Часы на газоразрядных индикаторах

Часы на газоразрядных индикаторах

В данной статье речь пойдет об изготовлении оригинальных и необычных часов. Их необыкновенность заключается в том, что индикация времени осуществляется при помощи цифровых индикаторных ламп. Таких ламп когда-то было выпущено огромное количество, как у нас, так и за рубежом. Использовались они во многих устройствах начиная от часов и заканчивая измерительной техникой. Но после появления светодиодных индикаторов лампы постепенно вышли из употребления. И вот, благодаря развитию микропроцессорной техники стало возможным создание часов с относительно простой схемой на цифровых индикаторных лампах. Думаю, не лишним будет сказать, что в основном использовались лампы двух типов люминесцентные и газоразрядные. К преимуществам люминесцентных индикаторов следует отнести низкое рабочее напряжение и наличие нескольких разрядов в одной лампе (хотя среди газоразрядных тоже встречаются такие экземпляры, но найти их значительно сложнее). Но все плюсы данного типа ламп перекрывает один огромный минус – наличие люминофора, который со временем выгорает, и свечение тускнеет или прекращается. По этой причине нельзя использовать б/у лампы.

Газоразрядные индикаторы избавлены от этого недостатка, т.к. в них светится газовый разряд. По сути, этот тип ламп представляет собой неоновую лампу с несколькими катодами. Благодаря этому срок службы у газоразрядных индикаторов гораздо выше. Кроме этого одинаково хорошо работают и новые и б/у лампы (а часто б/у работают лучше). Без недостатков все же не обошлось, рабочее напряжение газоразрядных индикаторов больше 100 В. Но решить вопрос с напряжение гораздо проще, чем с выгорающим люминофором. В интернете такие часы распространены под названием NIXIE CLOCK.

Сами индикаторы выглядят вот так:

Итак, на счет конструктивных особенностей вроде все понятно, теперь приступим к проектированию схемы наших часов. Начнем с проектирования высоковольтного источника напряжения. Тут есть два пути. Первый – применить трансформатор со вторичной обмоткой на 110-120 В. Но такой трансформатор будет либо слишком громоздкий, либо его придется мотать самому, перспектива так себе. Да и напряжение регулировать проблематично. Второй путь – собрать step up преобразователь. Ну тут уж плюсов побольше будет, во-первых он займет мало места, во-вторых в нем присутствует защита от КЗ и в-третьих можно легко регулировать напряжение на выходе. В общем, есть все, что для счастья надо. Я выбрал второй путь, т.к. искать трансформатор и обмоточный провод никакого желания не было, да и миниатюрности хотелось. Преобразователь решено было собирать на MC34063, т.к. был опыт работы с ней. Получилась вот такая схема:

Сначала она была собрана на макетной плате и показала отличные результаты. Все запустилось сразу и никакой настройки не потребовалось. При питании от 12В. на выходе получилось 175В. В собранном виде блок питания часов выглядит следующим образом:

На плату сразу был установлен линейный стабилизатор LM7805 для питания электроники часов и трансформатор.

Следующим этапом разработки было проектирование схемы включения ламп. В принципе управление лампами ничем не отличается от управления семисегментными индикаторами за исключением высокого напряжения. Т.е. достаточно подать положительное напряжение на анод, и соединить с минусом питания соответствующий катод. На этом этапе требуется решить две задачи: согласование уровней МК (5В) и ламп (170В), и переключение катодов ламп (именно они являются цифрами). После некоторого времени размышлений и экспериментов была создана вот такая схема для управления анодами ламп:

А управление катодами осуществляется очень легко, для этого придумали специальную микросхему К155ИД1. Правда, они давно сняты с производства, как и лампы, но купить их не составляет проблем. Т.е. для управления катодами требуется всего лишь подключить их к соответствующим выводам микросхемы и подать на вход данные в двоичном формате. Да, чуть не забыл, питается она от 5В., ну очень удобная штуковина. Индикацию было решено сделать динамической т.к. в противном случае пришлось бы ставить К155ИД1 на каждую лампу, а их будет 6 штук. Общая схема получилась такой:

Под каждой лампой я установил яркий светодиод красного цвета свечения, так красивее. В собранном виде плата выглядит вот так:

Панельки под лампы найти не удалось, поэтому пришлось импровизировать. В итоге были разобраны старые разъемы, похожие на современные COM, из них были извлечены контакты и после некоторых манипуляций с кусачками и надфелем они были впаяны в плату. Для ИН-17 панельки делать не стал, сделал только для ИН-8.

Самое сложное позади, осталось разработать схему “мозга” часов. Для этого я выбрал микроконтроллер Mega8. Ну а дальше все совсем легко, просто берем и подключаем к нему все так, как нам удобно. В итоге в схеме часов появились 3 кнопки для управления, микросхема часов реального времени DS1307, цифровой термометр DS18B20, и пара транзисторов для управления подсветкой. Для удобства анодные ключи подключаем на один порт, в данном случае это порт С. В собранном виде это выглядит вот так:

На плате есть небольшая ошибка, но в приложенных файлах плат она исправлена. Проводами подпаян разъем для прошивки МК, после прошивки устройства его следует отпаять.

Ну а теперь неплохо было бы нарисовать общую схему, сказано – сделано, вот она:

А вот так все это выглядит целиком в собранном виде:

Теперь осталось всего лишь написать прошивку для микроконтроллера, что и было сделано. Функционал получился следующий:

Отображение времени, даты и температуры. При кратковременном нажатии кнопки MENU происходит смена режима отображения.

