Прибор для проверки электролитических конденсаторов своими руками

Простой тестер электролитических конденсаторов

Каждому, кто регулярно занимается ремонтом электронной техники, известно, какой процент неисправностей выпадает на долю дефектных электролитических конденсаторов. При этом если существенную потерю емкости удается диагностировать при помощи обычного мультиметра, то такой весьма характерный дефект как возрастание эквивалентного последовательного сопротивления (ЭПС, англ. ESR) обнаружить без специальных устройств принципиально невозможно.

Долгое время при проведении ремонтных работ мне удавалось обходиться без специализированных приборов для проверки конденсаторов путем подстановки параллельно «подозреваемым» конденсаторам заведомо исправных, в звуковой аппаратуре использовать проверку тракта прохождения сигнала на слух при помощи наушников, а также использовать методы косвенного дефектирования, основанные на личном опыте, накопленной статистике и профессиональной интуиции. Когда же пришлось приобщиться к массовому ремонту компьютерной техники, в которой на совести электролитических конденсаторов оказывается добрая половина всех неисправностей, необходимость контроля их ЭПС стала без преувеличения стратегической задачей. Существенным обстоятельством явился также тот факт, что в процессе ремонта неисправные конденсаторы очень часто приходится заменять не новыми, а демонтированными из других устройств, и их исправность совсем не гарантирована. Поэтому неизбежно наступил момент, когда пришлось всерьез задуматься о том, чтобы разрешить эту проблему обзаведшись, наконец, ЭПС-метром. Поскольку о покупке подобного прибора по ряду причин речь заведомо не шла, напрашивался однозначный выход – собрать его самостоятельно.

Анализ схемотехнических решений построения ЭПС-метров, имеющихся на просторах Сети, показал, что спектр подобных устройств чрезвычайно широк. Они отличаются функциональностью, напряжением питания, применяемой элементной базой, частотой генерируемых сигналов, наличием/отсутствием моточных элементов, формой отображения результатов измерений и т.п.

Основными критериями выбора схемы являлись ее простота, низкое напряжение питания и минимальное количество моточных узлов.

С учетом всей совокупности факторов было принято решение повторить схему Ю. Куракина, опубликованную в статье из журнала «Радио» (2008 г., №7, с.26-27). Ее отличает целый ряд положительных особенностей: предельная простота, отсутствие высокочастотных трансформаторов, малый потребляемый ток, возможность питания от одного гальванического элемента, низкая частота работы генератора.

Детали и конструкция. Собранный на макете прибор заработал сразу и после нескольких дней практических экспериментов со схемой было принято решение о его окончательной конструкции: прибор должен быть предельно компактным и представлять собой нечто вроде тестера, позволяющего максимально показательно отображать результаты измерений.

С этой целью в качестве измерительной головки был использован стрелочный индикатор типа М68501 от магниторадиолы «Сириус-324 пано» с током полного отклонения 250 мкА и оригинальной шкалой, отградуированной в децибелах, который оказался под рукой. Позднее в Сети мною было обнаружены сходные решения с применением магнитофонных индикаторов уровня в исполнении других авторов, что подтвердило правильность принятого решения. В качестве корпуса прибора был использован корпус от неисправного зарядного устройства для ноутбука LG DSA-0421S-12, идеально подходящий по габаритам и имеющий, в отличие от многих своих собратьев, легкоразборный корпус, скрепляющийся шурупами.

В устройстве использованы исключительно общедоступные и широкораспространенные радиоэлементы, имеющиеся в хозяйстве любого радиолюбителя. Итоговая схема полностью идентична авторской, исключение составляют лишь номиналы некоторых резисторов. Сопротивление резистора R2 в идеале должно составлять 470 кОм (в авторском варианте – 1МОм, хотя при этом примерно половина хода движка все равно не используется), но резистора такого номинала, имеющего необходимые габариты, у меня не нашлось. Однако этот факт позволил доработать резистор R2 таким образом, чтобы он одновременно являлся и выключателем питания при повороте его оси в одно из крайних положений. Для этого достаточно соскрести острием ножа часть резистивного слоя у одного из крайних контактов «подковки» резистора, по которой скользит его средний контакт, на участке длиной примерно 3…4 мм.

Номинал резистора R5 подбирается исходя из тока полного отклонения используемого индикатора таким образом, чтобы даже при глубоком разряде элемента питания ЭПС-метр сохранял свою работоспособность.

Тип применяемых в схеме диодов и транзисторов абсолютно некритичен, поэтому предпочтение было отдано элементам, имеющим минимальные габариты. Гораздо более важен тип применяемых конденсаторов – они по возможности должны быть максимально термостабильны. В качестве С1…С3 были использованы импортные конденсаторы, которые удалось отыскать в плате от неисправного ИБП компьютера, обладающие очень малым ТКЕ и имеющие гораздо меньшие габариты в сравнении с отечественными К73-17.

Дроссель L1 выполнен на ферритовом кольце с магнитной проницаемостью 2000НМ, имеющем размеры 10×6×4,6 мм. Для частоты генерации 16 кГц необходимо 42 витка провода ПЭВ-2 диаметром 0,5 мм (длина проводника для намотки составляет 70 см) при индуктивности дросселя 2,3 мГн. Разумеется, можно использовать любой другой дроссель с индуктивностью 2…3,5 мГн, что будет соответствовать частотному диапазону 16…12 кГц, рекомендованному автором конструкции. У меня при изготовлении дросселя была возможность воспользоваться осциллографом и измерителем индуктивности, поэтому необходимое количество витков я подобрал экспериментальным путем исключительно из соображений вывести генератор точно на частоту 16 кГц, хотя практической необходимости в этом, конечно же, не было.

Щупы ЭПС-метра выполнены несъемными – отсутствие разъемных соединений не только упрощает конструкцию, но и делает ее более надежной, устраняя потенциальную возможность нарушения контактов в низкоомной измерительной цепи.

Печатная плата устройства имеет габариты 27×28 мм, ее чертеж в формате .LAY6 можно скачать по ссылке https://yadi.sk/d/CceJc_CG3FC6wg. Шаг сетки – 1,27 мм.

Компоновка элементов внутри готового устройства приведена на фото.

