Светодиодная гирлянда на микроконтроллере

093-12-ти канальная супер гирлянда на ATtiny2313.

В конце статьи добавлено обновление 2013 года!

Близятся новогодние праздники и по этому поводу хочется сделать что-то светлое праздничное! Решил, вот, сделать новогоднюю гирлянду. Что может быть светлее и праздничней чем новогодняя гирлянда? :). Гирлянду решил сделать не простую, а наворочанную! 12 каналов плюс управление от IR-пульта. Чтобы не делать гирлянду с нуля, решено было в качестве доноров внутренних органов запчастей использовать уже готовые китайские гирлянды. Это имеет смысл по следующим соображениям:
— стоимость гирлянд, будем честно говорить, стоимость — копеечная. Попробуйте за те же деньги накупить провода, светодиодов, запчастей… А если не брать за цель светодиодную гирлянду, то лампочковые гирлянды сейчас продают почти даром;
— немаловажный фактор – уже готовые спаянные до кучи линии светодиодов. Паять самому, садить в термоусадки, ошибаться-переделывать 12 линий работа довольно муторная;
— еще, не знаю как у Вас, а у меня валяется определенное количество нерабочих гирлянд (их часто мне таскают подремонтировать – так и оседают) можно вообще не тратиться на новые, а собрать из того что есть.

Для затравки смотрим видео:

ВНИМАНИЕ!
Схема гирлянды гальванически не развязана от сети опасного напряжения 220В!
Прикосновение к любой токопроводящей части включенной в сеть гирлянды
ОПАСНО ДЛЯ ЖИЗНИ!
ПОЭТОМУ:
— если Вы плохо разбираетесь в электричестве — не повторяйте эту конструкцию;
— любые действия (пайка, замеры и т.п.) со схемой нужно производить только отключив от сети;
— программирование микроконтроллера нужно производить или отдельно от платы (например, в специально собранной для этого макетке), или запитав плату гирлянды от внешнего источника напряжения 5 вольт (например, от батареек);
— готовая конструкция должна быть хорошо изолирована и недоступна для маленьких детей и животных;
— будьте внимательны при сборке конструкции!

Если Вы осознаете опасность сборки такой гирлянды и обязуетесь соблюдать правила безопасности при работе с опасным напряжением, дальше можно прочитать о том, как собрать супер гирлянду.

1 Гирлянды пациенты.

В качестве жертв были куплены 3 новые светодиодные гирлянды – вот они красавицы

Стоимость по 3$ за штуку (100 светодиодов). Но китайцы если не сэкономят, то сами себе изменят! В гирляндах, по факту, оказалось по 3 канала. То есть сам контроллер четырех канальный, но тиристоров три и линий светодиодов тоже три. Дабы замаскировать такое безобразие китайцы в одной линии мешают светодиоды двух цветов. Короче, пришлось докупить еще одну :(. Но это еще не предел экономии, часто и густо каналов вообще два! Будьте внимательны – открывайте коробочку и смотрите, сколько стоит тиристоров.

Из оригинальных контроллеров для улучшенной гирлянды будут задействованы резисторы, выпрямительные диоды, тиристоры, кнопка, коробочки. Понадобится докупить чуть больше десятка резисторов, пару конденсаторов, микроконтроллер ATtiny2313 и еще по мелочи.

2 Схема.

Вот схема оригинальной гирлянды:

Из схемы видно, что диммирование каналов светодиодов осуществляется тиристорами PCR406

Не вижу смысла их менять на что-то другое. Для формирования напряжения питания оригинального контроллера используется гасящий резистор (гасящий резистор совместно с внутренним сопротивлением контроллера образуют делитель напряжения). Решение противоречивое, но в данном случае оправдывается дешевизной (ток контроллера незначительный и мощность, выделяемая на резисторе, очень мала). Взвесив за и против такого решения, решил и в своей схеме проделать нечто подобное. Правда ток ATtiny2313 (в пределах 8мА) значительно больше оригинального контроллера, но все же позволяет использовать гасящие резисторы.

Схема нового контроллера гирлянды:

3 Печатная плата.

Печатную плату решил сделать полностью под выводные элементы. Это было продиктовано, во-первых, желанием максимально задействовать детали из оригинальных гирлянд (а они выводные), во-вторых, выводные детали можно по-быстрому натыкать в макетку и спаять все вообще без печатной платы.

Устройство состоит из двух печатных плат. Первая – источник питания. Вторая, собственно, сам контроллер эффектов и IR-приемник. В виду большого количество каналов, уместить все на одной плате просто физически было не возможно. Кроме того источник питания, хоть и не значительно, но греется, поэтому «отселение» более чем оправдано. Размеры печатных плат сделаны под корпуса оригинальных гирлянд.

Источник питания реализован в двух вариантах: один, по подобию оригинальной гирлянды – резисторный делитель; второй (удалил — смотрите на форуме в обсуждениях) – классический вариант, для таких схем, резисторно-конденсаторный балласт со стабилитроном. Выбирайте какой вариант для Вас более приемлем, но, должен предупредить, что второй вариант мною не собирался и на работоспособность не испытывался (и разведен он, честно говоря, не удачно).

Если, все-таки, с выводными элементами есть трудности, то вот рисунок печатной платы для SMD-компонентов. Не собирал, не испытывал. Заработает – отпишитесь.

4 Сборка платы контроллера.

Начнем со сборки платы контроллера. В нее, с оригинальных гирлянд, перекочуют тиристоры (уж очень замысловато их пришлось устанавливать на плате — внимательно паяйте, не ошибитесь), пара резисторов по 2 Мом, электролит, кнопка. Остальное придется докупить. Микроконтроллер я бы рекомендовал установить в панельку – мало-ли что… После того, как все в плату запаяно, внимательно просмотрите / прозвоните дорожки на предмет замыканий, так как это может стать причиной выгорания всего и вся — все-таки 220В. После запайки укладываем плату в корпус гирлянды.

