Сдвиговый регистр 74hc595

Сдвиговый регистр 74HC595

Плата Arduino содержит ограниченное число выводов и при сложном проекте их не хватает для полноценной работы. К примеру, для подключения сегментного индикатора необходимо задействовать восемь выводов, два индикатора займут уже 16 выводов. Сдвиговый регистр позволяет сэкономить число используемых выводов, беря часть управления выводами на себя.

Что такое сдвиговый регистр

В электронике регистром называют устройство, которое может хранить небольшой объем данных для быстрого доступа к ним. Они есть внутри каждого контроллера и микропроцессора, включая и микроконтроллер Atmega328, который входит в состав платы Arduino Uno. Как правило регистры представляют собой сборку из D-триггеров — элементарных ячеек памяти. Записывать данные в регистр можно либо последовательно, либо параллельно. Регистры первого типа называются сдвиговыми, второго типа — параллельными.

Считывать данные из регистра можно одновременно из всех ячеек. Именно это его свойство помогает нам работать с кучей светодиодов.

Регистр называется сдвиговым, потому что при добавлении каждого нового бита в него, мы как бы сдвигаем все остальные в сторону. Вспомним, что один бит позволяет нам хранить ноль или единицу, истину или ложь. Посмотрим на диаграмме, как это происходит.

Пусть в начальном состоянии регистр уже заполнен какими-то восемью битами. Попробуем «задвинуть» в него восемь новых бит: 11011010.

Как видно, после двух итераций, в начале регистра оказалось два новых бита, а два бита в последних ячейках «вывалились» через край и пропали. На восьмом шаге весь регистр оказался заполнен новыми битами.

Регистры можно соединять в цепочку. В таком случае, вытесненный бит не будет пропадать без следа, а отправится в начало следующего регистра. При этом увеличивается число доступных выводов.

74HC595

Самым популярным является восьмиразрядный (8 управляемых выходов) сдвиговый регистр 74HC595 (отечественный аналог КР1564ИР52), который можно встретить в стартовых наборах или купить отдельно.

  • Выводы Q0 — Q7 (15 и 1..7)
  • GND (8) — земля
  • Q7′ (9) — выход регистра, который необходимо соединить с Q0 следующего регистра для создания цепочки
  • MR (10) — сброс значений регистра. Сброс происходит при получении LOW
  • SH_CP (SRCLK) (11) — линия синхроимпульса для передачи данных из DS во внутренние ячейки (вход для тактовых импульсов). SH — shift, CP — clock pin
  • ST_CP (RCLK) (12) — линия синхроимпульса для передачи данных из внутренних ячеек, во внешние (синхронизация выходов). ST — storage, CP — clock pin
  • OE (13) — инверсный, разрешение на вывод данных с внешних ячеек (вход для переключения состояния выходов из высокоомного в рабочее)
  • DS (SER) (14) — линия последовательных данных (Data Serial)
  • VCC (16) — питание, 5В

74HC595 — восьмиразрядный сдвиговый регистр с последовательным вводом, последовательным или параллельным выводом информации, с триггером-защёлкой и тремя состояниями на выходе. Другими словами этот регистр позволяет контролировать 8 выходов, используя всего несколько выходов на самом контроллере. При этом несколько таких регистров можно объединять последовательно для каскадирования.

74HC595 может отдавать сигналы не только параллельно, но и последовательно. Это необходимо при объединении нескольких регистров, для получения 16 и более выходов. В этом случае первые 8 бит сигнала передаются на следующий регистр для параллельного вывода на нём.

Соберём схему, для которой понадобится сдвиговый регистр и восемь светодиодов с резисторами. При этом обратите внимание, что в нашем распоряжении восемь выводов регистра для светодиодов, а на плате используем только три цифровых вывода (экономия пяти выводов).

Установите сдвиговый регистр в центре макетной платы, чтобы ножки разделяла центральная разделительная дорожка.

Подключим контакты 16 (VCC) и 10 (MR) к выводу 5V на Arduino.

Соединяем контакты 8 (GND) и 13 (OE) с выводом GND на Arduino.

Соединяем три контакта, которыми мы будем управлять сдвиговым регистром:

  • Вывод 11 (SH_CP, SRCLK) на вывод 11 на Arduino (синхронизация)
  • Вывод 12 (ST_CP, RCLK) на вывод 12 на Arduino (защёлка)
  • Вывод 14 (DS, SER) на вывод 9 на Arduino (данные)

Далее подключаем все восемь светодиодов с резисторами. Обратите внимание, что у регистра с одной стороны идут семь выводов подряд, а восьмой находится на выводе 15.

Вариант подключения (используются другие выводы платы).

Включаем один светодиод

Попробуем включить один светодиод. Сначала указываем используемые выводы платы (тактовая линия — clockPin, данные — dataPin, защёлка — latchPin).

В setup() устанавливаем для них режим OUTPUT и ставим защёлке высокий уровень, чтобы регистр не принимал сигналов.

В loop() попробуем что-нибудь отправить на регистр. Сначала ставим LOW на защёлку (начинаем передачу данных. Теперь регистр принимает сигналы с Arduino). Далее отправляем данные в двоичном виде. Например, отправим байт 0b10000000 (должен будет загореться первый светодиод). В конце выставляем HIGH на защёлку (заканчиваем передавать данные).

