Управление семисегментным индикатором

Светодиодные семисегментные индикаторы

Их конструкция и особенности

Наверняка вы уже видели индикаторы – «восьмёрки». Это и есть семисегментный светодиодный индикатор, который служит для отображения цифр от 0 до 9, а также децимальной точки (DP – Decimal point) или запятой.

Конструктивно такое изделие представляет собой сборку светодиодов. Каждый светодиод сборки засвечивает свой знакосегмент.

В зависимости от модели сборка может состоять из 1 – 4 семисегментных групп. Например, индикатор АЛС333Б1 состоит из одной семисегментной группы, которая способна отображать всего лишь одну цифру от 0 до 9.

А вот светодиодный индикатор KEM-5162AS уже имеет две семисегментных группы. Он является двухразрядным. Далее на фото показаны разные светодиодные семисегментные индикаторы.

Также существуют индикаторы с 4-мя семисегментными группами – четырёхразрядные (на фото – FYQ-5641BSR-11). Их можно использовать в самодельных электронных часах.

Как обозначаются семисегментные индикаторы на схемах?

Так как семисегментный индикатор – это комбинированный электронный прибор, то изображение его на схемах мало отличается от его внешнего вида.

Стоит только обратить внимание на то, что каждому выводу соответствует конкретный знакосегмент, к которому он подключен. Также имеется один или несколько выводов общего катода или анода – в зависимости от модели прибора.

Особенности семисегментных индикаторов.

Несмотря на кажущуюся простоту этой детали и у неё есть особенности.

Во-первых, светодиодные семисегментные индикаторы бывают с общим анодом и с общим катодом. Данную особенность следует учитывать при его покупке для самодельной конструкции или прибора.

Вот, например, цоколёвка уже знакомого нам 4-ёх разрядного индикатора FYQ-5641BSR-11.

Как видим, аноды у светодиодов каждой цифры объединены и выведены на отдельный вывод. Катоды же у светодиодов, которые принадлежат к знакосегменту (например, G), соединены вместе. От того, какую схему соединений имеет индикатор (с общим анодом или катодом) зависит очень многое. Если взглянуть на принципиальные схемы приборов с применением семисегментных индикаторов, то станет ясно, почему это так важно.

Кроме небольших индикаторов есть большие и даже очень большие. Их можно увидеть в общественных местах, обычно в виде настенных часов, термометров, информеров.

Чтобы увеличить размеры цифр на табло и одновременно сохранить достаточную яркость каждого сегмента, используется несколько светодиодов, включенных последовательно. Вот пример такого индикатора – он умещается на ладони. Это FYS-23011-BUB-21.

Один его сегмент состоит из 4 светодиодов, включенных последовательно.

Чтобы засветить один из сегментов (A, B, C, D, E, F или G), нужно подать на него напряжение в 11,2 вольта (2,8V на каждый светодиод). Можно и меньше, например, 10V, но яркость тоже уменьшится. Исключение составляет децимальная точка (DP), её сегмент состоит из двух светодиодов. Для неё нужно всего 5 — 5,6 вольт.

Также в природе встречаются двухцветные индикаторы. В них встраиваются, например, красные и зелёные светодиоды. Получается, что в корпус встроено как бы два индикатора, но со светодиодами разного цвета свечения. Если подать напряжение на обе цепи светодиодов, то можно получить жёлтый цвет свечения сегментов. Вот схема соединений одного из таких двухцветных индикаторов (SBA-15-11EGWA).

Если коммутировать выводы 1 ( RED ) и 5 ( GREEN ) на «+» питания через ключевые транзисторы, то можно менять цвет свечения отображаемых чисел с красного на зелёный. А если же одновременно подключить выводы 1 и 5, то цвет cвечения будет оранжевым. Вот так можно баловаться с индикаторами .

Управление семисегментными индикаторами.

Для управления семисегментными индикаторами в цифровых устройствах используют регистры сдвига и дешифраторы. Например, широко распространённый дешифратор для управления индикаторами серии АЛС333 и АЛС324 – микросхема К514ИД2 или К176ИД2. Вот пример.

А для управления современными импортными индикаторами обычно используются регистры сдвига 74HC595. По идее, управлять сегментами табло можно и напрямую с выходов микроконтроллера. Но такую схему используют редко, так как для этого требуется задействовать довольно много выводов самого микроконтроллера. Поэтому для этой цели применяются регистры сдвига. Кроме этого, ток, потребляемый светодиодами знакосегмента, может быть больше, чем ток, который может обеспечить рядовой выход микроконтроллера.

Для управления большими семисегментными индикаторами, такими как, FYS-23011-BUB-21 применяются специализированные драйверы, например, микросхема MBI5026.

Что внутри семисегментного индикатора?