5 Прошивка контроллера.

На плате контроллера выведены штырьки для программатора. Для прошивки микроконтроллера, запитайте его от ВНЕШНЕГО источника 5 вольт (например, от батареек). Не прошивайте микроконтроллер при включенной в сеть гирлянде – попалите все на свете!

Напоминаю:Для Algorithm Builder и UniProf галочки ставятся как на картинке.
Для PonyProg, AVR Studio, SinaProg галочки ставятся инверсно.
Как программировать микроконтроллеры читаем в FAQ.

6 Сборка платы источника питания.

Перед сборкой платы источника питания нужно проделать определенные замеры для расчета величины гасящих резисторов. Для этого подключаем спаянную плату контроллера с прошитым микроконтроллером к ВНЕШНЕМУ источнику 5 вольт (площадки +5v и -5v) и замеряем потребляемый ток. Подключать линии светодиодов не обязательно, они практически не оказывают влияние на потребляемый ток. Для обычного микроконтроллера ATtiny2313 без буквенных индексов потребляемый ток должен составлять около 7 — 9 мА. Для микроконтроллера ATtiny2313 с индексами (может быть A, P …) ток будет другой.

По полученному потребляемому току (Iпотр) рассчитываем сопротивление гасящих резисторов в батарее (принимаем большее из стандартного ряда):

R = 430 / Iпотр

Например, у меня потребляемый ток составил 9 мА, значит R = 430 / 0,009 = 47777 Ом (принимаем 47 кОм).

Нагромождение гасящих резисторов выполнено с целью распределения рассеиваемой мощности и уменьшения нагрева. Резисторы должны быть мощностью не менее 0.5 Вт (а лучше по 1 Вт).

Выпрямительные диоды и гасящий резистор перекочевывают из оригинальной схемы, остальное придется докупить. Готовую плату укладываем в корпус гирлянды.

Соединяем платы источника питания и контроллера (провода и вилку берем из оригинальной гирлянды). Не забываем, закрепить припаянные к платам провода горячим клеем, так как провода используемые китайцами, мягко говоря, говно и могут отвалиться в любой момент.

7 Формирование линий светодиодов.

Вот с чем придется повозиться, так это с формированием 12-ти каналов линий светодиодов. Нужно будет из трех жгутов (а в случае трех каналов в гирлянде – четырех жгутов) оригинальных гирлянд собрать общий жгут с двенадцатью линиями (плюс общий провод). Гирлянды нужно не просто скрутить вместе, а позаботиться о том, чтобы светодиоды всех двенадцати каналов располагались последовательно один за другим. Кроме того, в случае если гирлянда разноцветная, нужно позаботится о том, чтобы цвета максимально перемешивались.

Вообще, для лучшей визуализации эффектов лучше подходят одноцветные гирлянды, но для создания более яркого образа разноцветные гирлянды, пожалуй, выигрывают. Тут Вы должны определится или более выразительные эффекты или более красочное впечатление.

Долго объяснять на словах – посмотрите на рисунки или подумайте сами как вам скрутить жгуты:

Жгуты скручены – теперь их припаиваем к контроллеру таким образом чтобы светодиоды каналов шли друг за другом последовательно.

8 Описание работы гирлянды.

При включении гирлянды в сеть, она начинает сразу работать со случайного эффекта. В процессе работы эффекты будут случайно менять друг друга. Если нажимать кнопку, то эффекты последовательно будут сменять друг дружку по очереди:
1 Волна
2 Падающая звезда
3 Искры
4 Медленные переливы
5 Бегущие огни
6 Мерцающие огоньки
7 Все горит-тухнет
8 Все горит
0 Все выключено

При выборе эффекта кнопкой, он задерживается на большее время, но позже эффекты опять начнут сменять друг дружку.

Работа от пульта аналогична работе кнопке на контроллере (нажимаем кнопку на пульте – последовательно меняются эффекты). Для изучения кнопки любого IR-пульта, нужно зажать кнопку на контроллере до момента пока не погаснет гирлянда (порядка 3 секунд), дальше нужно нажать выбранную кнопку на пульте. Код кнопки запишется в энергонезависимую память и гирлянда вернется к эффектам. Так как код хранится в энергонезависимой памяти, гирлянда будет «помнить» пульт даже после отключения от сети.

Напоследок считаю не лишним напомнить:

ВНИМАНИЕ!
Схема гирлянды гальванически не развязана от сети опасного напряжения 220В!
Прикосновение к любой токопроводящей части включенной в сеть гирлянды
ОПАСНО ДЛЯ ЖИЗНИ!
ПОЭТОМУ:

— если Вы плохо разбираетесь в электричестве — не повторяйте эту конструкцию;
— любые действия (пайка, замеры и т.п.) со схемой нужно производить только отключив от сети;
— программирование микроконтроллера нужно производить или отдельно от платы (например, в специально собранной для этого макетке), или запитав плату гирлянды от внешнего источника напряжения 5 вольт (например, от батареек);
— готовая конструкция должна быть хорошо изолирована и недоступна для маленьких детей и животных;
— будьте внимательны при сборке конструкции!

А вот и примеры, так сказать, вживую:

Присылайте свои — добавлю сюда.

Елка от AndreevKV. Большая получилась!

Елка от BOYka59. Все знакомые и особенно дети в восторге от нее)

Светодиодная гирлянда на МК Attiny13

Попросили меня как-то собрать несложную и недорогую гирлянду на микроконтроллере. Под руку попался самый дешёвый восьми битный AVR микроконтроллер Attiny13. В данной статье я хочу пошагово описать процесс сборки данного устройства.