Если в shiftOut() поменять LSBFIRST на MSBFIRST, то включится не первый, а последний светодиод в цепочке схемы.

При работе с несколькими светодиодами не очень удобно постоянно писать три строчки кода для каждого светодиода в отдельности. Поэтому оформим код в виде функции и будем мигать третьим светодиодом.

Анимация светодиодов

В path[] мы указываем последовательность включённых и выключенных светодиодов. Между этими последовательностями будет происходит анимация.

Для анимации бегущих огней можно реализовать задачу через функцию bitWrite().

Код попроще, чтобы лучше понять происходящее.

В методе setup() мы просто инициализируем режимы выводов и переменную светодиодов.

В методе loop() очищаем биты в переменной leds в начале каждой итерации, так что все биты устанавливаются в 0, так как мы хотим только включать один светодиод за раз. После этого мы увеличиваем или перезапускаем текущую переменную currentLed, чтобы затем опять включать правильный светодиод.

После этих двух операций мы переходим к смещению бит. Начинаем с вызова метода bitSet(), которому передаём байт, что хранит биты, и переменную currentLed.

Этот метод позволяет нам установить отдельные биты байта, указав их положение. Например, если мы хотим вручную установить байт в 10010, мы могли бы использовать следующие вызовы, поскольку биты, которые нам нужно установить в 1, являются вторыми справа (это позиция 1, когда мы начинаем в позиции 0) и пятый справа, который находится в положении 4:

Таким образом, каждый раз, когда мы увеличиваем текущую переменную currentLed и передаем ее методу bitSet(), мы каждый раз устанавливаем бит слева от предыдущего до 1 и, таким образом сообщаем сдвиговому регистру активировать вывод слева от предыдущего.

После установки бит мы записываем на контакт защёлки указание сдвиговому регистру, что собираемся отправить ему данные. Как только мы это сделаем, мы вызываем метод shiftOut(). Метод позволяет сдвигать биты за один вызов. Для этого мы передаём данные и синхронизацию в качестве первых двух параметров, затем передаём константу LSBFIRST, которая сообщает методу, что первый бит должен быть наименее значимым, а затем мы проходим через байт, содержащий биты, которые мы действительно хотим перенести в регистр сдвига.

Как только мы закончим смещение битов, мы снова обращаемся на контакт защёлки (используя HIGH в этот раз), чтобы указать, что мы отправили все данные. После того, как операция записи будет завершена, загорится соответствующий светодиодный индикатор, а затем задержится на 250 миллисекунд, прежде чем всё повторится.

Последовательное соединение сдвиговых регистров

Для последовательного подключения большого количества сдвиговых регистров используется Q7 регистра — по нему данные продавливаются по мере поступления. Выходы 11 (SH_CP, задающий тактовые импульсы) и 10 (ST_CP, «защелка») подключаются параллельно и управляются синхронно.

Читайте на сайте Codius

Как же использовать ШИМ, ведь мы же часто управляем при помощи регистра светодиодами, а выходы регистра могут иметь только 3 состояния — логический ноль LOW, логическая единица HIGH и высокоимпедансное состояние (пин не имеет физического контакта с электрической цепью). И действительно ШИМ сдвиговым регистром не поддерживается, но есть одна небольшая хитрость — мы можем использовать выход регистра OE (Output Enable input) — он отвечает за переключение из высокомного состояния в ноль. Выход OE — можно назвать логическим нолем для всех выходов. Таким образом, если мы подключим этот пин к ШИМ-выходу Arduino, то сможем таким образом смещать логический ноль, тем самым имитировать ШИМ на светодиодах.

Читайте на сайте Codius

Минус данного подхода заключается в том, что в этом случае регулируется яркость всех светодиодов, подключённых к одному сдвиговому регистру. А что же делать, если нам нужно показать разную яркость светодиодов, подключённых к одному сдвиговому регистру. Здесь снова нужно будет пойти на хитрость — создать карту яркостей светодиодов, и зажигать каждую группу со своей яркостью по очереди, так быстро, чтобы создавалось ощущение постоянного свечения:

Но если вы начнёте экспериментировать с задержками и большим количеством карт яркости, то столкнётесь с очень неприятным эффектом мерцания — это связно с большим временем исполнения стандартных для языка Arduino функций-обёрток типа digitalWrite, digitalRead, analogWrite, analogRead и т.д.

Другие регистры, например, STP16C596 могут управлять 16 светодиодами одновременно без использования дополнительных резисторов.

Сдвиговый регистр 74HC595 и семисегментный индикатор

В ситуации когда не хватает выходов микроконтроллера, что обычно делают? Правильно – берут микроконтроллер с большим количеством выходов. А если не хватает выводов у микроконтроллера с самым большим количеством выходов, то могут поставить и второй микроконтроллер.
Но в большинстве случаев проблему можно решить более дешевыми способами например использовать сдвиговый регистр 74HC595.