Ну и немного вкусненького. Любой электронщик не был бы таковым, если бы не интересовался «внутренностями» радиодеталей. Вот что внутри индикатора АЛС324Б1.

Чёрные квадратики на основании – это кристаллы светодиодов. Тут же можно разглядеть золотые перемычки, которые соединяют кристалл с одним из выводов. К сожалению, этот индикатор уже работать не будет, так как были оборваны как раз эти самые перемычки . Но зато мы можем посмотреть, что скрывается за декоративной панелькой табло.

Семисегментный индикатор

Семисегментный светодиодный индикатор
Схема подключения одноразрядного семисегментного индикатора
Схема подключения многоразрядного семисегментного индикатора

Семисегментный светодиодный индикатор — устройство отображения цифровой информации. Это — наиболее простая реализация индикатора, который может отображать арабские цифры. Для отображения букв используются более сложные многосегментные и матричные индикаторы.

Семисегментный светодиодный индикатор , как говорит его название, состоит из семи элементов индикации (сегментов), включающихся и выключающихся по отдельности. Включая их в разных комбинациях, из них можно составить упрощённые изображения арабских цифр.
Сегменты обозначаются буквами от A до G; восьмой сегмент — десятичная точка (decimal point, DP), предназначенная для отображения дробных чисел.
Изредка на семисегментном индикаторе отображают буквы.

Семисегментные светодиодные индикаторы бывают разных цветов, обычно это белый, красный, зеленый, желтый и голубой цвета. Кроме того, они могут быть разных размеров.

Также, светодиодный индикатор может быть одноразрядным (как на рисунке выше) и многоразрядным. В основном в практике используются одно-, двух-, трех- и четырехразрядные светодиодные индикаторы:

Кроме десяти цифр, семисегментные индикаторы способны отображать буквы. Но лишь немногие из букв имеют интуитивно понятное семисегментное представление.
В латинице : заглавные A, B, C, E, F, G, H, I, J, L, N, O, P, S, U, Y, Z, строчные a, b, c, d, e, g, h, i, n, o, q, r, t, u.
В кириллице : А, Б, В, Г, г, Е, и, Н, О, о, П, п, Р, С, с, У, Ч, Ы (два разряда), Ь, Э/З.
Поэтому семисегментные индикаторы используют только для отображения простейших сообщений.

Всего семисегментный светодиодный индикатор может отобразить 128 символов:

В обычном светодиодном индикаторе девять выводов: один идёт к катодам всех сегментов, а остальные восемь — к аноду каждого из сегментов. Эта схема называется «схема с общим катодом», существуют также схемы с общим анодом (тогда все наоборот). Часто делают не один, а два общих вывода на разных концах цоколя — это упрощает разводку, не увеличивая габаритов. Есть еще, так называемые «универсальные», но я лично с такими не сталкивался. Кроме того существуют индикаторы со встроенным сдвиговым регистром, благодаря чему намного уменьшается количество задействованных выводов портов микроконтроллера, но они намного дороже и в практике применяются редко. А так как необъятное не объять, то такие индикаторы мы пока рассматривать не будем (а ведь есть еще индикаторы с гораздо большим количеством сегментов, матричные).

Многоразрядные светодиодные индикаторы часто работают по динамическому принципу: выводы одноимённых сегментов всех разрядов соединены вместе. Чтобы выводить информацию на такой индикатор, управляющая микросхема должна циклически подавать ток на общие выводы всех разрядов, в то время как на выводы сегментов ток подаётся в зависимости от того, зажжён ли данный сегмент в данном разряде.

Подключение одноразрядного семисегментного индикатора к микроконтроллеру

На схеме ниже, показано как подключается одноразрядный семисегментный индикатор к микроконтроллеру.
При этом следует учитывать, что если индикатор с ОБЩИМ КАТОДОМ, то его общий вывод подключается к «земле», а зажигание сегментов происходит подачей логической единицы на вывод порта.
Если индикатор с ОБЩИМ АНОДОМ, то на его общий провод подают «плюс» напряжения, а зажигание сегментов происходит переводом вывода порта в состояние логического нуля .

Осуществление индикации в одноразрядном светодиодном индикаторе осуществляется подачей на выводы порта микроконтроллера двоичного кода соответствующей цифры соответствующего логического уровня (для индикаторов с ОК — логические единицы, для индикаторов с ОА — логические нули).