1 режим — только время.

2 режим — время 2 мин. дата 10 сек.

3 режим — время 2 мин. температура 10 сек.

4 режим — время 2 мин. дата 10 сек. температура 10 сек.

При удержании включается настройка времени и даты, переход по настройкам по нажатию кнопки MENU

Максимальное количество датчиков DS18B20 – 2 . Если температура не нужна, можно их вообще не ставить, на работу часов это никак не повлияет. Горячего подключения датчико не предусмотрено.

При кратковременном нажатии на кнопку UP включается дата на 2 сек. При удержании включается/выключается подсветка.

При кратковременном нажатии на кнопку DOWN включается температура на 2 сек.

С 00:00 до 7:00 яркость понижена.

Работает все это дело вот так:

К проекту прилагаются исходники прошивки. Код содержит комментарии так что изменить функционал будет не трудно. Программа написана в Eclipse, но код без каких-либо изменений компилируется в AVR Studio. МК работает от внутреннего генератора на частоте 8МГц. Фьюзы выставляются вот так:

А в шестнадцатеричном виде вот так: HIGH: D9, LOW: D4

Также прилагаются платы с исправленными ошибками.

Данные часы работают в течение месяца. Никаких проблем в работе выявлено не было. Стабилизатор LM7805 и транзистор преобразователя едва теплые. Трансформатор нагревается градусов до 40, поэтому если планируется установка часов в корпус без вентиляционных отверстий, трансформатор придется взять большей мощности. В моих часах он обеспечивает ток в районе 200мА. Точность хода сильно зависит от примененного кварца на 32,768 КГц. Кварц, купленный в магазине, ставить не желательно. Наилучшие результаты показали кварцы из материнских плат и мобильных телефонов.

Кроме ламп, использованных в моей схеме, можно устанавливать любые другие газоразрядные индикаторы. Для этого придется изменить разводку платы, а для некоторых ламп напряжение повышающего преобразователя и резисторы на анодах.

Внимание: устройство содержит источник высокого напряжения. Ток небольшой, но достаточно ощутимый. Поэтому при работе с устройством следует соблюдать осторожность!

marazmPRO2 › Блог › Ретро часы на газоразрядных индикаторах ИН-14 (начало)

Давно хотел себе такие часы, привлекают они своим дизайном и на сегодняшний момент оригинальностью из за использования в роли дисплея ГАЗОРАЗРЯДНЫЕ ИНДИКАТОРЫ.Свои индикаторы я купил на Авито за чуть больше 2т.р., индикаторы мне достались чуть дороже рыночной цены потому как они совершенно новые и не демонтировались с советских проборов как обычно.

Индикаторы 1982 года выпуска и уже давно не выпускаются отсюда на рынке они в диффеците, но представьте советские «лампы» сейчас можно купить и на Алиэкспресс, и собранные часы можно купить там же. Покупать часы или лампы в Китае достаточно дорого, а вот что мне действительно пришлось купить на Алиэкспресс так это ГОТОВУЮ ПЛАТУ

Плата достаточно простая, элементов минимум, отсюда она оказалась тоньше и уже чем другие рассмотренные мной варианты, пришла в целостности, хотя были отзывы что при транспортировке отваливался конденсатор который к слово просто припаивался обратно.
Плата на 8 индикаторов (часы 2шт., минуты 2шт., секунды 2шт, разделители 2шт.), бывает платы на 6, 4 и даже 10 индикаторов. Мой вариант особым функционалом не отличается, нет календаря, будильника, термометра…и других не нужных мне функций. Есть только функция перебора всех цифр в индикаторах каждую минуту, сделано это для долговечности (по мне выглядит завораживающее). Есть разноцветная подсветка «ламп» снизу, мне понравилась только желтая…но в итоге я вовсе отключил ее. При пропадании питания (12В 2А, блока питаня в комплекте нет) время не сбивается потому как предусмотрена установка элемента питания (в комплекте нет), но подсветка включиться снова. Точность хода хорошая за 2 месяца время не «убежало». По плате больше добавить нечего, потребляем мало, греется не сильно…как не странно доработок не требует.
Индикаторы вплотную к плате припаивать не рекомендую, потому как нужно учитывать толщину корпуса которого к тому моменту ещё не было.

Что бы точно расположить «лампы» на плате можно использовать трубки подходящего диаметра с идеально отрезанном торцом который ставиться на плату и внутрь «лампа». Ничего такого я не нашёл и пришлось использовать обычный угольник и штангельциркуль.

Паять удобнее феном, выровнять по плоскостям все «лампы» достаточно сложно…по крайней мере первый раз это займет много времени и нервов.

Временно поставил часы на саморезы, дальше идем делать корпус для часов.

Изначально хотел сделать из цельного куска дерева и покрыть темным лаком…но забегая вперёд скажу что в итоговом варианте цвет и покрытие оказались другими.

Опыта мало, специализированных инструментов тоже нет, фрезер я вообще держал в руках первый раз в жизни, и я его даже не держал а просто зафиксировал в больших тисках, приспособил пылесос и катал заготовку в несколько проходов «выбирая внутренности под размер платы.

Читайте также  Как правильно провести проводку в деревянном доме?

Торцёвки нет, поэтому пилим на глаз обычной паркеткой или лобзиком.

Углы закруглял тем же фрезером, края ровнял рубанком, потом шлифмашинкой.

«Внутренности» допиливал бор машинкой, стенки получились очень тонкие.