Преимущества использования сдвигового регистра 74HC595:

  • не требует никакой обвязки кроме конденсатора по питанию;
  • работает через широкораспостраненный интерфейс SPI;
  • для самого простого включения достаточно двух выходов микроконтроллера;
  • возможность практически неограниченного расширения количества выходов без увеличения занятых выходов микроконтроллера;
  • частота работы до 100 МГц;
  • напряжение питания от 2 В до 6 В;
  • дешевый — стоит менее 5 центов;
  • выпускается как в планарных корпусах (74HC595D удобен для производства), так и в DIP16 (74HC595N удобен для радиолюбителей и макетирования).
Читайте также  Baycom радиомодем для pc

Для понимания работы регистра стоит взглянуть на функциональную схему. Она состоит из:

  • 8-битного регистра сдвига,
  • 8-битного регистра хранения,
  • 8-битного выходного регистра.

Рассмотрим какие выводы есть у сдвигового регистра 74hc595.

Общего вывод и вывод питания объяснений не требуют.

  • GND — земля
  • VCC — питание 5 вольт

Входы 74HC595:

Вход переводящий выходы из высокоимпедансного состояние в рабочее состояние. При логической единице на этом входе выходы 74HC595 будут отключены от остальной части схемы. Это нужно например для того чтобы другая микросхема могла управлять этими сигналами.
Если нужно включить в рабочее состояние микросхеме подайте логический ноль на этот вход. А если в принципе не нужно переводить выходы в высокоимпедансное состояние – смело заземляйте этот вывод.

MR — сброс регистра

Переводить все выходы в состояние логического нуля. Чтобы сбросить регистр нужно подать логический ноль на этот вход и подать положительный импульс на вход STCP.
Подключаем этот выход через резистор к питанию микросхемы и при необходимости замыкаем на землю.

DS – вход данных

Последовательно подаваемые сюда данные будут появляются на 8-ми выходах регистра в параллельной форме.

SHCP – вход для тактовых импульсов

Когда на тактовом входе SHCP появляется логическая единица, бит находящийся на входе данных DS считывается и записывается в самый младший разряд сдвигового регистра. При поступлении на тактовый вход следующего импульса высокого уровня, в сдвиговый регистр записывается следующий бит со входа данных. Тот бит который был записан ранее сдвигается на один разряд (из Q0 в Q1) , а его место занимает вновь пришедший бит. И так далее по цепочке.

STCP – вход «защёлкивающий» данные

Что бы данные появились на выходах Q0…Q7 нужно подать логическую единицу на вход STCP. Данные поступают в параллельный регистр который сохряняет их до следующего импульса STCP.

Выходы 74HC595

  • Q0…Q7 – выходы которыми будем управлять. Могут находится в трёх состояниях: логическая единица, логический ноль и высокоимпедансное состояние
  • Q7′ – выход предназначенный для последовательного соединения регистров.

Временная диаграмма на которой показано движение логической единицы по всем выходам регистра.

Как говориться лучше один раз увидеть, чем семь раз услышать. Я сам впервые применяя регистр 74HC595 не до конца понимал его работу и чтобы понять смоделировал нужную схему в Proteus.

Вот такая схема подключения семисегментных индикаторов к микроконтроллеру ATMega48 по SPI получилась:

Это схема с динамической индикацией, то есть в каждый момент времени загорается только одна цифра счетверенного семисегментного индикатора, потом загорается следующая и так по кругу. Но так как смена происходит очень быстро, то глазу кажется, что горят все цифры.
Кроме того одновременно эта схема и опрашивает 4 кнопки S1-S4. Добавив два сдвоенных диода можно опрашивать 8 кнопок. А добавив 4 транзистора и резистора можно подключить дополнительный 4-х знаковый индикатор.
Чтобы динамическая индикация заработала в регистры нужно послать два байта: первый байт определяет, какой из 4-х индикаторов будет работать и какую кнопку будем опрашивать. А второй, какие из сегментов загорятся.

12 thoughts on “ Сдвиговый регистр 74HC595 и семисегментный индикатор ”

По моему — это тот случай, когда объяснение простого может выглядеть сложным, а не наоборот. Что может быть проще, чем два бита переслать? В данном примере, биты, пересылаемые микроконтроллером в последовательном виде — преобразуются регистрами в параллельный. Один подает на матрицу, в роли которой выступает индикатор, данные, другой — адрес. Приведен один из примеров интерфейса периферии, обслуживаемой микроконтроллером. Я бы только добавил, что счетверенный семисегментныйт индикатор, чаще всего, используют в роли часов.

В приведенной схеме динамической индикации светодиоды семисегментного индикатора должны быть на напряжение не более 4 В. В больших индикаторах часто используется последовательное включение нескольких светодиодов: например в индикаторах высотой 5см — 4 светодиода.

Поэтому стоит сделать регистру 74HC595 высоковольтный выход: подключить по MosFET на каждый выход. Затвор на выход микросхемы, исток на землю, а к стоку — «высоковольтную» нагрузку.

А действительно, часто такие схемы обслуживают таблоиды и поболее 5 см. Там может и предложенные MosFET (КМОП, полевики с изолированным затвором) будут рентабельны — цена-то у них, как правило, кусючая. В большинстве-же случаев, достаточно будет DD1, как и DD2 подсоединить к токовым ключам, а не напрямую.
Этого не сделано на приведенной схеме, так как на DD2 может падать нагрузка одновременно с семи сегментов, а на DD1 — только с одного. А экономичность схематического решения — далеко не последнее дело, в каждом, конкретном случае.