Результаты испытаний. Отличительной особенностью примененного в устройстве индикатора явилось то, что диапазон измерения ЭПС составил от 0 до 5 Ом. При проверке конденсаторов значительной емкости (100 мкФ и более), наиболее характерных для фильтров цепей питания материнских плат, блоков питания компьютеров и телевизоров, зарядных устройств ноутбуков, преобразователей сетевого оборудования (коммутаторов, маршрутизаторов, точек доступа) и их выносных адаптеров этот диапазон чрезвычайно удобен, поскольку шкала прибора является максимально растянутой. На основании усредненных экспериментальных данных для ЭПС электролитических конденсаторов различной емкости, приведенных в таблице, отображение результатов измерений оказывается очень наглядным: конденсатор можно считать исправным лишь в том случае, если стрелка индикатора при измерении располагается в красном секторе шкалы, соответствующем положительным значениям децибелов. Если стрелка располагается левее (в черном секторе), конденсатор из указанного выше диапазона емкостей является неисправным.

Разумеется, прибором можно тестировать и конденсаторы малой емкости (примерно от 2,2 мкФ), при этом показания прибора будут находиться в пределах черного сектора шкалы, соответствующего отрицательным значениям децибелов. У меня получилось примерно следующее соответствие ЭПС заведомо исправных конденсаторов из стандартного ряда емкостей градуировке шкалы прибора в децибелах:

Выводы и рекомендации. Эксплуатация собранного по схеме Ю.Куракина образца ЭПС-метра позволила сделать несколько важных выводов в отношении целесообразности его изготовления.

Прежде всего, эту конструкцию следует рекомендовать начинающим радиолюбителям, еще не имеющим достаточного опыта в конструировании радиоаппаратуры, но осваивающим азы ремонта электронной техники. Низкая цена и высокая повторяемость данного ЭПС-метра выгодно отличают его от более дорогих промышленных устройств аналогичного назначения.

Основными достоинствами ЭПС-метра можно считать следующие:

— чрезвычайная простота схемы и доступность элементной базы для ее практической реализации при сохранении достаточной функциональности устройства и его компактности, отсутствие необходимости в высокочувствительном регистрирующем приборе;

— отсутствие необходимости в наладке, требующей наличия специальных измерительных приборов (осциллографа, частотомера);

— низкое напряжение питания и, соответственно, дешевизна его источника (не требуется дорогостоящая и малоемкая «Крона»). Устройство сохраняет свою работоспособность при разряде источника даже до 50% его номинального напряжения, то есть имеется возможность использовать для его питания элементы, которые уже не способны нормально функционировать в других устройствах (пультах ДУ, часах, фотоаппаратах, калькуляторах и т.п.);

— низкий ток потребления – около 380 мкА в момент измерения (зависит от используемой измерительной головки) и 125 мкА в режиме ожидания, что существенно продлевает срок эксплуатации источника питания;

— минимальное количество и предельная простота моточных изделий – в качестве L1 можно использовать любой подходящий дроссель или легко изготовить его самостоятельно из подручных материалов;

— сравнительно низкая частота работы генератора и возможность ручной установки нуля, позволяющие использовать щупы с проводами практически любой разумной длины и произвольного сечения. Это преимущество является неоспоримым в сравнении с универсальными цифровыми тестерами элементов, использующими для подключения проверяемых конденсаторов ZIF-панель с глубоким расположением контактов;

— визуальная наглядность отображения результатов тестирования, позволяющая быстро оценить пригодность конденсатора для дальнейшего использования без необходимости точной численной оценки величины ЭПС и ее соотнесения с таблицей значений;

— удобство эксплуатации — возможность выполнения непрерывных измерений (в отличие от цифровых ESR-тестеров, требующих нажатия кнопки измерения и выдержки паузы после подключения каждого поверяемого конденсатора), что существенно ускоряет работу;

— необязательность предварительной разрядки конденсатора перед измерением ЭПС.

К недостаткам прибора можно отнести:

— ограниченную функциональность в сравнении с цифровыми ESR-тестерами (отсутствие возможности измерения емкости конденсатора и процента его утечки);

— отсутствие точных численных значений результатов измерений в омах;

— сравнительно узкий диапазон измеряемых сопротивлений.

Измеритель емкости электролитических конденсаторов с тестом на утечку

Одной из самых частых причин выхода радиоэлектронной аппаратуры из строя или ухудшения ее параметров является изменение свойств электролитических конденсаторов. Иногда при ремонте аппаратуры (особенно произведенной в бывшем СССР), изготовленной с применением некоторых типов электролитических конденсаторов (например, K50-. ), для восстановления работоспособности устройства прибегают к полной или частичной замене старых электролитических конденсаторов. Все это приходится делать из-за того, что свойства материалов, входящих в электролитический (именно электролитический, т.к. в составе используется электролит) конденсатор, под электрическим, атмосферным, тепловым воздействиями со временем изменяются. И таким образом важнейшие характеристики конденсаторов, такие как емкость и ток утечки — так же изменяются (конденсатор «высыхает» и емкость его увеличивается, часто даже более чем на 50% от первоначальной, а ток утечки возрастает, т.е. внутреннее сопротивление, шунтирующее конденсатор уменьшается), что естественно приводит к изменению характеристик, а в худшем случае и к полному отказу аппаратуры.

Вашему вниманию предлагается схема и пример конструкции измерителя емкости электролитических конденсаторов с тестом их на утечку. Сразу оговорюсь — оригинальная идея схемы не моя, а разработана [1], мною была исправлена одна ошибка, добавлена встроенная калибровка и тест на утечку конденсатора, разработан вариант конструкции и произведено изготовление с настройкой, испытаниями. Прекрасные результаты работы прибора заставили меня поделиться информацией с Вами.

Измеритель обладает следующими качественными и количественными характеристиками :

1) измерение емкости на 8 поддиапазонах :

  • 0 . 3 мкф;
  • 0 . 10 мкф;
  • 0 . 30 мкф;
  • 0 . 100 мкф;
  • 0 . 300 мкф;
  • 0 . 1000 мкф;
  • 0 . 3000 мкф;
  • 0 . 10000 мкф.

2) оценка тока утечки конденсатора по светодиодному индикатору;
3) возможность точного измерения при изменении напряжения питания и температуры окружающей среды (встроенная калибровка измерителя);
4) напряжение питания 5-15 В ;
5) определение полярности электролитических (полярных) конденсаторов;
6) ток потребления в статическом режиме . не более 6 мА;
7) время измерения емкости . не более 1 с;
8) ток потребления во время измерения емкости с каждым поддиапазоном возрастает,
но . не более 150 мА на последнем поддиапазоне.

Суть прибора — измерение напряжения на выходе дифференцирующей цепи, рис.1.