Часы на газоразрядных индикаторах


В данной статье речь пойдет об изготовлении оригинальных и необычных часов. Их необыкновенность заключается в том, что индикация времени осуществляется при помощи цифровых индикаторных ламп. Таких ламп, когда-то, было выпущено огромное количество, как у нас, так и за рубежом. Использовались они во многих устройствах, начиная от часов и заканчивая измерительной техникой. Но после появления светодиодных индикаторов лампы постепенно вышли из употребления. И вот, благодаря развитию микропроцессорной техники стало возможным создание часов с относительно простой схемой на цифровых индикаторных лампах.

Думаю, не лишним будет сказать, что в основном использовались лампы двух типов: люминесцентные и газоразрядные. К преимуществам люминесцентных индикаторов следует отнести низкое рабочее напряжение и наличие нескольких разрядов в одной лампе (хотя среди газоразрядных тоже встречаются такие экземпляры, но найти их значительно сложнее). Но все плюсы данного типа ламп перекрывает один огромный минус – наличие люминофора, который со временем выгорает, и свечение тускнеет или прекращается. По этой причине нельзя использовать б/у лампы.

Газоразрядные индикаторы избавлены от этого недостатка, т.к. в них светится газовый разряд. По сути, этот тип ламп представляет собой неоновую лампу с несколькими катодами. Благодаря этому срок службы у газоразрядных индикаторов гораздо выше. Кроме этого, одинаково хорошо работают и новые и б/у лампы (а часто б/у работают лучше). Без недостатков все же не обошлось — рабочее напряжение газоразрядных индикаторов больше 100 В. Но решить вопрос с напряжение гораздо проще, чем с выгорающим люминофором. В интернете такие часы распространены под названием NIXIE CLOCK:

Сами индикаторы выглядят вот так:

Итак, на счет конструктивных особенностей вроде все понятно, теперь приступим к проектированию схемы наших часов. Начнем с проектирования высоковольтного источника напряжения. Тут есть два пути. Первый – применить трансформатор со вторичной обмоткой на 110-120 В. Но такой трансформатор будет либо слишком громоздкий, либо его придется мотать самому (перспектива так себе). Да и напряжение регулировать проблематично. Второй путь – собрать step up преобразователь. Ну тут уж плюсов побольше будет: во-первых, он займет мало места, во-вторых, в нем присутствует защита от КЗ и, в-третьих, можно легко регулировать напряжение на выходе. В общем, есть все, что для счастья надо. Я выбрал второй путь, т.к. искать трансформатор и обмоточный провод никакого желания не было, да и миниатюрности хотелось. Преобразователь решено было собирать на MC34063, т.к. был опыт работы с ней. Получилась вот такая схема:

Сначала она была собрана на макетной плате и показала отличные результаты. Все запустилось сразу и никакой настройки не потребовалось. При питании от 12В. на выходе получилось 175В. В собранном виде блок питания часов выглядит следующим образом:

На плату сразу был установлен линейный стабилизатор LM7805 для питания электроники часов и трансформатор.
Следующим этапом разработки было проектирование схемы включения ламп. В принципе, управление лампами ничем не отличается от управления семисегментными индикаторами, за исключением высокого напряжения. Т.е. достаточно подать положительное напряжение на анод, и соединить с минусом питания соответствующий катод. На этом этапе требуется решить две задачи: согласование уровней МК (5В) и ламп (170В), и переключение катодов ламп (именно они являются цифрами). После некоторого времени размышлений и экспериментов была создана вот такая схема для управления анодами ламп:

А управление катодами осуществляется очень легко, для этого придумали специальную микросхему К155ИД1. Правда, они давно сняты с производства, как и лампы, но купить их не составляет проблем. Т.е. для управления катодами требуется всего лишь подключить их к соответствующим выводам микросхемы и подать на вход данные в двоичном формате. Да, чуть не забыл, питается она от 5В. (ну очень удобная штуковина). Индикацию было решено сделать динамической, т.к. в противном случае пришлось бы ставить К155ИД1 на каждую лампу, а их будет 6 штук. Общая схема получилась такой:

Под каждой лампой я установил яркий светодиод красного цвета свечения (так красивее ). В собранном виде плата выглядит вот так:

Панельки под лампы найти не удалось, поэтому пришлось импровизировать. В итоге были разобраны старые разъемы, похожие на современные COM, из них были извлечены контакты и после некоторых манипуляций с кусачками и надфилем они были впаяны в плату. Для ИН-17 панельки делать не стал, сделал только для ИН-8.
Самое сложное позади, осталось разработать схему “мозга” часов. Для этого я выбрал микроконтроллер Mega8. Ну а дальше все совсем легко, просто берем и подключаем к нему все так, как нам удобно. В итоге в схеме часов появились 3 кнопки для управления, микросхема часов реального времени DS1307, цифровой термометр DS18B20, и пара транзисторов для управления подсветкой. Для удобства анодные ключи подключаем на один порт, в данном случае это порт С. В собранном виде это выглядит вот так:

На плате есть небольшая ошибка, но в приложенных файлах плат она исправлена. Проводами подпаян разъем для прошивки МК, после прошивки устройства его следует отпаять.

Ну а теперь неплохо было бы нарисовать общую схему. Сказано – сделано, вот она:

А вот так все это выглядит целиком в собранном виде:

Теперь осталось всего лишь написать прошивку для микроконтроллера, что и было сделано. Функционал получился следующий:

Отображение времени, даты и температуры. При кратковременном нажатии кнопки MENU происходит смена режима отображения.