Datasheet 74HC595 и 74HCT595 от NXP.

Если не нужно каскадирование, регистр хранения и высокоимпедансное состояние на выходах то можно обойтись 74HC164N.

А зачем, если цена фактически одна? Купить сразу несколько сотен 74HC595 по 1,50 за штуку и ставить их везде и всюду, где нужны последовательно-параллельные регистры.

Мне в 74HC595 нравится именно возможность организации статической индикации, с одновременным переключением индикаторов. Так шумов меньше, чем у индикации динамической или у статической индикации без промежуточного (буферного) регистра. К тому же во втором случае имеется паразитная засветка индикатора при частой смене показаний.

А кто и как интересно опрашивает состояние кнопок на такой схеме, регистр же не контроллер он не понимает нажата кнопка или нет, его дело просто подать соответсвующие сигналы навыходных ножках, обратной же связи нет, или я чего-то не понимаю?

Тот микроконтроллер что дает сигнал на включение разрядов индикатора.
Например логическим нулем зажигаем разряд который подключен к выводу Q0 микросхемы DD2 , тогда при нажатии кнопки S1 на 9-том контакте X1 разъема появляется логический ноль, этот сигнал и считывает микроконтроллер.

А кто и как будет считывать значения с кнопок?

В этом схеме нет алгоритм для считывание состояние кнопок.
Для управление 7сег. индик. лучше включить после 595 микросхему 2003.

Применяйте микросхему TPIC6B595DWR, которая уже содержит полевики с открытым стоком на выходе.

Знакомство с микросхемой регистра сдвига 74HC595 — управление 16 светодиодами

74HC595

Из этого руководства вы узнаете, как управлять 16 светодиодами используя всего 3 линии управления. Мы осуществим это путем последовательной передачи данных в сдвиговые регистры 74HC595.

Микросхема 74HC595 содержит 8 битный регистр хранения и 8 битный сдвиговый регистр. Данные последовательно передаются в сдвиговый регистр, затем фиксируются в регистре хранения. К регистру хранения подключены 8 выходных линий. На картинке ниже показано расположение выводов микросхемы 74HC595.

Вывод 14 (DS) это вывод данных. В некоторых описаниях он обозначается как «SER».

Когда уровень на выводе 11 (SH_CP, иногда обозначается как SRCLK) переходит из низкого в высокий, значение на выводе DS сохраняется в сдвиговом регистре, при этом данные сдвигаются на один разряд, чтобы предоставить место для нового бита.

Пока на выводе 12 (ST_CP, иногда обозначается как RCLK) низкий уровень, данные записываются в регистр сдвига. Когда уровень переходит в высокий, данные из сдвигового регистра фиксируются в регистре хранения, из которого поступают на выводы Q0…Q7.

На представленной ниже временная диаграмме, показано, каким образом можно установить на выходах Q0…Q7 микросхемы значение 11000011, учитывая что изначально там было значение 00000000.

Ниже показана схема, которую мы соберем в несколько шагов.

Мы используем перфорированную макетную плату с контроллером Atmega8, которую использовали во многих наших проектах. Добавим еще 2 пустых макетных платы и подведем к ним питание.

Установим микросхему регистра сдвига и подключим к ней питание +5 В и общий провод.

Теперь проведем 3 линии управления между микроконтроллером и регистром сдвига, для чего подсоединим:

  • PC0 к DS
  • PC1 к ST_CP
  • PC2 к SH_CP

Этими линиями являются 3 синих провода на картинке ниже.

Затем подключим светодиоды и резисторы. Я использовал резисторы сопротивлением 510 Ом, но допустимы и другие номиналы.

Для демонстрации работы схемы я написал небольшую программу, которая выводит перемещающийся из стороны в сторону огонек на 8 светодиодах.

Все это конечно впечатляет, но разве я не говорил, что мы будем управлять 16 светодиодами? Чтобы сделать это, нам потребуется еще один сдвиговый регистр 74HC595, больше светодиодов, больше резисторов и больше оранжевых и голубых проводов.

Мы используем вывод Q7, чтобы соединить регистры сдвига в одну цепочку.

Модифицированная схема показана ниже.

Мы остановились на 16 светодиодах, но можно соединить в одну цепочку еще больше регистров сдвига. Эта методика конечно не ограничивается управлением светодиодами, ее можно использовать для увеличения числа портов вывода, чтобы управлять другими видами устройств.

Одно предупреждение касательно этой методики. Когда вы включаете схему, на выходах регистров наблюдаются некоторое произвольное значение. Для того чтобы записать требуемое значение, требуется меньше микросекунды, но для некоторых схем это может стать причиной проблем. В этом случае вы должны использовать выводы MR и OE, для сброса регистров хранения.

Сдвиговый регистр 74HC595

Сдвиговый регистр — это набор последовательно соединённых триггеров (обычно их 8 штук). В отличии от стандартных регистров, сдвиговые поддерживают функцию сдвига вправо и влево. (т. е. переписывание данных с каждого предыдущего триггера на следующий по счёту).