Напряжение на резисторе: Ur = i*R ,
где i — общий ток через цепь, R — зарядное сопротивление ;

Т.к. цепь дифференцирующая, то ее ток : i = С*(dUc/dt) ,
где С — заряжаемая емкость цепи, но конденсатор будет линейно заряжаться через источник тока, т.е. стабилизированным током : i = С*const,
значит напряжение на сопротивлении (выходное для этой цепи): Ur = i*R = C*R*const — прямо пропорционально емкости заряжаемого конденсатора, а значит измеряя вольтметром напряжение на резисторе мы измеряем в некотором масштабе и исследуемую емкость конденсатора.

Читайте также  Прибор для проверки люминесцентных ламп

Схема представлена на рис. 2.
В исходном положении испытуемый конденсатор Сх (или калибровочный С1 при включенном тумблере SA2) разряжен через R1. Измерительный конденсатор, на котором (не на испытуемом непосредственно) измеряется напряжение, пропорциональное емкости испытуемого Сх, разряжен через контакты SA1.2. При нажатии кнопки SA1 испытуемый Сх (С1) заряжается через соответствующие поддиапазону (галетный переключатель SA3) резисторы R2 . R11. При этом зарядный ток Сх (С1) проходит через светодиод VD1, чья яркость свечения позволяет судить о токе утечки (сопротивлении, шунтирующем конденсатор) в конце заряда конденсатора. Одновременно с Сх (С1) через источник стабилизированного тока VT1,VT2,R14,R15 заряжается и измерительный (заведомо исправный и с малым током утечки) конденсатор С2. VD2, VD3 используются для предотвращения разряда измерительного конденсатора через источник напряжения питания и стабилизатор тока соответственно. После заряда Сх (С1) до уровня, определяемого R12, R13 (в данном случае до уровня примерно половины напряжения источника питания), компаратор DA1 отключает источник тока, синхронный с Сх (С1) заряд С2 прекращается и напряжение с него, пропорциональное емкости испытуемого Сх (С1) индицируется микроамперметром PA1 (две шкалы со значениями кратными 3 и 10, хотя можно настроить на любую шкалу) через повторитель напряжения DA2 с высоким входным сопротивлением, что также обеспечивает долгое сохранение заряда на С2.

Настройка

При настройке положение калибровочного переменного резистора R17 фиксируется в каким-либо положении (например, в среднем). Подключая эталонные конденсаторы с точно известными значениями емкости в соответствующем диапазоне, резисторами R2, R4, R6-R11 производится калибровка измерителя — подбирается такой ток заряда, чтобы эталонные значения емкостей соответствовали определенным значениям на выбранной шкале.

В моей схеме точные значения зарядных сопротивлений при напряжении питания 9 В составили:

После калибровки один из эталонных конденсаторов становится калибровочным С1. Теперь при изменении напряжения питания (изменения температуры окружающей среды, например при сильном охлаждении готового отлаженного прибора на морозе показания емкости у меня получались заниженными процентов на 5) или просто для контроля точности измерений достаточно подключить С1 тумблером SA2 и, нажав SA1, калибровочным резистором R17 произвести подстройку PA1 на выбранное значение емкости С1.

Конструкция

Перед началом изготовления прибора необходимо выбрать микроамперметр с подходящей шкалой(-ами), габаритами и током максимального отклонения стрелки, но ток может быть любым (порядка десятков, сотен микроампер) благодаря возможности настройки и калибровки прибора. Я применил микроамперметр ЭА0630 с Iном = 150 мкА, классом точности 1.5 и двумя шкалами 0 . 10 и 0 . 30.

Плата была разработана с учетом того, что она будет крепиться непосредственно на микроамперметре при помощи гаек на его выводах, рис.3. Такое решение обеспечивает и механическую, и электрическую целостность конструкции. Прибор размещается в подходящий по габаритам корпус, достаточный для размещения также (кроме микроамперметра и платы):

— SA1 — кнопка КМ2-1 из двух малогабаритных переключателей;
— SA2 — малогабаритный тумблер МТ-1;
— SA3 — малогабаритный галетный переключатель на 12 положений ПГ2-5-12П1НВ;
— R17 — СП3-9а — VD1 — любой, я применил какой-то из серии КИПх-хх, красного цвета свечения;
— 9-ти вольтовая батарея «Корунд» с габаритами 26.5 х 17.5 х 48.5 мм (без учета длины контактов).

SA1, SA2, SA3, R17, VD1 закрепляются на верхней крышке (панели) прибора и располагаются над платой (батарея укрепляется при помощи проволочного каркаса прямо на плате), но соединяются с платой проводами, а все остальные радиоэлементы схемы располагаются на плате (и под микроамперметром непосредственно тоже) и соединяются печатным монтажом. Отдельного выключателя питания я не предусматривал (да и в выбранный корпус он бы уже не поместился), совместив его с проводами для подключения испытуемого конденсатора Сх в разъеме типа СГ5. «Мама» XS1 разъема имеет пластмассовый корпус для установки на печатную плату (она устанавливается в углу платы), а «папа» XP1 подключается через отверстие в торце корпуса прибора. При подключение разъема «папа» своими контактами 2-3 включает питание прибора. К проводам Сх параллельно неплохо приладить разъем (колодку) какой-либо конструкции для подключения отдельных отпаянных конденсаторов.

Работа с прибором

При работе с прибором нужно быть внимательным с полярностью подключения электролитических (полярных) конденсаторов. При любой полярности подключения индикатор показывает одно и то же значение емкости конденсатора, но при неправильной полярности подключения, т.е. «+» конденсатора к «-» прибора, светодиод VD1 индицирует большой ток утечки (после заряда конденсатора светодиод продолжает ярко гореть), тогда как при правильной полярности подключения светодиод вспыхивает и постепенно гаснет, демонстрируя уменьшение зарядного тока до очень малой величины, практически до полного потухания (следует наблюдать 5-7 секунд), при условии, что испытуемый конденсатор обладает малым током утечки. Неполярные неэлектролитические конденсаторы имеют очень малый ток утечки, что и видно по очень быстрому и полному гашению светодиода. А если же ток утечки велик (сопротивление, шунтирующее конденсатор мало), т.е. конденсатор старый и «течет», то свечение светодиода видно уже при Rутечки = 100 кОм, а при меньших шунтирующих сопротивлениях светодиод горит еще ярче.
Таким образом можно по свечению светодиода определять полярность электролитических конденсаторов: при том подключении, когда ток утечки меньше (светодиод менее ярок) — полярность конденсатора соответствует полярности прибора.