Токоограничительные резисторы могут присутствовать в схеме, а могут и не присутствовать. Все зависит от напряжения питания, которое подается на индикатор и технических характеристик индикаторов. Если, к примеру, напряжение подаваемое на сегменты равно 5 вольтам, а они рассчитаны на рабочее напряжение 2 вольта, то токоограничительные резисторы ставить необходимо (чтобы ограничить ток через них для повышенного напряжении питания и не сжечь не только индикатор, но и порт микроконтроллера).
Рассчитать номинал токоограничительных резисторов очень легко, по формуле дедушки Ома.
К примеру, характеристики индикатора следующие (берем из даташита):
— рабочее напряжение — 2 вольта
— рабочий ток — 10 мА (=0,01 А)
— напряжение питания 5 вольт
Формула для расчета:
R= U/I (все значения в этой формуле должны быть в Омах, Вольтах и Амперах)
R= (напряжение питания — рабочее напряжение)/рабочий ток
R= (5-2)/0.01 = 300 Ом

Читайте также  Защита сооружений от природного электричества

Подключение многоразрядного семисегментного индикатора к микроконтроллеру

Схема подключения многоразрядного семисегментного светодиодного индикатора в основном та-же, что и при подключении одноразрядного индикатора. Единственное, добавляются управляющие транзисторы в катодах (анодах) индикаторов:

На схеме не показано, но между базами транзисторов и выводами порта микроконтроллера необходимо включать резисторы, сопротивление которых зависит от типа транзистора (номиналы резисторов рассчитываются, но можно и попробовать применить резисторы номиналом 5-10 кОм).

Осуществление индикации разрядами осуществляется динамическим путем:
— выставляется двоичный код соответствующей цифры на выходах порта РВ для 1 разряда, затем подается логический уровень на управляющий транзистор первого разряда
— выставляется двоичный код соответствующей цифры на выходах порта РВ для 2 разряда, затем подается логический уровень на управляющий транзистор второго разряда
— выставляется двоичный код соответствующей цифры на выходах порта РВ для 3 разряда, затем подается логический уровень на управляющий транзистор третьего разряда
— итак по кругу
При этом надо учитывать:
— для индикаторов с ОК применяется управляющий транзистор структуры NPN (управляется логической единицей)
— для индикатора с ОА — транзистор структуры PNP (управляется логическим нулем)

При низковольтном питании микроконтроллера и маломощных светодиодных индикаторах, в принципе, можно отказаться от использования в схеме и токоограничительных резисторов, и управляющих транзисторах — подключать выводы индикатора непосредственно к выводам портов микроконтроллера, так как при динамической индикации ток потребления сегментами уменьшается. При этом следует учитывать, что разряды при применении индикаторов с ОК управляются логическим нулем, а индикаторы с ОА — логической единицей.

(24 голосов, оценка: 4,92 из 5)

Электроника для всех

Блог о электронике

Управление семисегментными индикаторами по одному проводу

Часто бывает ситуация, когда надо выполнить простую задачу с которой справится даже грошовый контроллер вроде ATTiny12 , но вот незадача — нужна индикация, а под какой нибудь семисегментный индикатор придется убить дофига выводов, а их всего восемь, из которых два питание, а один Reset . Можно, конечно, взять просто МК потолще, но мне больше по душе разные схемотехнические извраты. Вот и тут камрад Kalobyte подкинул ссылку на прикольную схему управления тройным (а в перспективе хоть десятерным) семисегментным индикатором по одному проводу.

Индикатор зажигается посредством сдвигового регистра 74HC164 , всего таких регистров можно навесить очень много, просто соединив по цепи несколько регистров. Если отбросить RESET , то для проталкивания данных в регистр нужны две линии — Data и Clock . Путем небольшого изврата можно эти две линии обьединить в одну.

Для начала немного теории
Обычная RC цепочка. Отличается тем, что напряжение на конденсаторе не может измениться мгновенно. Время заряда и разряда зависит от емкости кондера и сопротивления резистора. Оценить его можно по постоянной времени T=R*C , это время за которое заряд изменится примерно втрое (в е=2.7 раз).


Если мы пустим через нее длинный импульс , то конденсатор успеет как полностью зарядиться, так и полностью разрядиться.

Если подадим короткий импульс , по времени намного меньше чем постоянная времени, то напряжение на конденсаторе изменится совершенно незначительно . Так, дрыгнется да и только. То же относительно короткой паузы. Незначительный провал и все возвращается на круги своя. Чуете куда я клоню?

Правильно!
У нас у регистра есть линия данных ( Data ) и линия строба ( Clock ). Когда уровень на Clock меняется с нуля на единицу (передний фронт) с линии Data считывается текущий уровень. Их можно разнести по разные стороны RC фильтра. И одни сигналы передавать узкими, другие широкими импульсами.

А теперь думаем. Строб един для всех регистров, а данные различные для разных битов. Поэтому строб будет всегда один, а данные будут меняться. Делаем строб узким и снимаем его до RC цепи . Узкие импульсы не могут пройти сквозь RC цепь, а данные передаем широкими импульсами, которые спокойно перезаряжают конденсатор. Данные мы снимаем после RC цепи .