1 режим — только время.
2 режим — время 2 мин. дата 10 сек.
3 режим — время 2 мин. температура 10 сек.
4 режим — время 2 мин. дата 10 сек. температура 10 сек.

При удержании включается настройка времени и даты, переход по настройкам по нажатию кнопки MENU

Максимальное количество датчиков DS18B20 – 2. Если температура не нужна, можно их вообще не ставить, на работу часов это никак не повлияет. Горячего подключения датчиков не предусмотрено.

При кратковременном нажатии на кнопку UP включается дата на 2 сек. При удержании включается/выключается подсветка.

При кратковременном нажатии на кнопку DOWN включается температура на 2 сек.

С 00:00 до 7:00 яркость понижена.

Работает все это дело вот так:

К проекту прилагаются исходники прошивки. Код содержит комментарии так что изменить функционал будет не трудно. Программа написана в Eclipse, но код без каких-либо изменений компилируется в AVR Studio. МК работает от внутреннего генератора на частоте 8МГц. Фьюзы выставляются вот так:

А в шестнадцатеричном виде вот так: HIGH: D9, LOW: D4

Также прилагаются платы с исправленными ошибками:

Данные часы работают в течение месяца. Никаких проблем в работе выявлено не было. Стабилизатор LM7805 и транзистор преобразователя едва теплые. Трансформатор нагревается градусов до 40, поэтому если планируется установка часов в корпус без вентиляционных отверстий, трансформатор придется взять большей мощности. В моих часах он обеспечивает ток в районе 200мА. Точность хода сильно зависит от примененного кварца на 32,768 КГц. Кварц, купленный в магазине, ставить не желательно. Наилучшие результаты показали кварцы из материнских плат и мобильных телефонов.

Кроме ламп, использованных в моей схеме, можно устанавливать любые другие газоразрядные индикаторы. Для этого придется изменить разводку платы, а для некоторых ламп напряжение повышающего преобразователя и резисторы на анодах.

Внимание: устройство содержит источник высокого напряжения. Ток небольшой, но достаточно ощутимый. Поэтому при работе с устройством следует соблюдать осторожность.

PS Статья первая, где-то мог ошибиться/напутать — пожелания и советы к исправлению приветствуются.

Схемы часов на газоразрядных индикаторах ИН-14

В прошлом веке газоразрядные индикаторы использовались очень активно на многих приборах: в часах, измерительной аппаратуре, частотомерах, осциллографах, весах и многих других. Со временем их вытеснили жидкокристаллические дисплеи, технология изготовления которых проще и менее затратна, а самое главное, они компактнее и имеют большее количество разрядов. Дисплеи на жидких кристаллах дают возможность отображать показания с большей точностью.

  1. Область применения в наше время
  2. Этапы сборки часов
  3. Блок питания
  4. Схема для включения ламп
  5. Часы с контроллером и кнопками управления
  6. Прошивка микроконтроллера
  7. Соединение основных элементов и особенности эксплуатации

Область применения в наше время

Сейчас газоразрядные индикаторы с цифрами промышленность уже не делает, но в свое время их наштамповали столько, что до сих пор они пылятся на складах и в частных запасах. Их можно уже назвать антиквариатом, ну как, например, во многих домах есть винтажные подсвечники, которые используются как декоративный элемент интерьера. Так и часы на газоразрядных лампах – завораживают своей подсветкой и являются отличным добавлением к интерьеру различных помещений, особенно обустроенных в стиле ретро.

Вещь красивая и полезная, но заводами, увы, уже не производится. Можно сделать их самому или купить готовые у людей, специализирующихся на их производстве. Разработано немало схем часов с применением газоразрядных индикаторов на старых и новых микросхемах. Рассмотрим наиболее простые варианты.

Этапы сборки часов

Для начала надо понять принцип работы индикаторных элементов ИН-14, практически это неоновые лампочки с группой катодов в виде цифр. В зависимости от подачи питания светится тот или иной катод поочередно, применяется принцип лампы накаливания с газоразрядным процессом.

Конструкция и основные параметры газоразрядного индикатора ИН-14

Ресурс работы таких индикаторов огромный, потому что нет длительной и большой нагрузки на один катод. Для полноценной подсветки необходимо напряжение не менее 100 В, поэтому начнем проектирование с источника питания.

Блок питания

Вариант с трансформатором, на вторичной обмотке которого будет 170 или 180 В, исключаем сразу по причине больших габаритов и веса. Подбирать железо, провода и мотать самостоятельно – дело неблагодарное и утомительное. Практичнее применить преобразователь напряжения на микросхеме MC34063, имеющий малые габариты, вес и стабильные параметры.

Читайте также  Остронаправленный высокочувствительный микрофон

Схема блока питания на базе преобразователя напряжения MC34063

Все элементы монтируются на печатную плату, после сборки в большинстве случаев настройки не требуется, с 10–12 В преобразователь дает 175–180 В. Как видно, трансформатор в схеме присутствует, но очень маленький и легкодоступный для быстрого самостоятельного изготовления, такой можно купить в торговых сетях. На выходе вторичной обмотки 9–12 В переменного тока приходят на диодный мост (выпрямитель). Линейный стабилизатор LM7805 предназначен для питания электронных элементов часов.

Схема для включения ламп

Эта схема решает проблему согласования управляющего напряжения на микросхеме 5 В и управляемого напряжения питания анодов. Положительный потенциал 180 В подается на анод, а отрицательный – на катоды соответствующих цифр.