Функционал и назначение у сдвиговых регистров довольно велик. Сегодня мы познакомим одного из них с Arduino (Отличный способ множить выходы у Arduino: занимаем 3, получаем 8).

Наверное самая популярная микросхема, представляющая собой такой регистр — это 74HC595.

Читайте также  Антенна на подоконнике

— Работает на интерфейсе SPI: ноги DS, ST_CP, SH_CP — это шины управления. Соответственно: шина данных(MOSI), защёлка(SS) и тактовая линия(SCK). Подключаем на любые 3 контакта Arduino (библиотека SPI в коде не будет задействована). У меня это 12, 10, 13 выходы Arduino (стандарт).

— Ноги Q0, Q1, . Q7 — это выходы регистра (разряды). Для того, чтобы следить за состоянием каждого из них, повесим на каждый вывод по светодиоду (с последовательно соединённым резистором. Номинал от 150 до 330 Ом)

— VCC и GND — это питание. Подключаем к +5v и GND.

— выход Q7` не трогаем (предназначен для последовательного соединения таких регистров)

— MR — это сброс. Подключаем к +5v (сброс не активен).

— ну и OE притягиваем к земле (подключаем к контакту GND).

Получается вот, такая схема:

На BreadBoard можно разместить вот, так:

Теперь к коду:

— как говорилось ранее, библиотека SPI использоваться не будет. Есть удобная функция shiftOut().

для начала именуем наши пины (тактовая линия — clock, данные — data, защёлка — latch):

потом в void setup() обозначаем их как выходы и сразу ставим защёлке высокий уровень, чтобы регистр не принимал сигналов:

теперь давайте попробуем что-нибудь отправить на регистр:

— для начала ставим LOW на защёлку (начинаем передачу данных. Теперь регистр принимает сигналы с Arduino).

— потом отправляем данные (т. е. отправляем байт в цифровом или двоичном виде. В двоичном проще, т. к. каждый из 8 битов отвечает за свой разряд в регистре. Проще сориентироваться глазами):

Для начала отправим байт 0b10000000; (должен будет загореться первый светодиод):

— и в конце выставляем HIGH на защёлку (заканчиваем передавать данные).

В итоге весь наш код:

Теперь вгружаем в ардуину. Результат должен быть таким (зажёгся первый светодиод):

(если у вас зажёгся не первый, а последний светодиод, то в функции shiftOut поменяйте LSBFIRST на MSBFIRST и всё станет на свои места).

Итак, получилось! Предлагаю создать функцию для того, чтобы каждый раз не писать эти 3 СТРОЧКИ:

Я назову её: sendbyte;

Эта функция отправляет регистру состояние всех разрядов сразу. Это пригодится для управления семисегментом (например). Но, чтобы использовать регистр как расширитель портов, нужно управлять каждым разрядом по-отдельности (аналогично функции digitalWrite()):

— Мы можем отправлять регистру только полный байты (8 бит — 0b00000000). Если отправить не 8, а 5 бит (например: 0b00000000), то регистр будет ждать недостающие 3 бита. Значит, что когда мы хотим изменить состояние одного разряда регистра (включить его, или выключить) мы должны, по сути, послать ранее отправленный байт, с изменением на один бит.

(P. S.: Сейчас долгое и нудное объяснение (новичкам), кому не интересно, спуститесь чуть ниже :);

— Итак, сначала создаём, так называемую (мною), базу данных, в которой будет храниться состояние каждого разряда (включен(HIGH) или выключен(LOW)). тип: boolean:

Только что у нас появился массив переменных;

Каждая переменная в данном массиве обозначает свой разряд (в нулевой (по счёту) будет храниться состояние 1 разряда, второй — 3-го, и т. д.)

— Теперь напишем функцию (я назову её: sendpin). Она будет принимать 2 значения: номер разряда, и уровень, который нам надо этому разряду приписать: высокий(HIGH) или низкий(LOW).

— из-за того, что счёт начинается с нуля, нам придётся называть первый пин нулевым. Чтобы это исправить (мы будем писать как есть(первый, значит первый), а Arduino будет сама отбавлять один), Я написал:

— Затем отмечаем изменения в базе данных:

Теперь надо сформировать из 8 битов байт и отправить его на регистр.

— для начала создаём переменные:

value — тот байт, который будем отправлять. (по умолчанию его нужно сделать нулём):

add — это переменная, которая будет хранить в себе байт текущего разряда. для первого разряда это байт 1 (0b10000000);

теперь нам нужно прокрутить в базе данных все 8 переменных и сформировать байт (делать это будем с помощью цикла for():

Итак, каждый раз мы проверяем очередной разряд в базе данных. Если он должен иметь высокий уровень, то мы прибавляем к value add и переходим на следующий разряд в цепочке (как бы сдвигаемся на разряд выше (левее). Т. е., в двоичном коде всё просто: было так: 0b01000000; сдвинули единичку влево и получилось так: 0b10000000. А вот в цифровом виде всё по-другому. Сдвиг влево аналогичен умножению на 2 (а вправо, кстати, — делению на 2)). Получается примерно так:

Теперь остаётся только послать value на регистр:

В принципе, если понять, то всё очень просто.

Итак, давайте попробуем включить 2, 4, 6, и 8 разряды отдельно (4 раза напишем в цикле нашу функцию):

И кстати, в setup-e нужно очистить регистр (послать 0).