Для большей точности показаний любое измерение следует повторять не менее 2-х раз, т.к. в первый раз часть тока заряда идет на создание оксидного слоя конденсатора, т.е. показания емкости чуть-чуть занижены.

Прибор для проверки электролитических конденсаторов своими руками

Измеритель LOW ESR конденсаторов

Автор: Simurg
Опубликовано 17.08.2012
Создано при помощи КотоРед.
Участник Конкурса «Поздравь Кота по-человечески 2012!»

Всё гениальное – просто!

Что такое ЭПС, или по английскому ESR все знают. Существуют множество пробников по выявлению неисправных или некачественных конденсаторов (если покупаете на рынке). А вот как определить некачественный конденсатор с низким внутренним сопротивлением LOW ESR, которые все чаще устанавливаются в различной технике, компьютерах, и т д.? Очень часто неисправности плат возникают из-за повышенных пульсаций питающего напряжения, а в цепях питания почти всегда присутствуют электролитические конденсаторы. Именно они в первых рядах имеют самую низкую надежность. Практика показывает, что большинство материнских плат, работающих с внезапными перезагрузками и выключениями, а также нестабильностью работы, связаны в большинстве случае неисправностью электролитических конденсаторов. Например, глючит видеокарта, вы снимаете её ставите заведомо исправную и все работает. Тогда начинаете ближе разбираться с неисправной в надежде возобновить исправную работу. Визуально все нормально, конденсаторы все как новые ровные, не надутые. Но ведь даже у визуально не вспухшего конденсатора может быть недопустимо высокий ESR — 0,10 ом! Такой конденсатор ощутимо разогревается, и может протечь на плату, попортив переходные отверстия электролитом. Для работы в ШИМ-преобразователях он просто не годится. Предельно допустимое значение для LOW ESR конденсаторов в ответственных и нагруженных цепях — 0,04 Ом, а лучше до 0,03 и менее.

Внешний вид устройства. В данный момент на фото запечатлен найденный неисправный конденсатор, который, если очень внимательно рассмотреть слегка надут в отличие от рядом стоящего.

Это и была настоящая неисправность, из-за которой видеокарту подвергли не нужному прогреву чипа, накручиванию большого радиатора и, в конце концов, она была доломана и отдана мне на детали (но было уже поздно, на платформе чипа прокрутили саморезом дорожки, при установке еще большего радиатора на не греющийся чип : ) )…..

А это показания исправного конденсатора:

Общий вид измерителя

Цели, которые достигались при проектировании измерителя:

— измерение на частоте 100 — 110 кГц

— измерение низким напряжением (до 0,2 вольт)

— растянутая шкала в диапазоне до 0,5 Ома

— работа от одного аккумулятора напряжением 1,2 вольта

— длительная работа без зарядки аккумулятора

— отсутствие неудобных проводов витой пары

— мощные щупы для пробивания окислов и лака

— минимум корректирующих настроек

Было собрано несколько вариантов измерителей. Варианты, когда схема с измерителем и микроамперметром находятся в коробке, а щупы выведены проводами крайне не удобна, так как провода необходимо плотно скручивать вместе, и они не могут быть длинными. При частоте 100 кГц даже слегка раскрутившийся провод, дает ухудшение показаний и исправный конденсатор может быть ошибочно забракован, а реальная неисправность не найдена. Фото старого варианта исполнения измерителя:

Решено было перенести схему с высокочастотной частью и питанием в отдельный блок в виде пинцета, а микроамперметр отдельно. Так как микроамперметр питается постоянным напряжением, то провода к нему не нужно скручивать и они могут быть любой длинны.

Для особо пугливых к трансформаторам, то предупрежу заранее, ничего мотать не придется, просто берутся готовые трансформаторы ТМС, со старых CRT мониторов, которые сейчас все выбрасывают (про трансы расскажу дальше).

Схема измерителя безупречно проста, и полностью соответствует цели, которая была поставлена в начале статьи.

Приведу структурную схему устройства для более понятного назначения каждого компонента:

Схема состоит из автоколебательного блокинг – генератора,

собранного на транзисторе VTI, выпаянном из серверной материнки:

Но можно и любой другой например аналог КТ3102 в smd корпусе.

Генератор выполнен по традиционной и хорошо зарекомендовавшей себя на практике схеме «индуктивной трехточки». Имеет эмиттерную RC-цепочку, задающую режим работы транзистора по постоянному току. Для создания обратной связи в генераторе от катушки индуктивности есть отвод (из-за того что трансы готовые, то он сделан от середины). Нестабильность работы генераторов на биполярных транзисторах обусловлена заметным шунтирующим влиянием самого транзистора на колебательный контур. При изменении температуры и/или напряжения питания свойства транзистора заметно изменяются, поэтому частота генерации незначительно меняется. Но нам для наших нужд данный момент не страшен.

Далее идет мост сопротивлений или Мост Уинстона (мост Уитстона, мостик Витстона) через развязывающий конденсатор (он же резонансный, входит в контур), устройство для измерения электрического сопротивления, предложенное в 1833 Самуэлем Хантером Кристи, и в 1843 году усовершенствованное Чарльзом Уитстоном. Принцип измерения основан на взаимной компенсации сопротивлений двух звеньев, одно из которых включает измеряемое сопротивление. В качестве индикатора обычно используется чувствительный гальванометр, показания которого должны быть равны нулю в момент равновесия моста. Работает как на постоянном токе, так и на переменном.

Далее идет согласующий трансформатор повышающий сопротивление и выходное напряжение для работы удвоителя и микроамперметра.

В схеме используются трансформаторы типа ТМС (трансформатор межкаскадный строчный) используемый в CRT мониторах, коих великое множество пошло на разбор и детали.

Стоит он обычно около выходного строчного транзистора

Довольно часто он собран на Ш-образном железе. Он то нам и надо. Только вот у него по схеме включения нет отвода от середины. Нужно выбрать для ТР1 такой, у которого этот отвод есть, но вывод укорочен и не используется в самом мониторе. Его необходимо подпаять до нормальной длинны.

Для ТР2 можно ставить без выведенного отвода (таких большинство).

Наконечники пинцета выполнены из латунного клемника от счетчика электроэнергии, и заточены на наждаке.

При проверке конденсаторов, для лучшего контакта необходимо с усилием надавливать на наконечники, поэтому они сделаны с обратной стороны широкими, что бы было удобно нажимать пальцами, и не соскальзывал пинцет.