Схема управления подключением анодов лампы

Включение катодов производится схемой на базе старой микросхемы К155ИД1, которая запитывается от напряжения 5 В, что в нашем случае очень удачно. Микросхемы 155-й серии сняты с производства, но не являются дефицитом, их легко можно купить в торговых сетях и на радиорынках. Чтобы не паять микросхему к каждой лампе, схема управления катодами делается по динамическому принципу.

Схема с элементами управления анодами и катодами ламп

Теперь блок питания, схему управления катодами и анодами надо подключить к процессору часов DS1307, для согласования идеально подходит микроконтроллер Mega8.

Часы с контроллером и кнопками управления

В состав этой схемы входят:

  • часы DS1307;
  • контролер Mega8;
  • DS18B20 цифровой термометр;
  • транзисторы для светодиодной подсветки;
  • кнопки для управления настройками времени.

Полная схема часов на газоразрядных лампах ИН-14

При необходимости эту схему можно значительно упростить, убрать светодиодную подсветку, цифровой термометр и лампы для разряда секунд с элементами катодного и анодного управления.

Прошивка микроконтроллера

Программное обеспечение для часов из газоразрядных индикаторных ламп написано на Eclipse, без искажений транслируется в AVR Studio, коды с комментариями, что значительно упрощает процесс.

Положение выставляемых фьюзов

В результате прошивки устанавливаются определенные режимы и процесс управления ими. При кратковременном нажатии кнопки «MENU» по кругу отображаются режимы:

  • режим №1 – времени (отображается постоянно);
  • режим №2 – 2 мин. время, 10 сек. дата;
  • режим №3 – 2 мин. время, 10 сек. температура;
  • режим №4 – 2 мин. время, 10 сек. дата и 10 сек. температура;
  • режим настройки времени и даты устанавливается удержанием кнопки «MENU»;
  • кратковременное нажатие на кнопку «UP» (2 сек.) отображает дату, удержание этой кнопки отключает или включает подсветку;
  • кратковременное нажатие «DOWN» (2 сек.) отображает температуру;
  • понижение яркости почасовой программой с 00.00 часов до 7 утра.

Соединение основных элементов и особенности эксплуатации

В конечном итоге вся система состоит из трех печатных плат:

  • Блок питания, преобразователь напряжения на базе MC34063

  • Плата с лампами, элементами управления анодами и катодами

  • Плата с контролером Mega8 и часами DS1307

Для компактности плата сделана с двухсторонним расположением элементов, такой вариант печатных плат не догма, есть другие. Когда часы, управление катодами и анодами монтируются на одной плате, а блок питания на другой, для разряда секунд используются лампы поменьше – ИН-8. Иногда лампы выносят вообще на отдельную панель и делают двухуровневую конструкцию, на первом уровне размещается плата с часовой микросхемой и элементами управлением катодами и анодами. На втором уровне – плата с панелями для ламп, все зависит от фантазии разработчика.

Лампы ИН-14 сняты с производства, может возникнуть проблема с приобретением панелей для них. В этом случае можно использовать контакты разъемов D-SUB формата «мама» или цанговых линеек, подходящих по диаметру.

Отрезок цанговой линейки и фабричная круглая панель для лампы

Пластик линейки можно аккуратно раскрошить пассатижами и извлечь контакты, которые впаиваются в просверленные отверстия на печатной плате.

Двухуровневая плата с встроенными контактами для ламп Монтажная конструкция блока питания и часов

Теперь остается эту конструкцию упаковать в корпус (самый простой вариант – это прямоугольный короб). Материал может быть самый разнообразный: пластик, фанера, обклеенная кожей или другим декоративным материалом.

Варианты корпуса для часов на газоразрядных лампах

Трансформатор блока питания нагревается не более чем на 40 ̊С, поэтому в корпусе рекомендуется делать вентиляционные отверстия для стабильного обеспечения тока в 200 мА. Точность хода часов зависит от стабильной работы кварца 32,768 КГц, который рекомендуется брать из материнских плат ПК или сотовых телефонов, так как в торговых сетях часто попадается некачественная продукция.

Радиодетали, необходимые для сборки часов

Такой способ изготовления часов на газоразрядных лампах может осуществить человек, имеющий определенные знания в электронике и практические навыки. Начинающим можно воспользоваться услугами сайта http://vrtp.ru/index.php?showtopic=25695. Можно заказать за 800 рублей готовые печатные платы с подробными инструкциями, в которых прописано, что и куда паять. За 2 500 продается полный набор «Сделай сам», на лампах с прошитой микросхемой и остальными деталями. Можете за 3 500 рублей купить готовые часы, но это не интересно, если вы хотите что-то собрать своими руками.

Часы на газоразрядных индикаторах

В последнее время очень популярны часы на газоразрядных индикаторах. Эти часы множеству людей дарят теплый свет своих ламп, создают уют в доме и непередаваемое ощущение дыхания прошлого. Давайте же в этой статье разберемся, из чего же сделаны такие часы и как они работают. Сразу скажу, что это статья обзорная, поэтому многие непонятные места будут рассмотрены в следующих статьях более подробно.

Часы можно разделить на следующие функциональные блоки:

1)Блок высокого напряжения

Давайте разберем каждый из них более подробно.

Блок высокого напряжения

Для того, чтобы внутри лампы засветилась цифра, нам нужно подать на нее напряжение. Особенность газоразрядных ламп в том, что напряжение нужно довольно высокое, порядка около 200 Вольт постоянного напряжения. Ток же для лампы, наоборот, должен быть очень маленький.