Сдвиговый регистр 74hc595 Arduino

В какой-то момент времени вы неизбежно столкнетесь с проблемой отсутствия достаточного количества контактов на вашем ардуино для удовлетворения потребностей вашего проекта или прототипа. Решение этой проблемы? Сдвиговый регистр, а точнее Arduino сдвиговый регистр 74hc595.

Каждый кто делал проекты на Ардуино, где использовал много светодиодов, понимал, что в значительной степени ограничен контактами Arduino и не может создавать огромные проекты, требующие большого количества контактов. В нашем конкретном проекте 16 светодиодов управляются всего лишь тремя контактами Arduino. Ключевым элементом является arduino сдвиговый регистр 74hc595. Каждый сдвиговый регистр 74HC595 может принимать до 8 светодиодов, а с помощью последовательных цепочек регистров можно увеличить контакты платы от условных 3-х до бесконечного числа.

Как работает регистр сдвига?

Прежде чем мы начнем подключать чип, давайте рассмотрим, как этот процесс работает.

Первое, что нужно прояснить, — это понятие «биты» для тех из вас, кто не знаком с двоичным кодом. Когда мы говорим о «битах», мы имеем в виду одно из чисел, составляющих двоичное значение. В отличие от обычных чисел, мы обычно считаем, что первый бит является самым большим. Итак, если мы берем двоичное значение 10100010, первый бит на самом деле равен 0, а восьмой бит равен 1. Следует также отметить, если это не подразумевалось, каждый бит может быть только 0 или 1.

Чип содержит восемь контактов, которые мы можем использовать для вывода, каждый из которых связан с битом в регистре. В случае сдвигового регистра 74HC595 мы рассматриваем их от QA до QH.

Чтобы записать эти выходы через Arduino, мы должны отправить двоичное значение в регистр сдвига, и из этого числа сдвиговый регистр может определить, какие выходы использовать. Например, если мы отправили двоичное значение 10100010, контакты, выделенные зеленым цветом на изображении выше, будут активными, а выделенные красным цветом будут неактивными.

Это означает, что самый правый бит сопоставляется как QH, а левый бит сопоставляется с QA. Выход считается активным, когда бит, сопоставленный с ним, установлен на 1. Важно помнить об этом, так как иначе вам будет очень сложно узнать, какие контакты вы используете.

Теперь, когда у нас есть основное понимание того, как мы используем смещение битов, чтобы указать, какие контакты использовать, мы можем начать подключать его к нашему Arduino.

Начинаем с 8 светодиодов

Для первой части урока нам понадобятся следующие комплектующие:

  • Arduino Uno
  • Макетная плата
  • Ардуино сдвиговый регистр 74HC595
  • 8 светодиодов
  • 8 резисторов – 220 ом должно хватить
  • Провода/перемычки

Начните с размещения сдвигового регистра на вашем макете, гарантируя, что каждая сторона находится на отдельной стороне макета, как показано ниже.

С надписью, направленной вверх, штифты 1-8 с левой стороны сверху вниз и 16 — 9 с правой стороны сверху вниз, как показано на рисунке ниже.

Собираем схему

Для начала подключим контакты 16 (VCC) и 10 (SRCLR) к выходу 5v на Arduino и соединяем выводы 8 (GND) и 13 (OE) с выводом Gnd на Arduino. Pin 13 (OE) используется для включения выходов, так как это активный низкий контакт, который мы можем подключить непосредственно к земле.

Затем нам нужно соединить три контакта, которыми мы будем управлять сдвиговым регистром:

  • Pin 11 (SRCLK) сдвигового регистра 74HC595 на пин 11 на Arduino — это будет называться «синхронизирующим пином»,
  • Pin 12 (RCLK) сдвигового регистра на пин 12 на Arduino — это будет обозначаться как «пин защелка»,
  • Pin 14 (SER) сдвигового регистра на пин 13 на Arduino — это будет называться «пином данных»,

Все три этих контакта используются для выполнения сдвига битов, упомянутого ранее в этом руководстве. К счастью, ардуино предоставляет вспомогательную функцию специально для регистров сдвига, называемую shiftOut, которая будет обрабатывать почти все для нас, но мы вернемся к этому при просмотре кода.

Теперь нам просто нужно подключить все выходные выводы к нашим светодиодам, гарантируя, что резистор размещается перед светодиодами, чтобы уменьшить ток и что катоды светодиодов направлены на землю.

Чтобы уменьшить нагромождение проводов до минимума, мы поместили резисторы и светодиоды на отдельный макет, однако, вы можете воспользоваться одной макетной платой.

При размещении светодиодов убедитесь, что они подключены по порядку, так что QA подключен к первому светодиоду, а QH подключен к последнему светодиоду, так как иначе наш код не включит светодиоды в правильном порядке. Когда вы закончите, у вас должно получится что-то вроде этого:

Скетч для ардуино

Теперь мы готовы загрузить код. Подключите свой Arduino к компьютеру и загрузите на него следующий эскиз для 74hc595 Arduino:

Для начала определим в верхней части эскиза следующее:

  • Расположение пинов: синхронизатора, защелки и данных
  • Байт, который будет хранить биты, которые указывают сдвиговому регистру, какой вывод использовать
  • Переменную, которая будет отслеживать, какой светодиод мы должны включить
Читайте также  Компания laird выпустила новый модуль беспроводного зарядного устройства

В методе setup мы просто инициализируем режимы пинов и переменную светодиодов.

