзисторы VT2-VT4 могут быть типа КТ3102. Стабилитрон VD15 можно заменить на КС147, КС168, КС170. Пьезокерамический преобразователь ZQ1 — любой. Можно также использовать динамическую головку сопротивлением более 50 Ом, резистор R36 при этом можно из схемы исключить.

Настройка схемы особенностей не имеет.Перед началом работы необходимо настроить детектор на максимальную чувствительность резистором R4. Вращением движка резистора R4 добиваются свечения 1-2 светодиодов и выключения звуковой сигнализации. Прибор готов к работе.

Детектор жучков с шкалой из 8 светодиодов и звуковой индикацией

Данный прибор получил не только еще более компактный корпус, но и заметно улучшенные технические характеристики, в том числе расширенный частотный и динамический диапазоны, а также высочайшую чувствительность. Дополнительное важное изменение — замена выдвижной антенны на встроенную, что делает эксплуатацию прибора более удобной. Данная модель находит «жучки» всех видов, скрытые микрофоны, камеры и т.д., полностью соответствует требованиям технических ГОСТов и является однозначно лучшей в своей ценовой категории.

«BugHunter Micro» — инновационный прибор для эффективного поиска аналоговых и цифровых жучков в миниатюрном корпусе

Прошло всего несколько лет с тех пор, как в продаже впервые появился детектор жучков «BugHunter Mini», ставший настоящей сенсацией в отрасли обеспечения информационной безопасности. Пользователей впечатляли миниатюрность прибора, его малая небольшая масса и, вместе с тем, великолепные эксплуатационные характеристики. И вот на рынок поступила уменьшенная версия данного прибора — «BugHunter Micro». Миниатюрная новинка, размеры которой меньше габаритов кредитной карты, мало в чем уступает профессиональным детекторам «жучков», но при этом стоит гораздо дешевле их.


«BugHunter Micro» — миниатюрный обнаружитель шпионской аппаратуры, не уступающий по функционалу профессиональным аналогам

Основные отличия детектора жучков от предшествующей модели:

  • Суперкомпактные размеры. Модель «BugHunter Micro» полностью соответствует своему названию и обладает очень скромными габаритами: 60х45х6 мм. Этот прибор даже меньше кредитной карты, размеры которой составляют 85х55 мм!
  • Встроенная антенна. Благодаря этой конструктивной особенности вы сможете настраивать чувствительность детектора и с успехом находить низкочастотные жучки. Уникальная функция для прибора в таком компактном корпусе! Встроенная антенна выгодно отличает данную модель от предшествующей («BugHunter Mini»), в которой она выполнена телескопической.
  • Улучшенная система индикации. Новая модель содержит большее количество встроенных светодиодов. 6-уровневая шкала детектора позволяет в еще более сжатые сроки и с еще большей точностью устанавливать местонахождение жучков. Эта же шкала применяется и в качестве индикатора уровня заряда батарейки.

Преимущества детектора жучков «BugHunter Micro»:

  • Гарантия высокой эффективности. Многократные испытания детектора жучков в условиях независимых институтов и лабораторий подтвердили эффективность его работы. По результатам исследований было доказано, что модель «BugHunter Micro» обладает одинаково высокой чувствительностью при работе во всем заявленном частотном диапазоне, тогда как для большинства детекторов из аналогичной ценовой категории характерно наличие «провалов» чувствительности. Таким образом, предлагаемый прибор является абсолютным лидером по качеству обнаружения шпионской аппаратуры в своем ценовом сегменте и способен составить серьезную конкуренцию даже более дорогостоящим моделям.


Предлагаемый аппарат легко справляется с обнаружением самых разных шпионских приборчиков

  • Обнаружение в несколько касаний за считанные секунды. «BugHunter Micro» обладает хорошо продуманной эргономикой и конструкцией, благодаря чему достаточно нескольких касаний — и он уже в действии. Из доступных в России приборов данная модель превосходит аналоги по технологичности и скорости работы. Устройство выявляет жучки за считанные секунды!
  • Не требует переключения при поиске цифровых и аналоговых устройств. Использованный в «BugHunter Micro» производительный процессор позволяет ему осуществлять высокоскоростной поиск жучков как аналогового, так и цифрового типа, причем без ручного переключения режимов, что делает работу с устройством более удобной. Заслуга мощного процессора не только в высокой скорости работы детектора, но и в возможности обнаружения новейших типов цифровых «жучков», включая работающие в короткоимпульсных режимах, которые большинство детекторов просто не видит.
  • Широчайший диапазон рабочих частот с гарантированным отсутствием «провалов» во всем его спектре.Диапазон рабочих частот обнаружителя жучков «BugHunter Micro» находится в интервале от 10 до 3500 МГц. Это уникально широкий интервал для детектора таких размеров! Большая часть известных устройств шпионажа работает в этом диапазоне. Расширять диапазон еще больше бессмысленно, так как его увеличение, несомненно, повлечет за собой появление «провалов» (снижение чувствительности устройства на некоторых частотах).
  • РЕКОРДНАЯ ширина динамического диапазона. «BugHunter Micro», обладающий шириной динамического диапазона в 70 дБ, является одним из рекордсменов по данному показателю. Ближайший «преследователь» может похвастаться лишь показателем в 48 дБ. Такой шириной динамического диапазона обладает, например, «BugHunter Professional BH-02», признанный одним из самых эффективных на российском рынке средств борьбы с жучками. Такой широкий динамический диапазон позволяет обнаружителю регистрировать сигналы очень высокой/низкой мощности, не выходя за пределы своей отображающей шкалы.
Читайте также  Комбинированный регулятор мощности