Некоторые фото проведенных измерений:


Установка в ноль проводится замыканием пинцета с усилием, для обеспечения хорошего контакта.

Шкалу не затирал, а просто дописал значения выше. Фото шкалы.

Читайте также  Прибор для измерения кислотности жидкости

Заключается в установке режимов работы по постоянному току и устойчивому возбуждению на 100 кГц, а не на 2-3 мГц.

Для этого вместо R1, R2 впаиваем переменное сопротивление (только не проволочное) сопротивлением 4,7к или 10к. бегунок на базу, 1 конец на + 1,2 в, 2 конец на -1,2 вольта. Выставляем на середину. Замыкаем пинцет, (запаиваем проволочку). Подключаем микроамперметр. Резистор установки 0 в минимальное сопротивление. Включаем вместо включателя миллиамперметр на предел 200мА. далее вращая переменное сопротивление в сторону уменьшения части, которая относилась к R1 и смотрим за потребляемым током и отклонением микроамперметра. Показания будут расти, а затем падать, а ток потребления расти, а потом резко увеличится. Выставить такое положение когда показания почти на максимуме, но немного меньше, то есть не переходят за порог их уменьшения. Ток при этом примерно будет 50 — 70 мА. Теперь резисторы замерять и впаять постоянные. Далее настроим С2 по максимуму отклонения стрелки микроамперметра. Всё, далее настраиваем 0 и берем низкоомные сопротивления, и тарируем деления на шкале. Использовать магазин сопротивлений нельзя, также нельзя использовать проволочные сопротивления. Если нет микроамперметра на 50 мкА, то можно использовать на 100 мкА, но питание надо поднять до 2,4 вольт, (от двух аккумуляторов) и провести настройку на данное напряжение заново как написано выше.

Сигналы на эмиттере могут принимать самые причудливые формы. Но на выходе пинцета будет такой или похожий почти всегда.

Как видно амплитудное напряжение не превышает 0,2 вольт. Поэтому никакой полупроводник не откроется, и измерения можно проводить вполне безопасно.

Также было проведено испытание на устойчивость к заряженному от сеи конденсатору.

Была небольшая искра, потом измерение. Током не бьет, хотя держу руками контакты площадок. Диоды VD1, VD2 защищают вход схемы и ваши пальцы.

Желаю побольше отремонтированных вами устройств с помощью данного измерителя, и больше прибыли, а также больше свободного времени, которое поможет высвободить данный пинцетик!

P.S. Так же не забывать про «черный список» (GSC, G-Luxon, Licon (или Li-con, или Lycon), Jackcon, JPcon, D.S VENT, Chssi, OST) конденсаторов, которые надо менять не зависимо от их состояния всегда, что бы устранить проблемы в будущем.

Плату еще оптимизирую, и выложу на форум. (хотя она очень простая).

Приборы для проверки конденсаторов

Схема № 1

Часто в руки радиолюбителей попадают электролитические конденсаторы, качество которых вызывает сомнение. Дело в том, что с течением времени электролит в них высыхает и их емкость падает. Иногда почти до нуля. Устанавливать такие конденсаторы в схему, конечно, нельзя. Но как их проверить? Как узнать, годится этот конденсатор или нет? Приборы, предназначенные для измерения емкости электролитических конденсаторов, сложны и дороги. В любительских условиях вполне можно обойтись простейшим прибором, описание которого приведено в этой статье. Он позволяет проверить работоспособность конденсаторов, в том числе и электролитических, с рабочим напряжением более 4,5 В и емкостью от 0,5 до 1000 мкФ. Таким образом можно определить пробой в конденсаторе, наличие большой утечки и ориентировочно оценить даже его емкость.

Конечно, точность определения емкости невелика, но вполне достаточна, чтобы ответить, можно или нельзя устанавливать данный конденсатор в схему.

Принципиальная схема прибора приведена на рисунке 1.

Как видно из схемы, прибор представляет собой несимметричный мультивибратор, собранный на транзисторах разной проводимости.

Принцип действия прибора основан на том, что его частота зависит от величины емкости параллельно включенных конденсаторов С1 и Сх. Индикатором колебаний служит лампа накаливания H1. Питается прибор от батареи Б1.

При включении питания оба транзистора открываются. Вспыхивает лампочка, и через резистор R1 начинает заряжаться конденсатор С1. Ток заряда проходит по цепи база-эмиттер V1, открывая его. когда конденсатор зарядится, ток заряда, открывавший транзистор V1, падает до нуля. Транзисторы закрываются. Лампочка гаснет. В таком состоянии схема будет находится до тех пор, пока конденсатор С1 не разрядится через резисторы R2, R3. Затем этот процесс повторится сначала.

При подключении параллельно С1 проверяемого конденсатора их общая емкость увеличивается и время разряда станет больше. Лампочка начнет мигать реже. Если емкость подключаемого конденсатора мала, то это изменение будет незначительным. А при подключении конденсатора емкостью в 1000 мкФ лампочка будет вспыхивать примерно через двадцать секунд. Если конденсатор пробит или имеет большой ток утечки, то лампочка будет гореть непрерывно.

Транзистор V1 — КТ315 или другой аналогичный структуры n-p-n. Только надо отбирать экземпляры с Jко не более 1 мкА и коэффициентом усиления не менее 50.
Транзистор V2 — МП39 или другой аналогичный структуры p-n-p c коэффициентом усиления не менее 50.

Конденсатор С1 бумажный или керамический любого типа. Резисторы тоже любого типа.

Лампочка Н1 — обычная, от карманного фонаря, напряжением 2,5 В и током 0,15 А. Использовать лампочки с большим током и напряжением нельзя.

НАЛАЖИВАНИЕ ПРИБОРА начинайте с установки максимального значения величины резистора R3, поставив его движок в нижнее (по схеме) положение. Для начала поставьте резистор R1 величиной 680 Ом. Включив питание, проверьте работу мультивибратора. Если он работает, то лампочка должна мигать. В противном случае увеличьте величину резистора R2. Добившись работы мультивибратора, подберите величину R1. Она может быть выбрана в пределах 680 Ом -4,7 кОм. При больших величинах лампочка горит дольше, но мультивибратор работает менее устойчиво. Поэтому надо установить такую величину резистора R1, при которой генератор устойчиво работает и лампочка достаточно ярко светит на максимальной частоте. Эту частоту устанавливают резистором R3. В смонтированном образце она равна примерно 10 Гц.