В методе loop (цикл) мы очищаем биты в переменной leds в начале каждой итерации, так что все биты устанавливаются в 0, так как мы хотим только включать один светодиод за раз. После этого мы увеличиваем или перезапускаем текущую переменную currentLED, чтобы затем опять включать правильный светодиод.

После этих двух операций мы переходим к более важной части — смещению бит. Сначала мы начинаем с вызова метода bitSet. Мы передаем методу bitSet байт, что хранит биты, и переменную currentLED.

Этот метод позволяет нам установить отдельные биты байта, указав их положение. Например, если мы хотим вручную установить байт в 10010, мы могли бы использовать следующие вызовы, поскольку биты, которые нам нужно установить в 1, являются вторыми справа (это позиция 1, когда мы начинаем в позиции 0) и пятый справа, который находится в положении 4:

Таким образом, каждый раз, когда мы увеличиваем текущую переменную currentLED и передаем ее методу bitSet, мы каждый раз устанавливаем бит слева от предыдущего до 1 и, таким образом сообщаем сдвиговому регистру активировать вывод слева от предыдущего.

После установки бит мы записываем на контакт защелки указание сдвиговому регистру, что собираемся отправить ему данные. Как только мы это сделаем, мы вызываем метод shiftOut, который есть Arduino. Этот метод разработан специально для использования сдвиговых регистров и позволяет просто сдвигать биты за один вызов. Для этого мы передаем данные и синхронизацию в качестве первых двух параметров, затем передаем константу LSBFIRST, которая сообщает методу, что первый бит должен быть наименее значимым, а затем мы проходим через байт, содержащий биты, которые мы действительно хотим перенести в регистр сдвига.

Как только мы закончим смещение битов, мы снова обращаемся на контакт защелки (используя HIGH в этот раз), чтобы указать, что мы отправили все данные. После того, как операция записи будет завершена, загорится соответствующий светодиодный индикатор, а затем задержится на 250 миллисекунд, прежде чем всё повторится.

16 светодиодов

Теперь перейдем к более сложной схеме используем 74hc595 Arduino для 16 светодиодов.

Детали

По большому счету в данном случае количество всех комплектующих увеличиваем вдвое, кроме, конечно, Ардуино Уно:

  • Arduino UNO (x1)
  • 74HC595 сдвиговый регистр (x2)
  • Светодиоды (x16)
  • 220 ом резисторы (x16)
  • Провода/перемычки
  • Две макетные платы (одна с 400 пинами, вторая с 830 пинами)
  • Потенциометр для контроля яркости (по желанию)

Схема соединения

Схема соединения получилась уже больше, чем при 8 светодиодах и одном регистре сдвига 74HC595.

Соберите схему как на рисунке выше и подключите первый регистр сдвига следующим образом:

  • GND (контакт 8) на землю
  • Vcc (контакт 16) — 5В
  • OE (контакт 13) на землю (GND)
  • MR (контакт 10) — 5 В
  • DS (контакт 14) — пин 11 Arduino
  • SH_CP (контакт 11) на контакт Arduino 12
  • ST_CP (контакт 12) к контакту 8 Arduino

Подключите второй регистр сдвига точно так же, но подключите DS (контакт 14) к первому выходу 9 регистра. После этого соедините контакты 1, 2, 3, 4, 5, 6, 7 и 15 из обоих регистров и светодиоды. Это соединение делает все контакты всегда активными и адресными, однако при включении Arduino некоторые из светодиодов могут быть включены. Решение для этого — подключить MR (контакт 10) и OE (контакт 13) к Arduino напрямую, но таким образом вы должны пожертвовать 2 выводами ардуины.

Чтобы добавить больше регистров сдвига, соедините их, как второй регистр. Всегда подключайте контакты MR и OE непосредственно к контакту Arduino и DS к предыдущему регистру. Если вы хотите отрегулировать яркость светодиодов, подключите потенциометр, как показано на рисунке выше, для управления сопротивлением для всех светодиодов. Однако это необязательно, и вы можете обойтись без него.

Скетч для ардуино

Варианты скетчей обычно предназначены для ограниченного числа регистров сдвига, т.к. для этого нет универсальной функции/метода. Данный код ниже переработан так, чтобы вы могли использовать неограниченное количество регистров сдвига:

В коде добавлено несколько эффектов для этих 16 светодиодов. Если вы хотите добавить больше светодиодов, подключите больше регистров сдвига по примеру выше и измените значение numOfRegisters в коде.

Вы также можете использовать этот код не только для светодиодов, если вам просто нужно больше контактов для вашего Arduino, используйте функцию regWrite (int pin, bool state) для записи состояния любого вывода. И нет предела, сколько сдвиговых регистров вы используете, просто измените значение numOfRegisters, а все остальное уже втоматизировано.