Из деталей нам понадобится:
Микроконтроллер Attiny13 — 1шт.
Панелька DIP-8 — 1шт.
Резистор 4.7кОм — 1шт.
Резистор 100 Ом — 5шт.
Штырьки PLS — 2шт.
Светодиоды (любые) — 5шт.
Гнездо BLS-2 — 1шт.
Отсек для батареек — 1шт.

Читайте также  Автоматическое переключение на резервный источник питания

Сборку устройства я разделил на несколько этапов:
Этап 1. Изготовление платы
Этап 2. Запаивание радио деталей на плату
Этап 3. Изготовление программатор для прошивки микроконтроллера
Этап 4. Прошивка микроконтроллера

Этап 1. Изготовление платы

Внимание! Крайне не обязательно изготавливать плату, можно воспользоваться макетной платой. Но всё же лучше и красивее изготовить плату для устройства.

И так, для начала нам понадобится следующее:
Кусочек текстолита (размером 45 на 30мм)
Хлорное железо
Небольшая ёмкость
Вода
Перманентный маркер
Немного технического спирта или одеколона
Ластик

Поверхность текстолита покрыта медной фольгой, а фольга, как и любой другой металл имеет свойство окислятся на воздухе. Поэтому возьмём ластик и протрем медную часть текстолита.

Далее берём перманентный маркер и рисуем дорожки на текстолите (как показано на рисунке ниже).

Нарисовали? Отлично. Теперь надо вытравить плату используя хлорное железо.
Во время травления, хлорное железо выедает (не закрашенную маркером) часть медного покрытия текстолита.

И так, поскольку хлорное железо это порошок нам его надо развести в воде.
Вот пропорция: 100гр. хлорного железа на 700мл воды. Но нам так много не надо, поэтому берём 10гр. на 100 мл. воды. Далее в этот раствор опускаем нашу плату.

И ждём примерно часа два (пока раствор хлорного железа не выест не закрашенную часть медного покрытия текстолита).

После того, как плата вытравилась, достаём её из емкости и промываем под проточной водой.

Вот фотография вытравленной платы.

Теперь стираем с платы маркер (для этого отлично подходит технический спирт или одеколон).

Далее нам необходимо сделать в плате отверстия под радио детали. Внизу показано где на плате делать отверстия.

Поскольку у меня нет электродрели я использую свой школьный циркуль

После того, как все отверстия в плате сделаны надо зачистить её тонкой наждачной бумагой.

Теперь включаем паяльник и залудим плату. Внизу фотография залуженной платы

Оставшийся на плате канифоль можно стереть техническим спиртом или жидкостью для снятия лака.

Плата готова! Этап 1 завершен!

Этап 2. Запаивание радио деталей на плату

После того как сделали плату (а может кто-то не делал её, а решил использовать макетную плату) необходимо запаять на неё радио детали.

Схема светодиодной гирлянды на микроконтроллере Attiny13:

Запаиваем радио детали на плату (по схеме выше) и получаем следующее устройство:

Далее вставляем провода отсека для батареек в гнёзда BLS и зажимаем их.

Всё устройство почти готово, дело остаётся за малым это прошить микроконтроллер.
Этап 2 завершён!

Этап 3. Изготовление программатор для прошивки микроконтроллера

Внимание! Если у вас уже есть программатор для AVR микроконтроллеров вы можете пропустить этот этап и прошить микроконтроллер самостоятельно! Скачать прошивку вы можете по ссылке внизу страницы.

Собирать программатор мы будем на LPT порт компьютера. Вот схема программатора:

На рисунке в прямоугольнике (где LPT порт) номер контакта, куда подсоединять проводок. Провода старайтесь делать покороче (не более 20 см). Если провода будут длиннее 20 см то во время прошивки или чтения микроконтроллера будут ошибки, которые могут стоить микроконтроллеру жизни!
Будьте очень аккуратны, LPT порт очень легко спалить!

Для изготовления программатора нам понадобится:
25-контактный разъем для LPT порта (папа)
Резисторы 150 Ом 4 шт.
Резистор 10 кОм 1 шт.
Батарея на 3 вольта

Вот мой вариант программатора:

Теперь можно приступить к прошивке микроконтроллера.

Этап 4. Прошивка микроконтроллера

Внимание! В этом этапе описывается прошивка микроконтроллера Attiny13 с помощью программы PonyProg2000 и программатора на LPT порт.

Всем известно, что без прошивки, микроконтроллер — это ничего не делающая микросхема, а чтобы она управляла нашей гирляндой нам её надо прошить.
Для прошивки мы будем использовать ранее изготовленный нами LPT программатор, компьютер и программу PonyProg2000.
Для начала скачайте прошивку для гирлянды (ссылка внизу страницы), потом из интернета скачайте программу PonyProg2000 и установите её.

Теперь всё почти готово для прошивки микроконтроллера. Остаётся лишь подключить микроконтроллер к программатору а программатор подключить к компьютеру.
После того как всё подключили запускаем программу PonyProg2000.

Далее нам надо откалибровать программу PonyProg2000, для этого следуем по пути: Setup > Calibration

Выскачет такое окно:

В окне нажимаем кнопку «Yes».

После калибровки появится вот такое сообщение:

Все, программа откалибрована!

Теперь заходим в настройки (Setup > Interface Setup…). Появится вот такое окно:

Далее выбираем «Parallel», «Avr ISP I/O», LPT1 и нажимаем кнопку «ОК»

После в главном окне программы выбираем «AVR micro», «Attiny13»

Теперь осталось открыть прошивку, для этого в меню «File» выбираем «Open Device File…». В списке «Тип файлов:» выбираем «*.hex» и указываем путь к прошивке нашей светодиодной гирлянды, нажимаем кнопку «Открыть».