Мигающая лампочка служит хорошим индикатором включения прибора. Подключение проверяемого конденсатора уменьшает частоту мигания лампочки. Для опытного глаза изменение частоты заметно уже при подключении конденсатора в 0,05 мкФ. Подключение пробитого конденсатора или конденсатора с большой утечкой вызывает непрерывное свечение лампочки. Лампочка довольно долго горит при подключении конденсаторов большой емкости — 100 — 1000 мкФ. Поэтому, чтобы воспользоваться прибором, надо предварительно потренироваться, подключая к прибору заведомо исправные конденсаторы в 5, 10, 20, 50 и более микрофарад. Прибором, несомненно, можно проверять и неэлектролитические конденсаторы.

В заключение хотелось бы заметить, что давно не работавшие электролитические конденсаторы с большой утечкой следует на некоторое время подключить к источнику постоянного тока с напряжением, равным рабочему напряжению конденсатора. После непродолжительной работы в таком режиме ток утечки заметно понизится, и конденсатор вновь может быть использован.

Схема № 2 Измеритель ESR электролитических конденсаторов

Илья Липавский. © 2003
НАЗНАЧЕНИЕ

Устройство позволяет измерять ESR электролитических конденсаторов с индикацией измеряемой величины на линейной шкале стрелочного прибора или на индикаторе цифрового мультиметра.

КОНСТРУКЦИЯ

Схема устройства собрана на четырёх ОУ. На ОР 1 собран генератор частотой 120 кГц. Напряжение с этого генератора подаётся на инвертирующий усилитель на ОР 2, в цепь обратной связи которого включается тестируемый конденсатор. Так как величина коэффициента усиления инвертирующего усилителя на ОУ прямо пропорциональна величине сопротивления резистора в цепи ООС, то его выходное напряжение будет прямо пропорционально измеряемой величине. Далее следует нормирующий усилитель ОР 3. Меняя его коэффициент усиления, переключая резистор обратной связи, получаем возможность легко изменять диапазон измерения. Далее, следует линейный вольтметр на ОР 4. Если вместо микроамперметра включить резистор, величиной в несколько килоом, то напряжение на нём можно измерять цифровым мультиметром. Например, на FLUKE есть oчень удобный поддиапазон — 300 мВ.

Рис. 2 Принципиальная схема измерителя ESR электролитических конденсаторов

Схема устройства предоставлена на Рис.2, и имеет два предела измерения 1 Ом и 5 Ом. Но их может быть сколько угодно. Включив вместо резистора R9,например, 9 кОм, получим предел 10 Ом.

Вообще, как мне представляется, применение данного прибора для целей выявления неисправных конденсаторов при ремонтах РЭА ничем не лучше, чем применение устройства для измерения ESR на трансформаторе. Но, когда интересует точное значение ESR, при подборе конденсаторов, например, тогда его применение целесообразно.

Следует учитывать, что наличие даже очень маленькой индуктивности (ферритовой бусинки, например, надетой на провод) вызывает заметное (на пределе 1 Ом — более половины шкалы) отклонение стрелки. Так можно легко различать проволочные и плёночные резисторы, например, если по внешнему виду определить затруднительно.

Следует остановиться на конструкции щупов. Наилучшие результаты показали витые щупы из четырёх проводов, диаметром в изоляции, около одного миллиметра. Два провода свиваются между собой, а потом две косички свиваются между собой. При длине 40 см, вносимая погрешность — около 0.2 Ома. Такой же косичкой из четырёх проводов, только короткой, производится подключение к клеммам на корпусе прибора. В качестве клемм удобно использовать колодки для подключения звуковых колонок.

Номиналы деталей, за исключением номиналов резисторов R7, R8 и R9, определяющих границы диапазонов,не критичны. Питание устройства от 12 дисковых аккумуляторов, ёмкостью 0.28 А-Ч.

НАСТРОЙКА

Настройка производится так. Вставляем в колодку известное сопротивление, например, 3 Ома. Вращая триммер R11 устанавливаем стрелку на 30 (если 50-и микроамперная головка). И всё. Испытания устройства на конденсаторах ёмкостью 820-4700 мкФ производителей SXE, SAMHWA, KELNA, LXY и других, с величиной ESR менее 0.1 Ома, подтвердили его достаточно высокую эффективность.

Всего хорошего, пишите to Elremont © 2005

Испытатель конденсаторов

Как показала практика, при ремонте промышленной и бытовой радиоаппаратуры наиболее часто встречающаяся неисправность — полная (обрыв, пробой) или частичная потеря емкости как оксидных, так и любых других конденсаторов.

Предлагаемый прибор предназначен для измерения емкости испытываемого конденсатора без выпаивания его из узла, в котором он применен. Это достигается благодаря низкому входному сопротивлению прибора. Таким образом, резисторы, подключаемые к проверяемому конденсатору, практически не влияют на точность измерения.

Принципиальная схема

Принципиальная базовая схема прибора изображена на рис.1. Принцип его действия основан на измерении падения пульсирующего (50 Гц) напряжения на делителе, состоящем из резисторов R2, R9 и проверяемого конденсатора Сх.

Благодаря использованию на делителе пульсирующего (а не переменного, как это практикуется при проверке неполярных конденсаторов) напряжения, возможно измерение емкостей с более высокой точностью. Ведь электролитический конденсатор только при правильном подключении полярности остается конденсатором с «полноценной» емкостью.

Если же прибор планируется использовать для проверки только неполярных конденсаторов, диод VD2 (рис.1) можно исключить, заменив перемычкой.

Рис. 1. Принципиальная базовая схема прибора-испытателя конденсаторов.

Снимаемый с делителя сигнал усиливается операционным усилителем DA1 и через разделительный конденсатор С3 поступает на выпрямитель, выполненный на диодах VD7, VD8. Постоянная составляющая выпрямленного напряжения через цепь R4, R3 поступает на микроамперметр РА1, стрелка которого отклоняется на угол, обратно пропорциональный емкости испытываемого конденсатора.

Блок питания можно также собрать и по бестрансформаторной схеме (рис.2), однако, как показала практика, такой вариант исполнения менее эффективен из-за относительно большой чувствительности к помехам, проникающим из сети.

Рис. 2. Принципиальная схема бестрансформаторного блока питания.