Arduino.ru

Множим выходы с помощью сдвигового регистра 74HC595

Рассмотрим типичную ситуацию, когда вам нужно больше выходов (пинов), чем может предложить контроллер Arduino. В этом случае самый простой выход — использовать сдвиговый регистр. В данном примере используется 74HC595.

74HC595 — восьмиразрядный сдвиговый регистр с последовательным вводом, последовательным или параллельным выводом информации, с триггером-защелкой и тремя состояниями на выходе.

Другими словами этот регистр позволяет контролировать 8 выходов, используя всего несколько выходов на самом контроллере. При этом несколько таких регистров можно объединять последовательно для каскадирования. Другие подходящие регистры можно поискать по комбинации «595» и «596» в серийном номере. Так, например, STP16C596 может управлять 16 светодиодами одновременно без использования дополнительных резисторов.

В данной схеме используется принцип синхронизированной последовательной передачи сигнаналов. Необходимые значения сигнала (биты HIGH или LOW) передаются в регистр один за другим, при этом регистр получает синхронизирующий сигнал, который заставляет его считать сигнал с входа. Когда байт (1 байт = 8 бит) считан, значения всех 8 бит распределены по выходам. То есть передаем в регистр сигналы последовательно, на выходах регистра имеем параллельно 8 сигналов.

74HC595 может отдавать сигналы не только параллельно, но и последовательно. Это необходимо при объединении нескольких регистров, для получения 16 и более выходов. В этом случае первые 8 бит сигнала передаются на следующий регистр для параллельного вывода на нем, об этом будет рассказано более подробно во втором примере.

Три возможных состояния на выходе, упомянутые выше, означают, что выход регистра может иметь не только логический ноль или единицу (HIGH или LOW), но и быть в высокоомном (высокоимпедансном) состоянии — когда выход отключен от схемы. В высокоомное состояние не может быть переведен отдельный выход, а только все выходы регистра разом. Если мы говорим об управлении светодиодами, это может быть полезно в случае, когда мы хотим переключить управление ими на другой контроллер. В примере ниже это состояние никак не используется и довольно редко может быть полезно.

Распиновка входов/выходов регистра
Пины 1-7, 15 Q0 » Q7 Параллельные выходы
Пин 8 GND Земля
Пин 9 Q7″ Выход для последовательного соединения регистров
Пин 10 MR Сброс значений регистра. Сброс происходит при получение LOW
Пин 11 SH_CP Вход для тактовых импульсов
Пин 12 ST_CP Синронизация («защелкивание») выходов
Пин 13 OE Вход для переключения состояния выходов из высокоомного в рабочее
Пин 14 DS Вход для последовательных данных
Пин 16 Vcc Питание
Пример с одним регистром
  • GND (пин 8) на землю
  • Vcc (пин 16) к питанию 5В
  • OE (пин 13) на землю
  • MR (пин 10) к питанию 5В

Итак, мы запитали регистр и сделали все выходы активными. Это несколько упрощенный способ подключения, так как в момент подачи питания на схему на выходах будут случайные значения. Можно контролировать пин MR и OE непосредственно с Arduino, чтобы обнулить входы и/или подключить выходы в нужный момент. Для упрощения схемы и минимизации количества задействованных выходов Arduino мы будем использовать более простую схему, так как значения регистров и выводов будут перезаписаны, как только программы начнет работать.

Соединяем с Arduino:

  • DS (пин 14) с 11-ым цифровой выход Arduino (на схеме синий провод)
  • SH_CP (пин 11) с 12-ым цифровым выходом (желтый провод)
  • ST_CP (пин 12) c 8-ым (зеленый провод)

Далее эти выходы в тексте и коде именуются dataPin, clockPin и latchPin соответственно. Обратите внимание на конденсатор 0.1 микрофарада на latchPin, он минимизирует шум в схеме при подаче «защелкивающего» импульса.

Подключаем светодиоды к выходам регистра 74HC595, катод (короткая ножка) светодиода подключается к общей земле, а анод (длинная ножка) через ограничительный 220-ОМ резистор к выходам регистра. При использовании регистров отличных от 74HC595 следует свериться с документацией и проверить схему подключения. К некоторым регистрам светодиоды подключаются наоборот — катод к выходам.

Ниже приведен код трех программ. Первая, «Hello world», выводит значения байта от 0 до 255. Вторая по одному включает светодиоды. Третья циклически проходит по массиву.

Пониманию кода могут помочь «временная диаграмма сигналов» регистра и «таблица логики». Когда clockPin переглючается с LOW на HIGH, регистр считывает значения с DS пина. По мере считывания данные записываются во внутреннюю память. Когда latchPin переключается с LOW на HIGH, данные «защелкиваются», то есть передаются на выходы регистра, включая светодиоды.

Пример использования каскада сдвиговых регистров

В этом примере подключаются два регистра, доводя количество выходов до 16, при это на Arduino по прежнему задействовано то же количество выходов.

Подключаем второй регистр к питанию и общей земле точно так же, как и первый.

Далее DS вход (пин 14) подключается к Q7′ выходу (пин 9) первого регистра (синий провод). А SH_CP (пин 11) и ST_CP (pin 12) подключаются параллельно регистру к соответствующим входам первого регистра. Желтый и зеленый провод соответственно.

К выходам второго регистра подключаем зеленые светодиоды.