Получается вот такая схема:


Сигналы Reset я даже рисовать не стал — они там намертво на +5 повешаны. Сброс регистров осуществляется загоном в него нулей. Регистов тут два, но как я уже писал, можно навесить их еще очень много, лишь бы хватило скорости их заполнять.

Осталось теперь хитрым образом формировать биты на линии. Чтобы было понятней, я нарисовал поясняющую картинку, на которой показана передача байта 10011010 .


Красная зона это уровень логической единицы , синяя — логического нуля . Между ними зона неопределенности, когда возможно ошибочное считывание, поэтому емкость конденсатора и сопротивление резистора нужно выбирать таким, чтобы переходный процесс от строб-импульса не попадал в эту зону. Красным цветом я отметил фронты на которых происходит считывание данных ну и стрелочками показал текущий логический уровень.

Ниже показаны типовые формы единицы и нуля. Как видишь, тут идет длинный импульс данных, который призван зарядить/разрядить конденсатор до нужного логического уровня, а потом краткий, как иголка, импульс строба. Причем в стробе нам важен только передний фронт.

А вот так выглядит осциллограмма реальной передачи

Вот, взяли и применив копеечный регистр, сэкономили на микроконтроллере. Зажопили кучу выводов и получили моральное удоволетворение от извращенского метода 🙂 Попутно вкурив в очередной пример применения конденсатора и интегрирующей цепочки.

Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!

А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.

126 thoughts on “Управление семисегментными индикаторами по одному проводу”

Да, с конденсатором класно придумано! Только вот соединять больше трех сдвиговых регистров последовательно и напрямую подключать к ним индикаторы — это же ужасные тормоза! Тут лучше уж ставить после регистров какой нибудь дешифратор. К примеру, если регистров будет два, то мы получим 2^14=16384 комбинаций, то есть сможем уверено управлять четырьмя индикаторами, а если три, то мы сможем отобразить значение от 0 до 2 000 000 с копейками.

Да ладно те, какие там тормоза. 5-6 байт протолкнуть милое дело. Кондер помельче поставить и вперед. А чтобы прога не тупила — по прерываниям это сделать.

Здравствуйте! Пишу Вам из Узбекистана, нужна Ваша помощь. Дело в том что, имеется газо заправочная станция оборудование установлено китайское и на каждой газовой колонке имеются индикаторы которые показывают кол-во заправленного газа, сумму за этот газ.
Проблема в том что из 10 газовых колонок нужно эти данные чтобы показывали у оператора. Китайские товарищи установили не полностью оборудование. Как можно сделать чтобы индикаторы которые показывают на газовых калонках одновременно отображались у оператора. Надеюсь на Вашу помощь. Напишите пожалуйста ответ на мой е-mail: asianet_namangan@mail.ru Заранее благодарен. Надеюсь на Ваше понимание!

Его же не надо динамически крутить. Можно и статично задать. Правда обновлять можно только целиком.

Я думаю что такое решение — передача данных по 1 проводу — можно применить для «индикаторной головки» — устройства отображения информации без микроконтроллера ( если там есть МК то конечно есть формат UART и 1-wire ). Этот иникатор может подключаться к устройству когда нужно что-то проконтролировать — удобство в том что нужно простое внешнее гнездо — земля, питание и сигнал — например стерео аудио разъем 3.5 или 2.5 мм.

Этот индикатор может быть один на несколько совершенно разных устройств. Причем устройства могу слать отладочную информацию всегда — т.е. им не нужно сообщать о подключении индикатора.

В приемнике Р-45 (http://p-45.narod.ru/) индикация сделана по похожему принципу.

Идея неплохая, но по мне так лутче поставить два 74HC595 и по модифицированому SPI можно рулить этим дисплеем с динамической индикацией.

Потратишь три вывода.

А здесь ведь реально надо два вывода задействовать, иначе будет на индикаторах мерцание, когда данные заталкиваются. Или оно не сильно будет заметно?.

Если делать очень быстро и линейка не сильно длинная, то не будет.

Идея не «неплохая», а гениальная ! Сколько всего можно реализовать по вот такой вот схемке… 🙂

Читайте также  Устройство отображения аудио спектра

А что за осцил? Ригол сгорел?

Да это не мой, это фотка с форума немецкого. А осцил, судя по картинке, старый цифровой. У которого изображение на трубку выводится.

Не старый цифровой, а современный аналоговый с цифровым управлением и параметризацией (измерениями), Инстек такие делает

А он может запоминать? Тут судя по всему запоминание картинки идет.

А эту схему можно ведь использовать для опроса восьми кнопок по одному проводу?

используй ацп
реальный пример видел в плате управления какого-то монитора

АЦП может не быть или он может быть занят под другую задачу. Тогда проканает замер постоянной времени. А уж из нее можно резистор вычислить.