Детектор жучков «BugHunter Micro» сохранил все преимущества линейки моделей BugHunter:

  • Полностью оправдывает паспортные характеристики. Производитель дает гарантию на то, что прибор на 100 процентов соответствует параметрам, указанным на бумаге.
  • Изготовлен из компонентов высокого качества. Детектор производится по технологии ручного монтажа с применением только деталей высокого качества от известных компаний из Европы.
  • Уверенная работа на любой из поддерживаемых частот. Прибор не имеет «провалов» и качественно функционирует на протяжении всего частотного диапазона, что обеспечивается использованием в нем новейших технологий.
  • Суперчувствительность. Чувствительность детектора жучков «BugHunter Micro» составляет 50 мВ/м. Подобная чувствительность присуща лишь приборам профессионального уровня, таким, например, как «BugHunter Professional BH-02». Она позволяет с легкостью обнаруживать жучок мощностью 5 мВт с расстояния в 5 метров. Сигнал же сотового телефона будет обнаружен на отдалении в 50 метров!
  • Автоматически подстраивается под фоновое излучение. Подстройка чувствительности под фоновое излучение в автоматическом режиме позволяет начать использовать «BugHunter Micro» в любом помещении практически сразу после включения. Большинство детекторов жучков очень сильно реагируют на фоновое излучение, исходящее от различной электроники, находящейся в комнате. Это вынуждает проводить их длительную регулировку перед началом работы. С автоматической регулировкой чувствительности «BugHunter Micro» подобных проблем у вас не возникнет.


Перед вами суперкомпактное устройство, сопоставимое по своим размерам с кредитной карточкой

Два поисковых режима для максимально комфортного обнаружения шпионских приборов

  1. Стандартный режим. В этом режиме устройство осуществляет поиск «жучков», улавливая сигналы, которые имеются в сканируемом помещении. Уровень обнаруженного сигнала автоматически показывается на шестиступенчатой светодиодной шкале. Чем ближе находится источник сигналов, тем большее количество диодов горит. В модели «BugHunter Micro» также имеется ручной регулятор чувствительности, используя который, вы сможете без труда отсеивать «лишние» сигналы. Ручная регулировка и световая индикация значительно упрощают обнаружение скрытого радиопередатчика, делая этот процесс максимально быстрым и комфортным для пользователя.
  2. Поиск с применением акустозавязки. При активации этого режима вместе с отображением уровня сигнала на светодиодной шкале детектор будет издавать характерный свист. Тут действует тот же принцип, что и при светоиндикации. Чем ближе находится «жучок», тем более сильным будет свист, издаваемый детектором. Такой режим работы детектора очень актуален при ведении поиска в ограниченном пространстве или в других неудобных условиях — нет нужды постоянно осуществлять зрительный контроль за светодиодной шкалой. Отмечаем, что поиск с использованием акустозавязки подходит лишь для жучков аналогового типа.

Минимальное энергопотребление

Детектор жучков стабильно выполняет свои функции, получая питание всего от одной недорогой литиевой батарейки типоразмера CR2032.


Детектор жучков «BugHunter Micro» питается от одного элемента типа CR2032

Гарантия качества от известного российского производителя

Детектор жучков модели «BugHunter Micro», как и другие товары, выпущенные отечественной компанией i4Technology, отличается очень высоким качеством и продолжительным рабочим ресурсом. На производстве действует эффективная система многоуровневого контроля качества, позволяющая практически полностью исключить выпуск бракованной продукции и обеспечивающая бесперебойную работу обнаружителей жучков на протяжении долгого времени. Увеличенный гарантийный срок от производителя распространяется практически на весь ассортимент продукции.


Модель «BugHunter Micro» поставляется покупателям в элегантной фирменной упаковке

Технические характеристики:

Диапазон рабочих частот 10 — 3500 МГц
Чувствительность не менее 50 мВ/м
Максимальное расстояние обнаружения радиожучка 5 мВт 5 м
Ширина динамического диапазона не менее 70 дБ
Основные режимы работы
поиск;
поиск с акустозавязкой
Питание 1 батарейка CR2032
Индикация уровня заряда батарейки есть, светодиодная
Габаритные размеры 60 х 45 х 6 мм
Вес 25 г
Рабочий температурный диапазон от -10 до +40 °С


Представленная декларация свидетельствует о том, что модель «BugHunter Micro» полностью соответствует требованиям, действующим в странах Таможенного союза

Детектор жучков с линейной шкалой из восьми светодиодов

Детектор жучков с линейной шкалой имеется усилитель ВЧ и детектор на сбалансированном резистивно-диодном мосте. Отличительной особенностью данного детектора поля является: фильтр высокой частоты на входе, усилитель постоянного тока на двух операционных усилителях, звуковой генератор, линейная светодиодная шкала и индикатор разряда батареи. Все это делает данное устройство несомненно более простым и удобным в эксплуатации. Принципиальная схема детектора жучков приведена на рисунке.