В главном окне нажмите на кнопку «Write device»:

После появление такого сообщения:

Микроконтроллер прошит и работоспособен! Но подождите нам ещё необходимо установить фьюз биты. Кстати, фьюз биты это раздел (4 байта) в AVR микроконтроллерах в котором хранится конфигурация работы микроконтроллера.

Для установки фьюз битов в меню «Command» выберите «Security and Configuration Bits…», в появившимся окне нажмите кнопку «Read» и установите галочки как на картинке ниже:

После установки галочек (как на картинке выше) нажмите кнопку «Write». Всё готово!
Теперь выключите компьютер и извлеките микроконтроллер из программатора, вставьте микроконтроллер в панельку на плате гирлянды. Если всё сделано правильно, то при подаче питание (3 вольта) гирлянда должна заработать!

В заключении хотелось бы сказать, что программу я писал в среде BASCOM-AVR (исходник прилагается), программе 9 подпрограмм эффектов, так что ничего не мешает создавать вам свои эффекты.

По умолчанию устройство имеет 4 разных эффекта:
1. Бегущая точка
2. Бегущая линия
3. Переключение светодиодов
4. Моргание

Скачать прошивку, исходники, проект в Proteus вы можете ниже

Светодиодная гирлянда на микроконтроллере

Ранее мы уже научились мигать светодиодами, однако гораздо интересней управлять этим процессов с помощью кнопок, а светодиодная гирлянда послужит хорошим наглядным примером.

Подключение кнопки к микроконтроллеру

Схема гирлянды приведена ниже.

Когда кнопка (ключ) подключается к микроконтроллеру, то соответствующий вывод МК должен быть настроен на вход. При этом микроконтроллер будет постоянно считывать состояние, а точнее уровень потенциала на данном выводе. Поэтому алгоритм программы можно построить таким образом, что если на определенном выводе МК произойдет смена потенциала с высокого на низкий или наоборот, то выполнится определенное действие, например засветится светодиод.

Чтобы настроить определенные выводы (пин) МК на вход, следует в соответствующие биты регистра DDR записать нули. Кстати, если пины МК не задействованы, то их рекомендуется также настроить на вход. Поскольку к порту B мы будем подключать только кнопки, то в регистр DDRB мы запишем все нули следующий командой:

Когда вывод микроконтроллера настроен на вход, то изначально он может находиться в двух состояниях, которые устанавливаются с помощью регистра PORT.

Если в бит регистра PORT записан ноль, то пин имеет высокое входное сопротивление.

При установке бита в единицу к ножке МК подключается подтягивающий резистор. Резистор называется так потому, что посредством его “подтягивается” высокий потенциал (+ 5 В) к соответствующей точке электрической цепи; в данном случае – к пину микроконтроллера.

Проверка состояния вывода МК с помощью PINx

Чтобы в любой момент времени знать, какой потенциал присутствует на выводе, следует проверить (считать) соответствующий бит в регистре PIN.

Данный регистр по аналогии можно сравнить с датчиком. С него можно только считывать информацию. Записать в него ничего нельзя. PIN является противоположность регистра PORT, в который выполняется только запись, но не считывание данных.

Боле предпочтительным является установка регистра PORT в единицу, т.е. применение внутреннего подтягивающего резистора МК. Такой вариант имеет значительную помехоустойчивость, поскольку для изменения высокого потенциала на низкий, вывод необходимо напрямую соединить с землей или общим проводом.

Если же пин сделать с высоким входным сопротивлением, то любая более-менее мощная электромагнитная помеха, может навести на нем некоторый потенциал, превышающий определенное значение и микроконтроллер воспримет помеху, как смена низкого потенциала на высокий. Поэтому в нашей программе мы будем использовать внутренний подтягивающий резистор.

Один контакт ключа соединим с землей (общим проводом), а второй – с выводом микроконтроллера. Когда ключ разомкнут, – вывод находится под высоким потенциалом (+ 5 В), подтянутый внутренним резистором МК. При этом соответствующий бит регистра PIN будет установлен в единицу.

При нажатии на кнопку данный вывод соединится с общим проводом (“минусом”) и на нем возникнет низкий потенциал. А бит регистра PIN автоматически установится в ноль.

Обратите внимание, что подтягивающий резистор еще защищает цепь от короткого замыкания при нажатой кнопке.

Светодиодная гирлянда в коде

Теперь давайте напишем целиком код программы, а затем рассмотрим его отдельные элементы. Алгоритм работы программы следующий: при замыкании первого ключа “лампочки” будут включаться в одной последовательности, а при замыкании второго – “лампочки” будут загораться иначе. Если обе кнопки на нажаты, то все светодиоды должны быть выключены.

#define F_CPU 1000000UL // Объявляем частоту работы микроконтроллера 1 МГц

#include // Подключаем библиотеку задержек

#define Z 300 // Значению задержки присваиваем имя Z

#define VD PORTD // Присваиваем порту D имя VD

#define K PORTB // Присваиваем порту B, к которому подключены кнопки, имя K

DDRB = 0b00000000; // Настраиваем порт B на вход

DDRD = 0b11111111; // Настраиваем порт D на выход

VD = 0b00000000; // Выключаем все огни

K = 0b11111111; // Включаем подтягивающие резисторы

if (PINB == 0b11111110) // Проверяем, нажата ли 1-я кнопка

VD = 0b11111111; // Если ключ замкнут, то мигаем «лампочками»

VD = 0b00000000; // Если ключ разомкнут, то все LED выключены

if (PINB == 0b11111101) // Проверяем, нажата ли 2-я кнопка

VD = 0b00000001; // Если кнопка нажата, то поочередно включаем LED

VD = 0b00000000; // Если ключ не замкнут, то все LED выключены

Операторы if и else

Назначение препроцессоров #include и #define ним хорошо известны из предыдущих статей. Здесь новым для нас есть оператор if . If переводится с английского «если». Если условие, указанное в круглых скобках, выполнятся, т.е. истинное, то выполняется код программы в фигурных скобках. Например, если переменная a больше 1 единицы, то переменной c присвоится значение a + b.