Чет понять не могу, как ее мерять… Типа два порта, между ними конденсатор?

Нет один порт. С него через конденсатор и резистор на землю.

Порт настраиваем на выход и кладем на землю, потом настраиваем на вход и на подтяг, чтобы вверх его тянуло через встроенный подтягивающий резистор. Скорость заряда (равно и скорость появления лог1) будет зависить от (Rподтяга+Rвхода)*С Емкость неизменна, сопротивление подтяга тоже константа, а вот сопротивление входа может менятся произвольно (наш датчик). В результате наступление единицы будет разным по времени. Чем больше сопротивление, тем дольше. Таким образом можно косвенно определить сопротивление. Не слишком точно, но все же. На безрыбье и рак рыба, как говорится.

И в телевизорах САМСУНГ так было сделано. Все кнопки в цепочку через резисторы и на вход АЦП.

Думаю можно применить тот же способ — нажатиями кнопки меняется постоянная времени RC, от этого заряд ведет себя по разному. Таким же образом можно и сенсорную кнопку сделать — там нажатие будет менять емкость.

Управление семисегментным индикатором

В этой статье мы поговорим о цифровой индикации.
Семисегментные светодиодные индикаторы предназначены для отображения арабских цифр от 0 до 9 (рис.1).


Рис.1.

Такие индикаторы бывают одноразрядные, которые отображают только одно число, но семисегментных групп, объединенных в один корпус может быть и больше (многоразрядные). В этом случае цифры разделяются децимальной точкой (рис.2)


Рис.2.

Индикатор называется семисегментным из-за того, что отображаемый символ строится из отдельных семи сегментов. Внутри корпуса такого индикатора находятся светодиоды, каждый из которых засвечивает свой сегмент.
Буквы и другие символы на таких индикаторах отображать проблематично, поэтому для этих целей используются 16-сегментные индикаторы.

Светодиодные индикаторы бывают двух типов.
В первом из них все катоды, т.е. отрицательные выводы всех светодиодов, объединены вместе и для них выделен соответствующий вывод на корпусе.
Остальные выводы индикатора соединены к аноду каждого из светодиодов (рис.3, а). Такая схема называется «схема с общим катодом».
Также существуют индикаторы, у которых светодиоды каждого из сегментов подключены по схеме с общим анодом (рис.3, б).


Рис.3.

Каждый сегмент обозначен соответствующей буквой. На рисунке 4 представлено их расположение.

Рис.4.

В качестве примера рассмотрим двухразрядный семисегментный индикатор GND-5622As-21 красного свечения. Кстати существуют и другие цвета, в зависимости от модели.
С помощью трехвольтовой батарейки можно включать сегменты, а если объединить группу выводов в кучку и подать на них питание, то можно даже отображать цифры. Но такой метод является неудобным, поэтому для управления семисегментными индикаторами используют регистры сдвига и дешифраторы. Также, нередко, выводы индикатора подключаются напрямую к выходам микроконтроллера, но лишь в том случае когда используются индикаторы с низким потреблением тока. На рисунке 5 представлен фрагмент схемы с использованием PIC16F876A.


Рис.5.

Для управления семисегментным индикатором часто используется дешифратор К176ИД2.
Эта микросхема способна преобразовать двоичный код, состоящий из нулей и единиц в десятичные цифры от 0 до 9.

Чтобы понять, как все это работает, нужно собрать простую схему (рис.6). Дешифратор К176ИД2 выполнен в корпусе DIP16. Он имеет 7 выходных вывода (выводы 9 — 15), каждый из которых предназначен для определенного сегмента. Управление точкой здесь не предусмотрено. Также микросхема имеет 4 входа (выводы 2 — 5) для подачи двоичного кода. На 16-й и 8-ой вывод подается плюс и минус питания соответственно. Остальные три вывода являются вспомогательными, о них я расскажу чуть позже.


Рис.6.

DD1 — К176ИД2
R1 — R4 ( 10 — 100 кОм)
HG1 — GND-5622As-21

В схеме присутствует 4 тумблера (можно любые кнопки), при нажатии на них на входы дешифратора подается логическая единица от плюса питания. Кстати питается сама микросхема напряжением от 3 до 15 Вольт. В данном примере вся схема питается от 9-вольтовой «кроны».

Также в схеме присутствует 4 резистора. Это, так называемые, подтягивающие резисторы. Они нужны, чтобы гарантировать на логическом входе низкий уровень, при отсутствии сигнала. Без них показания на индикаторе могут отображаться некорректно. Рекомендуется использовать одинаковые сопротивления от 10 кОм до 100 кОм.

На схеме выводы 2 и 7 индикатора HG1 не подключены. Если подключить к минусу питания вывод DP, то будет светиться децимальная точка. А если подать минус на вывод Dig.2, то будет светиться и вторая группа сегментов (будет показывать тот же символ).