Сигнал, принимаемый антенной, поступает на фильтр высокой частоты на элементах С 2, LI, C3, L2, необходимый для подавления сиг налов частотой менее 20 МГц. Это необходимо для уменьшения уровня низкочастотных сигналов, обычно составляющих фоновое радиоизлучение. С ФВЧ сигналы частотой более 20 МГц поступают на вход апериодического широкополосного усилителя высокой частоты, собранного на транзисторе VT1 типа КТ3101. С нагрузки усилителя — резистора R2 — напряжение высокой частоты через конденсатор С5 по ступает на диоды VD1, VD2 типа ГД507, входящие в состав резистивно-диодного моста. Для балансировки моста используется резистор R4. Работа моста уже была подробно описана выше.

Продетектированное низкочастотное напряжение, сглаженное конденсатором С6, поступает на усилитель постоянного тока, выполненный на двух операционных усилителях DA1.1 и DA1.2, входящих в состав микросхемы К1401УД1. С выхода элемента DA1.1 постоянное напряжение поступает на генератор звуковой частоты, выполненный на операционном усилителе DA1.3. Частота генератора зависит от уровня постоянного напряжения на неинвертирующем входе элемента DA1.3, которое, в свою очередь, зависит от уровня входного сигнала. Таким образом, чем больше уровень входного сигнала, тем выше частота генератора звуковой частоты. С выхода генератора звуковой сигнал поступает на базу транзистора VT4 типа КТ315, в коллекторную цепь которого включен пьезокерамический преобразователь ZQ1 типа ЗП-1.

Микросхемы DA2 и DA3 типа К1401УД1 составляют основу линейной шкалы. Операционные усилители, входящие в состав этих микросхем, включены по схеме компараторов напряжения. На неинвертирующие входы этих компараторов поступает опорное напряжение с линейки резисторов R14-R21. Другие входы компараторов соединены вместе, на них поступает постоянное напряжение с выхода усилителя постоянного тока DA1.2. При изменении этого напряжения от 0 до максимального значения происходит переключение компараторов, на выходе которых включены светодиоды VD5-VD14, образующие линейную светоизлучающую шкалу. Чем выше уровень сигнала на входе, тем больше светодиодов включено. Для уменьшения потребляемого светодиодной шкалой тока используется принцип динамической индикации. Для этого на базу транзистора VT2 типа КТ315 поступают импульсы с генератора звуковой частоты DA1.3, вызывая поочередное закрывание и открывание транзистора VT2. При закрывании транзистора VT2 положительное напряжение источника питания через резистор R32 поступает на катоды светодиодов VD5-VD14, что приводит к запиранию последних. Ток через светодиоды не течет и они гаснут. При открывании транзистора VT2 катоды светодиодов замыкаются на минус источника питания, и те светодиоды, на аноде которых присутствует положительное напряжение, загораются. Благодаря инерционным свойствам человеческого глаза мигание светодиодов становится незаметным. Индикатор разряда батареи выполнен на элементе DA1.4 и светодиодах VD13, VD14. При снижении напряжения источника питания уменьшается ток, протекающий через стабилитрон VD15 и светодиод VD13 и, соответственно, напряжение на аноде VD13. Это вызывает включение светодиода VD14. Уровень срабатывания уста навливается подстроечным резистором R33 при настройке. Все устройство питается от стабилизатора, собранного на элементах VT3, VD15, VD13, R34, С8.

В устройстве использованы резисторы типа МЛТ-0,125. Светодиоды VD5-VD14 могут быть любыми. Диоды VD1-VD4 — любые высокочастотные германиевые. Катушки L1 и L2 бескаркасные, диаметром 8 мм, намотанные проводом ПЭВ 0,6 мм. Катушка L1 — 8 витков, катушка L2 — 6 витков. Резистор R4 — любой переменный резистор с линейной характеристикой. Транзисторы VT2-VT4 могут быть типа КТ3102. Стабилитрон VD15 можно заменить на КС147, КС168, КС170. Пьезокерамический преобразователь ZQ1 — любой. Можно также использовать динамическую головку сопротивлением более 50 Ом, резистор R36 при этом можно из схемы исключить.

Настройка схемы особенностей не имеет.Перед началом работы необходимо настроить детектор на максимальную чувствительность резистором R4. Вращением движка резистора R4 добиваются свечения 1-2 светодиодов и выключения звуковой сигнализации. Прибор готов к работе.