Где же взять подобное напряжение? Первое что приходит на ум – сетевая розетка. Да, можно воспользоваться выпрямленным сетевым напряжением. Схема будет выглядеть следующим образом:

Недостатки данной схемы очевидны. Это отсутствие гальванической развязки, нет какой-либо безопасности и защиты схемы вообще. Таким образом лучше проверять лампы на работоспособность, соблюдая при этом максимальную осторожность.

В часах конструкторы пошли другим путем, повысив безопасное напряжение до нужного уровня с помощью DC-DC преобразователя. Если говорить совсем кратко, подобный преобразователь работает по принципу качелей. Мы ведь можем прикладывая легкое усилие руки к качелям придать им достаточно большое ускорение, так ведь? Так же и DC-DC преобразователь: малое напряжение раскачиваем до высокого.

Приведу одну из наиболее распространенных схем преобразователей (кликните для увеличения, схема откроется в новом окне)

Схема с так называемым полудрайвером полевого транзистора. Обеспечивает достаточно большую мощность, чтобы питать шесть ламп, при этом не нагреваясь как утюг.

Блок индикации

Следующий функциональный блок – индикация. Представляет из себя лампы, у которых катоды соединены попарно, а аноды выведены на оптопары или транзисторные ключи. Обычно в часах применяется динамическая индикация в целях экономия места на печатной плате, миниатюризации схемы и упрощения разводки платы

Счетчик времени

Следующий блок – счетчик времени. Проще всего это сделать на специализированной микросхеме DS1307

Она обеспечивает отличную точность времени. Благодаря этой микросхеме, часы сохраняют правильное время и дату, не смотря на длительное отключение питания. Производитель обещает до 10 лет (!) автономной работы от круглой батарейки CR2032.

Вот типичная схема подключения микросхемы DS1307:

Есть также подобные микросхемы, которые выпускают множество фирм по изготовлению радиокомпонентов. Эти микросхемы могут обеспечивать особую точность хода времени, но они будут дороже. Их применение, как мне кажется, в бытовых часах не целесообразно.

Блок подсветки

Блок подсветки самая простая часть часов. Она ставится по желанию. Это всего лишь светодиоды под каждой лампой, которые обеспечивают фоновую подсветку. Это могут быть одноцветные светодиоды, или RGB светодиоды. В последнем случае цвет подсветки можно выбрать какой угодно или вообще сделать его плавно меняющимся. В случае RGB необходим соответствующий контроллер. Чаще всего этим занимается тот же микроконтроллер, который считает время, но для упрощения программирования можно поставить дополнительный.

Ну а теперь несколько фотографий достаточно сложного проекта часов. В нем использованы два микроконтроллера PIC16F628 для управления временем и лампами и один контроллер PIC12F692 для управления RGB подсветкой.

Бирюзовый цвет подсветки:

А теперь зеленый:

Все эти цвета настраиваются одной кнопкой. Выбрать можно какой угодно. RGB диоды способны выдать любой цвет.

А это кусочек высоковольтного преобразователя. Ниже на фото полевой транзистор, сверхбыстрый диод и накопительный конденсатор DC-DC преобразователя

Этот же преобразователь, вид снизу. Применен SMD дроссель и SMD версия микросхемы MC34063. На фото еще не смыты остатки флюса.

А это упрощенный четырехламповый вариант часиков. Так же с RGB подсветкой

Ну а это уже классика строения часов на газоразрядных лампах Sunny Clock, статическая подсветка и немного не обычный способ управления лампами с помощью пары дешифраторов К155ИД1

В следующей статье поговорим более подробно о DC-DC преобразователях и получения высокого напряжения. Так же подробно разберем процесс сборки такого преобразователя и запустим от него лампу.

Всем спасибо, с вами был El Kotto. Вступайте в группу в контакте Газоразрядные лампы (Nixie Tube), а также задавайте вопросы лично мне ElKotto, если нужны какие-то детальные подробности или помощь 😉

Часы на газоразрядных индикаторах

Леонов, В. С. Часы на газоразрядных индикаторах / В. С. Леонов. — Текст : непосредственный // Молодой ученый. — 2016. — № 28 (132). — С. 110-116. — URL: https://moluch.ru/archive/132/36956/ (дата обращения: 30.07.2021).

В данной статье представлен обзор разработки устройства «Часы на газоразрядных индикаторах». В работе представлено краткое схемотехническое, конструкторское и технологическое проектирование данного устройства. Представлены следующие разработанные схемы: схема электрическая структурная, схема электрическая принципиальная, чертежи печатных плат, схема сборки устройства с описаниями к каждой схеме. По результатам проектирования представлен внешний вид часов на газоразрядных индикаторах.

Введение

Электронные часы основаны на подсчете периодов колебаний от задающего генератора с помощью электронной схемы и выводе на индикатор. [1] Газоразрядный индикатор (далее ГРИ) — ионный прибор для отображения информации, использующий тлеющий разряд.

Читайте также  Компания microchip представила новую макетную плату, совместимую с arduino™

За последние годы популярность газоразрядных индикаторов возросла из-за их необычного антикварного вида. В отличие от ЖК, они излучают мягкий неоновый оранжевый или фиолетовый свет. Как правило, часы на газоразрядных индикаторах обладают небольшим функционалом и несут чисто эстетическую функцию.

Актуальность темыобусловлена тем, что такие часы являются хорошей альтернативой обычным цифровым часам с дисплеем или стрелками из-за их внешнего вида. Часы обладают светодиодной подсветкой, что делает их более оригинальными. Также питание часов осуществляется от напряжения 5 В с использованием разъема micro-USB, что позволяет использовать в качестве источника питания часов любой современный адаптер для телефона. Возможно питание от порта компьютера USB 2.0.