Входы дешифратора устроены так, что для отображения на индикаторе чисел 1, 2, 4 и 8 требуется нажатие лишь одной кнопки (на макете установлены тумблеры, соответствующие входам D0, D1, D2 и D3). При отсутствии сигнала отображается цифра ноль. При подаче сигнала на вход D0 отображается цифра 1. И так далее. Для отображения других цифр требуется нажатие комбинации тумблеров. А какие именно нужно нажимать нам подскажет таблица 1.


Таблица 1.

Чтобы отобразить цифру «3» необходимо логическую единицу подать на вход D0 и D1. Если подать сигнал на D0 и D2, то отобразится цифра «5» (рис.6).


Рис.6.

Здесь представлена расширенная таблица, в которой мы видим не только ожидаемую цифру, но и те сегменты (a — g), которые составят эту цифру.


Таблица 2.

Вспомогательными являются 1, 6 и 7-ой выводы микросхемы (S, M, К соответственно).

На схеме (рис.6) 6-ой вывод «М» заземлен (на минус питания) и на выходе микросхемы присутствует положительное напряжение для работы с индикатором с общим катодом. Если используется индикатор с общим анодом, то на 6-ой вывод следует подать единицу.

Если на 7-ой вывод «К» подать логическую единицу, то знак индикатора гасится, ноль разрешает индикацию. В схеме данный вывод заземлен (на минус питания).

На первый вывод дешифратора подана логическая единица (плюс питания), что позволяет отображать преобразованный код на индикатор. Но если подать на данный вывод (S) логический ноль, то входы перестанут принимать сигнал, а на индикаторе застынет текущий отображаемый знак.

Стоит заметить одну интересную вещь: мы знаем, что тумблер D0 включает цифру «1», а тублер D1 цифру «2». Если нажать оба тумблера, то высветится цифра 3 (1+2=3). И в других случаях на индикатор выводится сумма цифр, составляющих эту комбинацию. Приходим к выводу, что входы дешифратора расположены продуманно и имеют очень логичные комбинации.

Также вы можете посмотреть видео к этой статье.

ОБОРУДОВАНИЕ
ТЕХНОЛОГИИ
РАЗРАБОТКИ

Блог технической поддержки моих разработок

Урок 19. Семисегментные светодиодные индикаторы (LED). Режимы управления, подключение к микроконтроллеру.

В уроке узнаем о схемах подключения семисегментных светодиодных индикаторов к микроконтроллерам, о способах управления индикаторами.

Светодиодные семисегментные индикаторы остаются одними из самых популярных элементов для отображения цифровой информации.

Этому способствуют следующие их качества.

  • Низкая цена. В средствах индикации нет ничего дешевле светодиодных цифровых индикаторов.
  • Разнообразие размеров. Самые маленькие и самые большие индикаторы – светодиодные. Мне известны светодиодные индикаторы с высотой цифры от 2,5 мм, до 32 см.
  • Светятся в темноте. В некоторых приложениях это свойство чуть ли не решающее.
  • Имеют различные цвета свечения. Бывают даже двухцветные.
  • Достаточно малые токи управления. Современные светодиодные индикаторы могут подключаться к выводам микроконтроллеров без дополнительных ключей.
  • Допускают жесткие условия эксплуатации (температурный диапазон, высокая влажность, вибрации, агрессивные среды и т.п.). По этому качеству светодиодным индикаторам нет равных среди других типов элементов индикации.
  • Неограниченный срок службы.

Типы светодиодных индикаторов.

Семисегментный светодиодный индикатор отображает символ с помощью семи светодиодов – сегментов цифры. Восьмой светодиод засвечивает децимальную точку. Так что в семисегментном индикаторе 8 сегментов.

Сегменты обозначаются латинскими буквами от ”A” до ”H”.

Аноды или катоды каждого светодиода объединяются в индикаторе и образуют общий провод. Поэтому существуют индикаторы с общим анодом и общим катодом.

Светодиодный индикатор с общим анодом.

Светодиодный индикатор с общим катодом.

Статическое управление светодиодным индикатором.

Подключать светодиодные индикаторы к микроконтроллеру необходимо через резисторы, ограничивающие ток.

Расчет резисторов такой же, как для отдельных светодиодов.

R = ( U питания — U сегмента ) / I сегмента

Для этой схемы: I сегмента = ( 5 – 1,5 ) / 1000 = 3,5 мА

Читайте также  Каскадный широкополосный усилитель мощности

Современные светодиодные индикаторы достаточно ярко светятся уже при токе 1 мА. Для схемы с общим анодом засветятся сегменты, на управляющих выводах которых микроконтроллер сформирует низкий уровень.