В противном случае, когда значение a меньше или рвано единице, код программы в фигурных скобках не будет выполняться.

Читайте также  Программы-генераторы сигналов базе пк

Если в фигурных скобках выполняется только одна команда, то синтаксис языка Си позволяет упростить запись и обойтись без фигурных скобок:

Также оператор if работает в связке с оператором else .

if (a >1) → если a >1, то = a + b

else → в противном случае, c = a – b

Работает это так. Если a > 1, то c = a + b. В противном случае, т.е. когда а меньше или равно единице, то c = a – b.

Пояснение кода программы

Теперь возвращаемся к нашей программе. Если кнопка, соединенная с PB0 нажата, то на выводе появляется низкий потенциал и соответствующий бит регистра PINB устанавливается в ноль. При этом будет выполняться условие в фигурных скобках, т.е. начнет мигать гирлянда.

Обратите внимание, что команда присвоения состоит из одного знака равно «=», а команда проверки условия «равно» состоит из двух знаков равно, написанных без пробела «==».

Когда кнопка не нажата, в бите регистра PINB появится единица, вызванная высоким потенциалом подтягивающего резистора. В этом случае управление перейдет к оператору else и все LED будут выключены.

При замыкании второго ключа, вывод которого соединен с портом PB1, выполнится второй код программы, и светодиоды начнут поочередно включаться с задержкой времени 0,3 секунды.

Таким образом, гирлянда на микроконтроллере может содержать разное количество LED и ключей. Причем для каждого замыкания или размыкания контактов ключа можно прописать свой алгоритм работы гирлянды.

Также ею можно управлять с помощью всего одной кнопки. Такой вариант имеет несколько сложнее код, и его мы рассмотрим в отдельной статье. Там же мы рассмотрим, как подключать мощные LED к МК.

Ранее в статье вы подробно рассмотрели настройку портов ввода-вывода микроконтроллера на выход, а здесь – на вход. Теперь объединим все вместе и приведем простой наглядный алгоритм.

ЦМУ/СДУ на микроконтроллере (8 каналов)

Это устройство объединяет в себе цветомузыку (ЦМУ) и светодинамическое устройство (СДУ) на 8 каналов, с множеством световых эффектов. Выходы устройство рассчитаны на подключение достаточно мощной нагрузки.

Разделение частот по каналам ЦМУ чисто программное и очень простое, используется PIC микроконтроллер PIC16F628A. Подсчитывается количество импульсов таймера/счетчика за строго определенный промежуток времени и в зависимости от значения этого счетчика включается тот или иной светодиод.

А вот схема устройства:

Копки позволяют:

  • Выбрать режим — ЦМУ/СДУ. В режиме СДУ даже если есть сигнал на входе работает только основная программа светодинамического устройства. В режиме ЦМУ если нет сигнала то воспроизводиться выбранный эффект СДУ, как фоновый режим.
  • Выбрать эффект СДУ. Кнопка циклически переключает все возможные эффекты светодинамического устройства.
  • Увеличить и уменьшить скорость. Эти кнопки управляют скоростью эффектов СДУ, на ЦМУ никакого действия не оказывают.

Печатная плата односторонняя, достаточно простая. Светодиоды установленные на плате являются отладочными и служат просто как дополнительное устройство визуализации.

В качестве цветных прожекторов я использовал готовые светильники-софиты из хозяйственного магазина. Из них я удалил стандартный патрон под лампочку и установил туда матрицу из 37 ярких светодиодов. Для каждого прожектора свой цвет — красные, зеленые, синие и т.д., все что удалось найти. Прожекторы размещены по углам комнаты и по средним точкам вверху стен и все направлены на центр комнаты. Ночью под музыку смотрится очень впечатляюще, особенно эффект стробоскопа

Данный проект светодиодной гирлянды на микроконтроллере хорошо подходит для начинающих. Схема отличается своей простотой и содержит минимум элементов.

Данное устройство управляет 13 светодиодами, подключенными к портам микроконтроллера. В качестве микроконтроллера используется МК фирмы ATMEL: ATtiny231320PI. Благодаря использованию внутреннего генератора, выводы 4 и 5 задействованы как дополнительные порты микроконтроллера PA0,PA1. Схема обеспечивает выполнение 12 про- грамм эффектов, 11 из которых — индивидуальные комбинации, а 12-тая про- грамма – последовательный однократный повтор предыдущих эффектов. Переключение на другую программу осуществляется нажатием на кнопку SB1. Программы эффектов включают в себя и бегущий одинарный огонь, и нарастание огня, и бегущую тень и многое другое.

Устройство имеет возможность регулировки скорости смены комбинаций при выполнении программы, которая осуществляется нажатием на кнопки: SB2 – увеличение скорости и SB3 – уменьшение скорости при условии, что переключатель SA1 находиться в положении «Скорость программы”. Также имеется возможность регулировать частоту горения светодиода (от стабилизированного свечения до легкого мерцания), которая осуществляется нажатием на кнопки: SB2 – уменьшение (до мерцания) и SB3- увеличение при условии, что переключатель SA1 находиться в положении «Частота мерцания”. У переключателя SA2 замкнутое положение соответствует режиму регулировки скорости выполнения программ, а разомкнутое — режиму регулировки частоты горения светодиодов.