1 Схемотехническое проектирование часов на газоразрядных индикаторах

Разработанная схема электрическая структурная часов на газоразрядных индикаторах представлена на рисунке 1. Схема электрическая структурная была разработана согласно требованиям ГОСТ 2.702–75 [2].

Рис. 1. Схема электрическая структурная часов

В качестве управления часами на ГРИ был выбран микроконтроллер, поскольку управление только на логических элементах занимало бы много места на плате. Для настройки времени и включения декоративной подсветки светодиодами используются кнопки управления. Комбинация цифр на газоразрядных индикаторах устанавливается микроконтроллером. Для отображения цифр и работы микроконтроллера, следует обеспечить необходимое питание как микроконтроллеру, так и ГРИ.

Разработанная схема электрическая принципиальная часов на газоразрядных индикаторах представлена на рисунке 2, схема блока питания — на рисунке 3. Схема электрическая принципиальная была разработана согласно требованиям ГОСТ 2.702–75 [2], ГОСТ 2.701–84 [3], ГОСТ 2.708–81 [4], ГОСТ 2.728–74 [5], ГОСТ 2.730–73 [6].

Рис. 2. Схема электрическая принципиальная часов

Исходя из данных, полученных от производителя газоразрядных индикаторов, максимальная долговечность ГРИ достигается при постоянном токе меньшим или равным 2,5 мА. Однако отображение цифр на ГРИ на данном устройстве осуществляется со скважностью 6, и производитель при заданной скважности и частоте 200 Гц гарантирует максимальную долговечность при токе не большим 10 мА. Чтобы человеческий глаз не замечал переменное отображение цифр, была выбрана частота индикации каждого индикатора в 1000 Гц. Опытным путем было установлено, что при напряжении между анодом и катодом ГРИ при напряжении в 160 В ток, протекающий через него равен 4,5 мА. Данное напряжение подходит для обеспечения питания ГРИ. На рисунке 2.3 — схема электрическая принципиальная блока питания, который обеспечивает данное напряжение. Для того чтобы управлять напряжением на анодах ГРИ, был разработан транзисторный ключ, состоящий из 2 транзисторов. Если на базу подать такое напряжение, чтобы открылся npn транзистор, откроется и pnp транзистор, через него пройдет ток на ГРИ. При закрытом состоянии pnp транзистора напряжение коллектор — эмиттер равен 160 В, следовательно, подберем транзистор MPSA92, у которого максимальное падение напряжения коллектор — эмиттер равно 300 В. Максимальная рассеиваемая мощность 625 мВт.

За управление катодами ГРИ отвечает дешифратор, который в зависимости от двоичного кода на входе притягивает к земле десятичный вывод. Резисторы R26, R27, R28, подключенные параллельно к кнопкам, ограничивают ток, протекающий на землю. Если их не будет, при замыкании цепи произойдет короткое замыкание источника питания. Резисторы R20… R25, подключенные последовательно светодиодам, тоже ограничивают ток, протекающий через них. Конденсаторы С1, С2 стабилизируют работу часового кварцевого резонатора. В качестве микроконтроллера был выбран STM32F1, у которого есть регистр резервных данных, с помощью которого можно хранить данные времени даже с отключенным питанием. Имеет низкое энергопотребление.

Рис. 3. Схема электрическая принципиальная блока питания

Для разработки повышающего преобразователя напряжения была взята за основу микросхема MC34063, генерирующая сигналы с определенной частотой, задаваемой конденсатором C3. Максимальное напряжение, которое может быть на выходе микросхемы 40 В. Для достижения 160 В на выходе была разработана схема, у которой на выходе напряжение достигает 160 В. Во время генерации импульсов микросхемы транзистор VT14 то открывается, то закрывается. В момент закрытия транзистора VT14 ток, протекающий через катушки L1 и L2, резко падает, и катушка генерирует мощный скачок напряжения. В момент открытия транзистора, ток снова протекает через катушку, и напряжение стабилизируется. Чтобы сгладить это напряжение, следует добавить в схему конденсатор C4. Чтобы напряжение держалось на одном уровне, в схему следует добавить диод VD7. При его отсутствии ток с конденсатора, при открытом транзисторе VT14 потечет на землю. Чтобы ограничить выходное напряжение, нужно прекратить подачу импульсов микросхемы MC34063. Чтобы это осуществить, вводится обратная связь с помощью резисторов R33 и R30, образующие делитель напряжение. Если на делителе напряжение превышает 1,25В, микросхема прекращает подачу импульсов на транзистор VT14. Частота импульсов задается конденсатором C3. Стабилизатор напряжения L78L33 обеспечивает напряжение в 3,3 В, после 5 В. Данный стабилизатор напряжения нужен для питания микроконтроллера STM32F1.

2 Разработка конструкции часов на газоразрядных индикаторах

Для часов на газоразрядных индикаторах были разработаны три печатные платы. Разработанные печатные платы реализуют коммутацию электрических компонентов согласно схеме электрической принципиальной (рисунок 2,3). Проводящие слои разработанных печатных плат, согласно требованиям ГОСТ 2.417–91 [7], представлены на рисунках 4–6.

Рис. 4. Проводящие слои печатной платы с газоразрядными индикаторами

Рис. 5. Проводящие слои печатной платы управления индикаторами

Разработанные печатные платы для часов на газоразрядных индикаторах выполнены двухсторонними в целях уменьшения их габаритов. Плата управления индикаторами (рисунок 5) имеет четвертый класс точности, две другие — второй (рисунок 4, 6).