В схеме подключения индикатора с общим катодом меняется полярность питания и сигналов управления.

Засветится сегмент, на управляющем выводе которого будет сформирован высокий уровень (5 В).

Мультиплексированный режим управления светодиодными (LED) индикаторами.

Для подключения каждого семисегментного индикатора к микроконтроллеру требуется восемь выводов. Если индикаторов (разрядов) 3 – 4, то задача становится практически не выполнимой. Просто не хватит выводов микроконтроллера. В этом случае индикаторы можно подключить в мультиплексированном режиме, в режиме динамической индикации.

Выводы одноименных сегментов каждого индикатора объединяются. Получается матрица светодиодов , подключенных между выводами сегментов и общими выводами индикаторов. Вот схема мультиплексированного управления трех разрядным индикатором с общим анодом.

Для подключения трех индикаторов потребовалось 11 выводов, а не 24, как при статическом режиме управления.

При динамической индикации в каждый момент времени горит только одна цифра. На общий вывод одного из разрядов подается сигнал высокого уровня (5 В), а на выводы сегментов поступают сигналы низкого уровня для тех сегментов, какие должны светиться в этом разряде. Через определенное время зажигается следующий разряд. На его общий вывод подается высокий уровень, а на выводы сегментов сигналы состояния для этого разряда. И так для всех разрядов в бесконечном цикле. Время цикла называется временем регенерации индикаторов. Если время регенерации достаточно мало, то человеческий глаз не заметит переключения разрядов. Будет казаться, что все разряды светятся постоянно. Для исключения мерцания индикаторов считается, что частота цикла регенерации должно быть не менее 70 Гц. Я стараюсь использовать не менее 100 Гц.

Схема динамической индикации для светодиодов с общим катодом выглядит так.

Меняется полярность всех сигналов. Теперь на общий провод активного разряда подается низкий уровень, а на сегменты, которые должны светиться – высокий уровень.

Расчет элементов динамической индикации светодиодных (LED) индикаторов.

Расчет несколько сложнее, чем для статического режима. В ходе расчета необходимо определить:

  • средний ток сегментов;
  • импульсный ток сегментов;
  • сопротивление резисторов сегментов;
  • импульсный ток общих выводов разрядов.

Т.к. разряды индикаторов светятся по очереди, то яркость свечения определяет средний ток. Мы должны выбрать его исходя из параметров индикатора и требуемой яркости. Средний ток будет определять яркость свечения индикатора на уровне, соответствующем статическому управлению с таким же постоянным током.

Выберем средний ток сегмента 1 мА.

Теперь рассчитаем импульсный ток сегмента. Чтобы обеспечить требуемый средний ток, импульсный ток должен быть в N раз больше. Где N число разрядов индикатора.

I сегм. имп. = I сегм. средн. * N

Для нашей схемы I сегм. имп. = 1 * 3 = 3 мА.

Рассчитываем сопротивление резисторов, ограничивающих ток.

R = ( U питания — U сегмента ) / I сегм. имп.

R = ( 5 – 1,5 ) / 0.003 = 1166 Ом

Определяем импульсные токи общих выводов разрядов. Одновременно светиться могут 8 сегментов, значит надо импульсный ток одного сегмента умножить на 8.

I разряда имп. = I сегм. имп. * 8

Для нашей схемы I разряда имп. = 3 * 8 = 24 мА.

  • сопротивление резисторов выбираем 1,1 кОм;
  • выводы микроконтроллера управления сегментами должны обеспечивать ток не менее 3 мА;
  • выводы микроконтроллера выбора разряда индикатора должны обеспечивать ток не менее 24 мА.

При таких значениях токов индикатор может быть подключен непосредственно к выводам платы Ардуино, без использования дополнительных ключей. Для ярких индикаторов, таких токов вполне достаточно.

Схемы с дополнительными ключами.

Если индикаторы требуют больший ток, то необходимо использовать дополнительные ключи, особенно для сигналов выбора разрядов. Общий ток разряда в 8 раз больше тока одного сегмента.

Схема подключения светодиодного индикатора с общим анодом в мультиплексированном режиме с транзисторными ключами выбора разрядов.

Для выбора разряда в этой схеме необходимо сформировать сигнал низкого уровня. Соответствующий ключ откроется и подаст питание на разряд индикатора.

Схема подключения светодиодного индикатора с общим катодом в мультиплексированном режиме с транзисторными ключами выбора разрядов.

Для выбора разряда в этой схеме необходимо сформировать сигнал высокого уровня. Соответствующий ключ откроется и замкнет общий вывод разряда на землю.

Могут быть схемы, в которых необходимо использовать транзисторные ключи и для сегментов, и для общих выводов разрядов. Такие схемы легко синтезируются из двух предыдущих. Все показанные схемы используются при питании индикатора напряжением равным питанию микроконтроллера.