Порядок нумерации светодиодов в схеме соответствует их порядку зажигания при выполнении программы. При необходимости вывод RESET может быть использован для сброса, а в качестве порта PA2 он не задействован. В устройстве выбрано при программировании тактовая частота 8 МГц от внутреннего генератора (фузы CKSEL3..0 — 0100).Хотя возможно использование частоты в 4 МГц(фузы CKSEL3..0 — 0010) с соответствующими изменениями временных интервалов работы схемы.

Тип светодиодов, указанный на схеме использовался в опытном образце, для схемы подойдут любые светодиоды с напряжением питания 2-3 вольта, резисторами R1-R17 можно регулировать яркость свечения светодиодов.

Прошивку HEX, а также файлы программы на ассемблере вы можете скачать ниже

Простая 4-х цветная многоканальная гирлянда на основе микроконтроллера ATTINY13A

Как говорится в народе — готовь сани летом…
Наверняка на новый год украшаете ёлку всевозможными гирляндами, и скорей всего они уже давным давно приелись однообразием своего мигания. Хотелось бы сделать что-то такое чтобы ух, прям как на столичных елках мигало, только в меньшем масштабе. Или на крайний случай — повесить на окно, чтобы эта прям красота освещала город с 5-го этажа.
Но увы, в продаже таких гирлянд нет.

Собственно, именно эту проблему и пришлось решать два года назад. Причем, из-за лени от задумки до реализации прошло как обычно 2 года, и делалось все в последний месяц. Собственно, у вас времени будет больше(или я ничерта не смыслю в человеческой психологии, и все точно так же будет делаться в последние 2 недели перед новым годом?).

Получилась достаточно несложная конструкция из отдельных модулей со светодиодами, и одним общим который передает команды с компьютера в сеть этих модулей.

Первый вариант модуля задумывался так чтобы подключать их в сеть по двум проводам, чтобы меньше путаницы и все такое — но не срослось, в итоге потребовался довольно мощный и быстродействующий ключ чтобы коммутировать питание даже малого количества модулей — явный перебор для простоты конструкции, поэтому предпочтение отдал третьему проводу — не так удобно, зато гораздо проще организовать канал передачи данных.

Как все устроено.

Разработанная сеть способна адресовать до 254 подчиненных модулей, которые далее будут называться SLAVE — они соединены всего 3-мя проводами, как вы уже догадались — два провода это питание +12В, общий и третий — сигнальный.
они имеют несложную схему:

Как можно увидеть, она поддерживает 4 канала — Красный, Зеленый, Синий и Фиолетовый.
Правда, по результатам практического тестирования, фиолетовый хорошо видно только вблизи но зато как! Так же, из-за того что цвета расположены слишком далеко друг от друга смешение цветов можно увидеть только метров с 10, если использовать RGB-светодиоды ситуация будет несколько получше.
В целях упрощения конструкции так же пришлось отказаться и от кварцевой стабилизации — во-первых, лишний вывод забирает и во-вторых стоимость кварцевого резонатора довольно ощутима и в-третьих — в нем нет острой необходимости.
На транзисторе собран защитный каскад, чтобы не выбило порт контроллера от статики — линия все же довольно длинной может быть, в крайнем случае пострадает только транзистор. Каскад рассчитан в MicroCap и имеет примерный порог срабатывания около 7 вольт и слабую зависимость порога от температуры.

Естественно, в лучших традициях на адрес под номером 255 реагируют все модули — так можно их все одновременно выключить одной командой.

Так же в сеть подключен модуль называемый MASTER — он является посредником между ПК и сетью из подчиненных SLAVE-модулей. Помимо прочего он является источником образцового времени, для синхронизации подчиненных модулей в условиях отсутствия в них кварцевой стабилизации.

Схема:

В схеме есть не обязательные потенциометры — их можно использовать в программе на ПК для удобной и оперативной настройки желаемых параметров, на данный момент это реализовано только в тестовой программе в виде возможности назначить любому из 4-х каналов любой из потенциометров. Схема подключается к ПК через преобразователь интерфейса USB-UART на микросхеме FT232.

Пример выдаваемого пакета в сеть:

Его начало:

Электрические характеристики сигнала: лог.0 соответствует +9. 12В, а лог.1 соответствует 0. 5В.

Как можно увидеть, данные передаются последовательно, с фиксированной скоростью по 4 бита. Это обусловлено необходимым запасом на ошибку по скорости приема данных — SLAVE-модули не имеют кварцевой стабилизации, а такой подход гарантирует прием данных при отклонении скорости передачи до +-5% сверх тех что компенсируются программным методом на основе измерения калиброванного интервала в начале передачи данных который дает стойкость к уходу опорной частоты еще на +-10%.

Собственно, алгоритм работы MASTER-модуля не так интересен(он достаточно прост — получаем данные по UART и переправляем их в сеть подчиненных устройств), все самые интересные решения реализованы именно в SLAVE-модулях, которые собственно и позволяют подстраиваться под скорость передачи.