Детали прибора

В приборе используют постоянные резисторы типа МЛТ, ОМЛТ или ВС, переменные резисторы типа СП4-1 (СП5-2). Конденсаторы С1, С5 — КМ-6, С4 — ЭТО-1, остальные — К50-6, К50-16. При отсутствии микросхемы DA2 стабилизатор можно собрать на транзисторе по схеме, изображенной на рис.3. Трансформатор Т1 намотан на тороидальном трансформаторном железе типоразмера К47х32х24.

Обмотка I содержит 5000 витков провода ПЭВ-2 Ж0,1 мм, обмотка II — 345 витков ПЭВ-2 Ж0,2 мм, III — 340 витков ПЭВ-2 Ж0,25 мм. Трансформатор Т1 можно применить и готовый, имеющий две независимые вторичные обмотки по 15 В мощностью более 1 Вт.

Читайте также  Прибор для диагностики генератора автомобиля

Второй вариант прибора

Более совершенна схема прибора, изображенного на рис.4. Его основное отличие в том, что импульсы, поступающие на делитель, формируются собственным задающим генератором, собранным на логической микросхеме DD1.

Благодаря этому прибор дополнительно приобретает еще три существенных положительных качества:

  1. Стабильность работы и еще более высокая точность, благодаря независимости от величины и частоты сетевого напряжения (ведь, ни для кого не секрет, что оно колеблется в достаточно широких пределах);
  2. Увеличение пределов измерения путем порогового изменения частоты задающего генератора;
  3. Возможность питания от автономного источника питания, например батареи типа «Корунд».

Типы деталей используют те же, что и на рис.1.

Рис. 4. Принципиальная схема прибора-испытателя конденсаторов (вариант 2).

Микросхему К561ЛА7 без каких-либо схемных изменений можно заменить на К561ЛЕ5.

Для подключения прибора к проверяемому конденсатору и прокалыванию защитного лака, которым обычно покрыты печатные платы радиоаппаратуры, рекомендуется изготовить специальные щупы.

По сути, это два корпуса от шариковых ручек, в которые вместо пасты вставлены отрезки стальной проволоки (удобно использовать отслужившие велосипедные спицы), заостренные с одной стороны. К утолщенным концам припаивают гибкий экранированный провод, который подключают к гнездам XS1, XS2. Для удобства концы стержней можно слегка изогнуть.

Налаживание прибора сводится к подгонке (сопротивления резисторов R11, R12 устанавливают в среднее положение) шкалы путем измерения емкости заведомо исправных конденсаторов с возможно меньшим допускаемым отклонением емкости от номинала (это, например, конденсаторы К52-1, К53-1, К53-4, К76П-1 и т.п.

Шкалу микроамперметра градуируют непосредственно в микрофарадах. Перед измерением шкалу калибруют переменным резистором R12, ось которого выведена на лицевую панель;устанавливают стрелку микроамперметра РА1 на отметку «0» (100 мкА при использовании головки с данным максимальным отклонением).

Пределы измерения при необходимости можно сместить в сторону больших или меньших значений, для этого следует лишь соответственно изменить емкость конденсатора С1 или сопротивления подстроечных резисторов R2-R4, а также подкорректировать сопротивление резистора R5 (рис.4).

При измерении емкости неполярных конденсаторов полярность подключения прибора не имеет значения. Печатная плата и размещение элементов показаны на рис.5.

Автор: С.В. Прус, г. Староконстантинов, Хмельницкая обл.

Литература: 1. Болгов. А. Испытатель оксидных конденсаторов // Р-1989.-№6.

ПРОВЕРКА КОНДЕНСАТОРОВ БЕЗ ВЫПАЙКИ

Прошло примерно полтора года, с тех пор, как я начал регулярно заниматься ремонтами электроники. Как оказалось дело это не менее интересное, чем конструирование электронных конструкций. Понемногу появились люди, желающие, кто время от времени, а кто и регулярно, сотрудничать со мной как с мастером. В связи с тем что рентабельность большинства производимых ремонтов не позволяет снимать помещение, иначе аренда съедает большую часть прибыли, работаю в основном на дому либо выезжаю с инструментами к знакомым ИП имеющим скупку бытовой электроники и мастерскую.

Параллельно со знакомым, выкупаем технику на местном форуме и Авито, ремонтируем и знакомый реализует, оба в долях с реализации. Но суть не в этом. Сегодня решил поделиться с читателями схемой простого, но очень полезного для любого ремонтника — электронщика устройства, ESR метра, позволяющего корректно измерять этот параметр, в большинстве случаев без выпаивания электролитических конденсаторов. ESR, оно же ЭПС (Эквивалентное Последовательное Сопротивление) — параметр конденсатора очень сильно влияющий на его работоспособность при работе в высокочастотных цепях. Какие же это устройства?

Это абсолютно любые схемы с применением стабилизаторов, DC-DC преобразователей питания, импульсные блоки питания для любой техники, от компьютерной — до мобильных зарядок.

Без этого устройства значительная часть ремонтов выполняемых мною либо вообще не могла бы быть выполнена, либо все же была выполнена, но с большими неудобствами в виде постоянного выпаивания и запаивания обратно электролитических конденсаторов небольшого номинала, с целью измерения эквивалентного последовательного сопротивления с помощью транзистор тестера. Мой же прибор, позволяет измерять этот параметр не выпаивая деталь, просто прикоснувшись пинцетом к выводам конденсатора.

Данные конденсаторы номиналом 0.33-22 мкФ, как известно очень редко имеют насечки в верхней части корпуса, по которым конденсаторы большего номинала, вздуваются и раскрываются розочкой, например всем знакомые конденсаторы на материнских платах и блоках питания. Дело в том, что конденсатор, не имеющий этих насечек для выпускания излишнего образовавшегося давления, визуально, без измерения прибором, даже для опытного электронщика ничем не отличим от полностью рабочего.

Компьютерный блок питания

Конечно, если домашнему мастеру предстоит разовый ремонт, например компьютерного блока питания АТХ формата, собирать данный прибор не имеет смысла, проще заменить сразу все конденсаторы мелкого номинала на новые, но если вы ремонтируете хотя бы пять блоков питания в полгода вам этот прибор уже желателен к сборке. Какие альтернативы есть, сборке этого измерителя? Покупной прибор стоимостью порядка 2000 рублей, ESR micro.

ESR micro — фото

Из отличий и достоинств покупного прибора могу назвать только то, что у него показания выводятся сразу в миллиОмах, а у моего прибора нужно переводить из миллиВольт в миллиОмы. Что впрочем не вызывает затруднений, достаточно откалибровать прибор по значениям низкоомных точных резисторов и составить для себя таблицу. Поработав с прибором пару месяцев, уже визуально, безо всяких таблиц, просто взглянув на дисплей мультиметра уже видишь нормальное значение ESR конденсатора — на грани либо уже необходима замена. Схема моего прибора, кстати, в свое время была взята из журнала Радио.