Ключи для индикаторов с повышенным напряжением питания.

Бывают индикаторы больших размеров, в которых каждый сегмент состоит из нескольких светодиодов, соединенных последовательно. Для питания таких индикаторов требуется источник с напряжением большим, чем 5 В. Ключи должны обеспечивать коммутацию повышенного напряжения с управлением от сигналов уровней микроконтроллера (обычно 5 В).

Схема ключей, замыкающих сигналы индикатора на землю, остается неизмененной. А ключи питания должны строиться по другой схеме, например, такой.

В этой схеме активный разряд выбирается высоким уровнем управляющего сигнала.

Между переключением разрядов индикатора на короткое время (1-5 мкс) должны выключаться все сегменты. Это время необходимо на завершение переходных процессов коммутации ключей.

Конструктивно выводы разрядов могут быть объединены как в одном корпусе многоразрядного индикатора, а может быть собран многоразрядный индикатор из отдельных одноразрядных. Более того, можете собрать индикатор из отдельных светодиодов, объединенных в сегменты. Так обычно поступают, когда необходимо собрать индикатор очень больших размеров. Все приведенные выше схемы будут справедливы и для таких вариантов.

В следующем уроке подключим семисегментный светодиодный индикатор к плате Ардуино, напишем библиотеку для управления им.

Семисегментный индикатор

Существуют такие параметры, для которых было бы удобнее выдавать объективную информацию, чем просто индикацию. Например, температура воздуха на улице или время на будильнике. Да, все это можно было бы сделать на светящихся лампочках или светодиодах. Один градус – один горящий светодиод или лампочка и тд. Но считать эти светлячки – ну уж нет! Но, как говорится, самые простые решения – самые надежные. Поэтому, долго не думая, разработчики взяли простые светодиодные полосы и расставили их в нужном порядке.

Семисегментные индикаторы

С появлением светодиодов ситуация кардинально изменилась в лучшую сторону. Светодиоды сами по себе потребляют маленький ток. Если расставить их в нужном положении, то можно высвечивать абсолютно любую информацию. Для того, чтобы высветить все арабские цифры, достаточно всего семь светящихся светодиодных полос – сегментов, выставленных определенным образом:

Почти ко всем таким семисегментным индикаторам добавляют также и восьмой сегмент – точку, для того, чтобы можно было показать целое и дробное значение какого-либо параметра

По идее у нас получается восьми сегментный индикатор, но по-старинке его также называют семисегментным.

Что получается в итоге? Каждая полоска на семисегментном индикаторе засвечивается светодиодом или группой светодиодов. В результате, засветив определенные сегменты, мы можем вывести цифру от 0 и до 9, а также буквы и символы.

Виды семисегментных индикаторов и обозначение на схеме

Существуют одноразрядные, двухразрядные, трехразрядные и четырехразрядные семисегментные индикаторы. Более четырех разрядов я не встречал.

На схемах семисегментный индикатор выглядит примерно вот так:

В действительности же, помимо основных выводов, каждый семисегментный индикатор также имеет общий вывод с общим анодом (ОА) или общим катодом (ОК)

Внутренняя схема семисегментного индикатора с общим анодом будет выглядеть вот так:

а с общим катодом вот так:

Если семисегментный индикатор у нас с общим анодом (ОА), то в схеме мы должны на этот вывод подавать “плюс” питания, а если с общим катодом (ОК) – то “минус” или землю.

Как проверить семисегментный индикатор

У нас имеются в наличии вот такие индикаторы:

Для того, чтобы проверить современный семисегментный индикатор, нам достаточно мультиметра с функцией прозвонки диодов. Для начала ищем общий вывод – это может быть или ОА или ОК. Здесь только методом тыка. Ну а далее проверяем работоспособность остальных сегментов индикатора по схемам выше.

Как вы видите ниже на фото, у нас загорелся проверяемый сегмент. Таким же образом проверяем и другие сегменты. Если все сегменты горят, то такой индикатор целый и его можно использовать в своих разработках.

Иногда напряжения на мультиметре не хватает для проверки сегмента. Поэтому, берем блок питания, и выставляем на нем 5 Вольт. Чтобы ограничить ток через сегмент, проверяем через резистор на 1-2 Килоома.

Таким же образом проверяем индикатор от китайского приемника

В схемах семисегментные индикаторы соединяются с резисторами на каждом выводе

В нашем современном мире семисегментные индикаторы заменяются жидко-кристаллическими индикаторами, которые могут высвечивать абсолютно любую информацию

но для того, чтобы их использовать, нужны определенные навыки в схемотехнике таких устройств. Поэтому, семисегментные индикаторы до сих пор находят применение, благодаря дешевизне и простоте использования.