Основным и самым главным алгоритмом является реализация 4-х канального 8-битного программного ШИМ который позволяет управлять 4-мя светодиодами при 256 градациях яркости каждого их них. Реализация этого алгоритма в железе так же определяет скорость передачи данных в сети — для программного удобства передается по одному биту на каждый шаг работы ШИМ. Предварительная реализация алгоритма показала что он выполняется за 44 такта, поэтому было принято решение использовать таймер настроенный на прерывание каждые 100 тактов — таким образом прерывание успевает гарантированно выполнится до наступления следующего и выполнить часть кода основной программы.
На выбранной тактовой частоте внутреннего генератора в 4.8Мгц прерывания возникают с частотой 48кГц — именно такую битовую скорость имеет сеть подчиненных устройств и с такой же скоростью наполняется ШИМ — в итоге частота ШИМ-сигнала составляет 187.5Гц, чего вполне достаточно чтобы не замечать мерцания светодиодов. Так же, в обработчике прерывания после выполнения алгоритма ответственного за формирование ШИМ фиксируется состояние шины данных — получается примерно по середине интервала переполнения таймера, это упрощает прием данных. В начале приема очередного пакета в 4 бита происходит обнуление таймера, это необходимо для более точной синхронизации приема и стойкости к отклонению скорости приема.
В итоге получается такая картина:

Читайте также  Резисторы, ток и напряжение

Интересна реализация алгоритма подстройки под скорость передачи. В начале передачи MASTER выдает импульс длительностью в 4 бита лог.0, по которым все подчиненные модули определяют необходимую скорость приема при помощи несложного алгоритма:

st_syn_delay = 60 — константа, определяющая максимальную длительность стартового импульса, которая принята примерно в 2 раза больше номинала (для надежности)

Экспериментальным методом было установлена такая зависимость получаемого числа в tmp2 при отклонении тактовой частоты от номинала:

4.3Mhz (-10%) 51 единиц (0x33) соответствует 90 тактам таймера для возврата скорости приема к номиналу
4.8Mhz (+00%) 43 единиц (0x2B) — соответствует 100 тактам таймера(номинал)
5.3Mhz (+10%) 35 единиц (0x23) — соответствует 110 тактам таймера для возврата скорости приема к номиналу

По этим данным были рассчитаны коэффициенты коррекции периода прерываний таймера(именно таким образом скорость приема подстраивается под имеющуюся тактовую частоту контроллера):

Y(x) = 110-x*20/16
x = tmp2 — 35 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
Y(x) = (110, 108.75, 107.5, 106.25, 105, 103.75, 102.5, 101.25, 100, 98.75, 97.5, 96.25, 95, 93.75, 92.5, 91.25, 90)

Числа округлены до целых и занесены в EEPROM.

Если при подаче напряжения на модуль удерживать линию в логическом состоянии «1» включится подпрограмма калибровки, которая позволит измерить частотомером или осциллографом период ШИМ-сигнала без коррекции и на основании измерений судить об отклонении тактовой частоты контроллера модуля от номинальной, при сильном отклонении больше 15% может потребоваться коррекция калибровочной константы встроенного RC-генератора. Хотя производитель обещает калибровку на заводе и отклонение от номинала не более 10%.

На данный момент, разработана программа на Delphi позволяющая воспроизводить ранее составленный паттерн для 8-ми модулей с заданной скоростью. А так же утилита для работы с отдельным модулем(в том числе переназначение адреса модуля).

Прошивка.
для SLAVE-модуля необходимо прошить только фьюзы CKSEL1 = 0, и SUT0 = 0. Остальные оставить непрошитыми. Содержимое EEPROM прошить из файла RGBU-slave.eep, при необходимости тут же можно задать желаемый адрес модуля в сети — 0-й байт EEPROM, по умолчанию прошит как $FE = 254, по адресу 0x13 содержится калибровочная константа встроенного RC-генератора контроллера, на частоте 4.8Мгц она не загружается автоматически поэтому необходимо программатором считать заводское значение калибровки и записать в эту ячейку — это значение индивидуально для каждого контроллера, при больших отклонениях частоты от номинала можно изменять калибровку именно через эту ячейку не затрагивая заводского значения.

для MASTER-модуля необходимо прошить только фьюзы SUT0 = 0, BOOTSZ0 = 0, BOOTSZ1 = 0, CKOPT = 0. Остальные оставить непрошитыми.

Напоследок небольшая демонстрация гирлянды расположенной на балконе:

На самом деле, функциональность гирлянды определяется программой на ПК — можно сделать цветомузыку, стильное переливающееся освещение комнаты(если добавить драйверы светодиодов и использовать мощные светодиоды) — и т.д. Чем планирую заняться в будущем. В планах сетка из 12 модулей с 3-ваттными RGB-светодиодами, и комнатное освещение на основе кусочков 12-вольтной RGB-ленты(нужны только полевые транзисторы для коммутации ленты на каждый модуль по 3 штуки или 4 если добавить кусочек фиолетовой ленты других отличий от оригинала не будет).

Для управления сетью можно написать свою программу, хоть на бейсике — главное что должен делать выбранный язык программирования — уметь подключаться к бессмертным COM-портам и настраивать их параметры. Вместо интерфейса USB можно использовать переходник с RS232 — это дает потенциальную возможность управления световыми эффектами с широкого круга устройств которые вообще можно запрограммировать.
Протокол обмена с MASTER-устройством достаточно прост — посылаем команду и ожидаем ответ об её успешности или провале, если ответа нет больше нескольких милисекунд — имеются проблемы с соединением или работой MASTER-устройства, в таком случае необходимо провести процедуру переподключения.

На данный момент доступны следующие команды:

0x54; символ «T» — команда «test» — проверка соединения, ответ должен быть 0x2B.
0x40; символ «@» — команда «загрузить и передать». После подачи команды нужно дождаться ответа «?» далее следует 6 байт данных:
+0: Адрес подчиненного устройства 0..255
+1: Команда устройству
0x21 — байты 2. 5 содержат яркость по каналам которую необходимо применить немедленно.
0x14 — установить тайм-аут, по истечении которого яркость по всем каналам будет
сброшена на 0 если за это время не поступит ни одной команды. Значение таймаута находится в ячейке красного канала, т.е. в байте со смещением +2. значение 0-255 соответствует таймауту в 0-25.5 сек по умолчанию, таймаут = 5 секунд(записан в EEPROM при прошивке, там же его можно и изменить в байте со смещением +1).
0x5A — изменить адрес устройства.
Процедура смены адреса для надежности должна быть выполнена троекратно — только тогда новый адрес будет применен и прописан в EEPROM. При этом надо быть осторожным -если прописать двум устройствам один адрес они будут реагировать синхронно а «разделить» их можно будет только физически отключив от сети лишние модули и сменив адрес у оставшегося, либо программатором. Значение нового адреса передается в ячейке красного канала — т.е. в байте со смещением +2.