Четвертый класс точности имеет следующие характеристики:

‒ ширина печатного проводника: не менее 0.15 мм;

‒ расстояние между краями соседних элементов проводящего рисунка: не менее 0.15 мм;

‒ ширина гарантийного пояска: не менее 0.05 мм;

‒ отношение номинального значения диаметра наименьшего из металлизированных отверстий к толщине ПП: не менее 0.25.

Второй класс точности имеет следующие характеристики:

‒ ширина печатного проводника: не менее 0.45 мм;

‒ расстояние между краями соседних элементов проводящего рисунка: не менее 0.45 мм;

‒ ширина гарантийного пояска: не менее 0.2 мм;

‒ отношение номинального значения диаметра наименьшего из металлизированных отверстий к толщине ПП: не менее 0.4.

Рис. 6. Проводящие слои печатной платы блока питания

Для изготовления печатных плат используется стеклотекстолит марки FR4. Выбранный материал для печатных плат обладает следующими характеристиками:

‒ толщина фольги: 35 мкм;

‒ толщина основания: 1.5 мм;

‒ поверхностное электрическое сопротивление: 1010 Ом;

‒ удельное объемное электрическое сопротивление: 1012 Ом∙м;

‒ время устойчивости к воздействию теплового удара при t= 260 ˚С: 60 с.

Данный материал широко применяется в производстве печатных плат и имеет стоимость ниже, чем у аналогов.

Для прочного закрепления платы изделия в корпусе используются стойки и винтовые соединения. Части корпуса также соединяются между собой при помощи винтовых соединений, которые обеспечивают достаточную точность и надежность. Применение винтов обусловлено простотой организации быстрого доступа к плате для замены деталей или ремонта изделия в случае отказа.

Элементы монтируются на плату с обеих сторон с помощью пайки паяльником для КМО и пайки в печи для КМП. Для пайки паяльником используется припой и флюс, изготовленный на основе. Для пайки в печи используется паяльная паста.

Было решено разработать корпус, пропускающий через себя часть света, чтобы синяя подсветка внутри корпуса освещала не только ГРИ, но и сам корпус. АБС-пластик является для этого хорошим решением. Также его легко распечатать на 3D-принтере. Корпус в собранном виде представлен на рисунке 7.

Рис. 7. 3D-модель корпуса в собранном виде

3 Технологическое проектирование часов на газоразрядных индикаторах

Схема сборки необходима для описания последовательности основных сборочных операций и служит источником данных для разработки маршрутного ТП.

Для сборки и монтажа устройства используется общая схема сборки с базовой деталью. В качестве базовой детали для сборки устройства выбирается нижняя часть корпуса, на которую устанавливаются ячейки электронные. Схема сборки разработана согласно требованиям ГОСТ 23887–79 [8]. Общая схема сборки часов на газоразрядных индикаторах представлена на рисунке 8.

Рис. 8. Общая схема сборки часов на газоразрядных индикаторах

4 Внешний вид часов на газоразрядных индикаторах

На рисунках 9–12 представлен внешний вид устройства

Рис. 9. Вид спереди

Рис. 10. Вид спереди с диодной подсветкой

Рис. 11. Вид сзади

Рис. 12. Вид спереди без задней крышки и верхней части корпуса

Заключение

На сегодняшний день довольно легко достать материалы, требующиеся для создания подобного устройства в домашних условиях. В данном устройстве исключением являются основные элементы — газоразрядные индикаторы, которые уже давно не выпускаются, и купить их можно по завышенной цене или б/у по низкой цене.

Данное устройство возможно усовершенствовать, добавив аккумулятор в левую часть корпуса и повысив КПД источника питания хотя бы на тот случай, если прекратиться электроснабжение помещения, где часы подключены в сеть.

Часы на газоразрядных индикаторах, на мой взгляд, будут смотреться хорошо независимо от того, какой интерьер в помещении и где они стоят.

  1. История часов: С древнейших времен до наших дней / В. Н. Пипуныров — М.: Наука, 1982. — 496 с.
  2. ГОСТ 2.702–75 «Правила выполнения электрических схем».
  3. ГОСТ 2.701–84 «Схемы. Виды и типы. Общие требования к выполнению».
  4. ГОСТ 2.708–81 «Правила выполнения электрических схем цифровой вычислительной техники».
  5. ГОСТ 2.728–74 «Обозначения условные графические в схемах. Резисторы, конденсаторы».
  6. ГОСТ 2.730–73 «Приборы полупроводниковые».
  7. ГОСТ 2.417–91 «Платы печатные. Правила выполнения чертежей».
  8. ГОСТ 23887–79 «Сборка. Термины и определения».
  9. Конструкторско-технологическое проектирование электронной аппаратуры/ А. И. Власов, Л. В. Журавлева и др.; Под общ ред. В. А. Шахнова, Изд-во МГТУ им. Н. Э.Баумана, 2005
  10. Компьютерная инженерная графика/ В.Н Аверин, учебное пособие, 2012
  11. AltiumDesigner. Проектирование функциональных узлов РЭС на печатных платах/ В. Ю. Суходольский
  12. RM0008 Reference manual / STMicroelectronics Electronic Components Datasheet, November, 2015. — 1136 с.
  13. Современные 32-разрядные ARM-микроконтроллеры серии STM32: часы реального времени RTC / О. Вальпа — Современная электроника № 2, 2014. — 84 с.