Схема принципиальная прибора

Изначально прибор был собран с самодельными щупами – пинцетом, имеющим широкие губки, неудобным при измерении на платах, с плотным монтажом. Затем присмотрел себе на Али экспресс щупы — пинцет для измерения SMD, подключаемые к мультиметру. Заказав пинцет, провод был безжалостно укорочен, для того чтобы точность не сильно пострадала при измерении, из-за длины проводов щупов. Не забывайте, там счет идет на миллиОмы.

Сначала прибор у меня подключался щупами к мультиметру и был выполнен в виде приставки, но постепенно надоело крутить каждый раз ручку мультиметра, вырабатывая тем самым ресурс переключений. Мне тогда как раз товарищ подарил мультиметр, в связи с тем что свой я временно попалил на неразрядившемся электролитическом конденсаторе. Впоследствии прибор был восстановлен, резисторы были перепаяны, а этот мультиметр, у него были отломлены разъемы для подключения щупов на плате, и были кем-то брошены перемычки, но точность измерений уже была не та.

ESR метр открытый корпус

Но для моих целей погрешность 1-2 процента ничего не решала и решил сделать прибор полностью автономным. Для этого скрепил корпус мультиметра и корпус ESR метра на винты, и сделал для большего удобства коммутацию одновременного включения, встроенного мультиметра и ESR метра с помощью выключателя на две группы контактов. Соединения мультиметра и ESR метра, ранее осуществляемые с помощью щупов, были сделаны проводами, внутри соединенных корпусов.

Прибор испытатель конденсаторов — внешний вид

Как показала практика, времени на приведение прибора в боевую готовность, а затем, после проведения измерений, отключения, стало уходить существенно меньше, а соответственно повысилось удобство использования. Из дальнейших доработок планируемых в данном приборе — это перевести его на аккумуляторное питание, от Li-ion аккумулятора от телефона, с возможностью подзарядки от платы адаптера заряда через встроенное Mini USB гнездо, от любого зарядного устройства от смартфона с возможностью подключения USB кабеля.

Как показала практика, ранее мною уже был переделан на аккумуляторное питание с помощью аналогичного способа Транзистор тестер Т4, также имеющий, как и ESR метр, высокое потребление благодаря установленному в нем графическому дисплею. Ощущения от переделки остались только положительные. За полгода заряжал всего один раз. В устройстве был установлен повышающий DC-DC преобразователь превращающий 3.7 вольта на выходе аккумулятора в 9 вольт, необходимые для работы прибора.

Макетная плата ESR метра

В данном случае, в моем приборе будет двойное преобразование напряжения: сначала с 3.7 вольта в 9 вольт, хотя возможно я выставлю и минимально допустимое для входа стабилизатора 7805 CV напряжение 7.5 вольт, от данного стабилизатора сейчас запитана схема прибора. Сам прибор, как можно видеть на фото, изначально питается от батареи Крона, которая, как известно, имеет относительно небольшую емкость.

Напряжение питания данной микросхемы позволяет питать ее напрямую от 9 вольт, но дело в том, что по мере разряда батареи заметил, что показания при измерении начинают потихоньку уплывать. Для борьбы с этим, и был установлен стабилизатор 7805, который, как известно, выдает у нас стабильные 5 вольт на выходе.

Выключатель с защитой от случайных включений

Также в связи с тем, что прибор приходится часто носить с собой в дипломате, на ремонты на выездах, и уже были случаи самопроизвольного включения выключателя, и соответственно высаживании батареи Крона в ноль, что сейчас, при коммутации данным выключателем 2 линий питания, мультиметра и самого прибора, было бы уже более нежелательным, так как в таком случае, придется покупать уже две кроны, стоимостью 45 рублей.

Коммутация выключателем на 2 группы контактов

Решено было просто приклеить на термоклей, по краям выключателя, два самореза, от крепления кулера, в компьютерном блоке питания. Микросхема, применяемая в приборе, широко распространенная, и довольно дешевая, я приобретал ее, по стоимости, всего порядка 15-20 рублей.

Весь прибор, обошелся мне, с учетом бесплатного мультиметра, щупов – пинцета с Али экспресс, стоимостью 100 рублей, и стоимости деталей для сборки прибора, и батареи крона, всего ушло порядка 150 рублей, итого все необходимое обошлось в смешную сумму 250 рублей.

Пинцет для измерения конденсаторов на плате

Что окупилось уже с применением прибора в ремонтах давно и многократно. Конечно кто нибудь, имеющий возможность и желание приобрести ESR micro, может сказать сейчас, зачем мне эти неудобства, каждый раз переводить из миллиВольт, в миллиОмы, хотя это и не требуется, как я уже выше писал, если на покупном приборе я могу сразу видеть, уже готовые значения.

Таблица значений ESR

Дело в том, что подобные приборы имеют в своем составе микроконтроллер, и при измерении подключаются напрямую, условно говоря “портом” микроконтроллера к измеряемому конденсатору. Что крайне нежелательно, достаточно один раз не разрядить конденсатор после обесточивания схемы перед измерением, путем замыкания его выводов металлическим предметом, например отверткой, как мы рискуем получить нерабочий прибор.

Первая версия щупов

Что при его немаленькой стоимости, согласитесь, не лучший вариант. В моем же приборе, параллельно измеряемому конденсатору подключается резистор 100 Ом, что означает если конденсатор все-же и будет заряжен, то он при подключении щупов начнет разряжаться. В самом же крайнем случае, если микросхема применяемая в моем приборе выгорит, вам для произведения ремонта достаточно будет лишь вынуть микросхему из DIP панельки и воткнуть новую.

Апгрейд прибора

Все, ремонт прибора окончен, можно снова производить измерения. А учитывая низкую стоимость микросхемы это не становится проблемой, достаточно лишь приобрести одну – две микросхемы про запас при закупе деталей для сборки данного ЭПС-метра.

Финальная версия

В целом прибор получился просто шикарным и очень удобным, и даже если бы детали для его сборки стоили в 2 раза больше — я бы все-равно смело мог бы рекомендовать этот ЭПС-метр к сборке всем начинающим мастерам имеющим скромный бюджет, либо желающим сэкономить и не переплачивать лишнего. Всем удачных ремонтов! AKV.