+2: Яркость красного 0. 255
+3: Яркость зеленого 0. 255
+4: Яркость синего 0. 255
+5: Яркость фиолетового 0. 255

0x3D; символ «=» — команда «АЦП». После подачи команды нужно дождаться ответа «?» далее следует передать 1 байт — номер канала АЦП 0..7 в двоичном виде(ASCII цифры 0..9 тоже подходят в этом качестве, поскольку старшие 4 бита игнорируются).
В ответ команда возвращает 2 байта результата измерения в диапазоне 0. 1023

Возможные ответы на команды:
0x3F; символ «?» — готовность к вводу данных, означает что устройство готово к приему аргументов команды
0x2B; символ «+» Ответ — команда выполнена
0x2D; символ «-» Ответ — команда не определена или ошибочна

Новогодняя гирлянда для ёлки на ATmega8.

До Нового года осталось совсем немного, и в магазинах и на рынках, на выбор предлагают огромное количество всевозможных китайских гирлянд. Всё это хорошо, но решил сделать новогоднюю гирлянду для ёлки самостоятельно, на микроконтроллере.

Во первых захотелось просто творчества, во вторых — своя самодельная гирлянда светит как-то и радостнее и веселее покупных.
Гирлянда собрана на микроконтроллере ATmega8, и состоит из 42-х светодиодов.
Автор данного проекта Дмитрий Базлов (Дима9350) и он написал код для микроконтроллера, в котором для реализации устройства заложено 11 эффектов (программ), из которых 8 программ для синих, красных и жёлтых светодиодов (по схеме верхний ряд), и 3 эффекта (программы) для белых светодиодов (нижний ряд светодиодов), среди которых имеется эффект падающей снежинки.
Напряжение питания гирлянды от 7 до 15 вольт (можно до 24 вольт, если на стабилизатор поставить небольшой радиатор), или если без стабилизатора напряжении L7805, то 5 вольт, например: USB порт компьютера. Длинна гирлянды в авторском варианте составила один метр. Ниже видео авторской гирлянды с питанием от порта USB.

Схема устройства состоит из:
— микроконтроллера ATmega8;
— чип резисторы для светодиодов 300-330 Ом — 21шт;
— микросхема L293:
— 2 конденсатора 16 вольт 10мкф;
— стабилизатор на 5 вольт — 7805.
Фьюз биты микроконтроллера установлены на 8 мГц от внутреннего генератора.

Рисунок 1.
Схема гирлянды.

Печатная плата гирлянды.

Рисунок 2.
Печатная плата гирлянды.

Внешний вид собранной гирлянды на печатной плате со стороны деталей.

Рисунок 3.
Внешний вид собранной гирлянды на печатной плате со стороны деталей.

Внешний вид собранной гирлянды на печатной плате со стороны монтажа.

Рисунок 4.
Внешний вид собранной гирлянды на печатной плате со стороны монтажа.

Так, как в авторском варианте схемы, в составе гирлянды имеется микросхема L293 (4-х канальный драйвер управления светодиодами), которая по цене соизмерима с микроконтроллером, да и не везде наверное доступна, то схема была немного переделана, и драйвер заменён на два транзистора разной проводимости (КТ814, КТ815 и один резистор на 1 кОм), которые вполне отлично справляются со своей задачей.
Обновлённая схема гирлянды, представлена на рисунке ниже.

Рисунок 5.
Схема гирлянды.

Нижний ряд светодиодов на схеме — это светодиоды белого цвета свечения, верхний ряд — чередование светодиодов по цвету: — синий, жёлтый, красный и так далее.
Цвета могут быть на Ваше усмотрение. Светодиоды желательно применять с повышенной яркостью свечения.
Начало гирлянды, (или её конец, как хотите) — идёт справа налево. «Снежинки» падают, начиная с белого светодиода HL2 и до светодиода HL42, то есть светодиоды HL1 и HL2 должны располагаться на самом верху (ими заканчивается или начинается гирлянда).
В качестве драйвера здесь применены два транзистора разной структуры. Были использованы, как уже говорилось выше, транзисторы КТ814, КТ815. Вполне справятся в этой схеме и транзисторы КТ315 и КТ361, но я их не пробовал ставить.

В авторском варианте белые светодиоды установлены на одном уровне с цветными, так как они подключены параллельно им, но разно-полярно. Расстояние между светодиодами 4-5 см., потому длина гирлянды составила метр.
Я ставил белые и цветные светодиоды отдельно друг от друга, и на расстоянии 5-6 см. Длина гирлянды в моём варианте два с небольшим метра, что вполне подойдёт для ёлки средних размеров. Причём плату спаял в течении получаса, а с гирляндой пришлось немного повозиться. Провода для соединения светодиодов желательно применять тонкие, многожильные. Я использовал связные, многожильные провода, диаметром 0,5-0,6 мм. (вместе с изоляцией), и жгут гирлянды у платы, получился не толстым.

Посмотрите демонстрационное видео работы новогодней гирлянды.

Печатные платы в формате Sprint-Layout 6.0, разработаны для обоих вариантов реализации схемы, и прилагаются в прикреплении. В прикреплении так же в наличии код для МК, установки фьюзов (скин для PONYPROG) и схемы для обоих вариантов гирлянды.

Архив для статьи