Питание мультиметра. li-ion вместо кроны. защита от разряда, таймер

Ford Fusion 1.6I, МКПП, Frozen White › Бортжурнал › Переделываем мультиметр под литий-ионную банку 3.7В вместо надоевшей кроны

Делал себе такое в гаражик, поделюсь изобретением, раз интересно.
Итак, что имеем? Мультик электронный на кроне, которую регулярно надо менять. А стоит она, зараза, нынче прилично! Но даже это не самое противное, а вот гадость в том, что может сесть она в самый неподходящий момент! Когда копаешься в гаражике с чем-то и интенсивно используешь прибор и вдруг замечаешь, что что-то идет не так… Какие-то показания странные, завышенные. Можно убить на мозговой штурм ситуации час, два… А ларчик-то просто открывается! У тебя банально САДИТСЯ долбаная крона в приборе! И тот начинает «плыть», брехать! Надо срочно бросать все и телепать за новой батареей. Облом работе.
В общем, надоело мне как-то все это дело и я задался целью: УЙТИ от кроны! Более того, перейти с батареи на аккумуляторы, благо их сейчас навалом, каких хочешь. Нужен контроллер заряда-разряда батареи — это не вопрос, на Али их аки грязи за копейки. Но 3.4В для прибора не вариант, а ставить 2 банки как-то не алё…
Плюс останется проблема №2 — прибор будет брехать при просадке напруги на батарее.
Выход я нашел вполне простой: Бустер! Он-то и превратит 3.4В с контроллера в 9В, так необходимые нашему прибору.
Попробовал слепить «на коленке» эту систему — и ДА, оно работает отлично! Надо делать!

Что нам понадобится для реализации этой затеи?
1. Прибор — тут все ясно. Любой, который у вас есть и живет жил на «Кроне».
2. Li-Ion батарейка. В идеале я хотел поставить 18650, но. в моем приборе (он маленький) она никак не влазила и пришлось применить первую попавшуюся батарейку от мобильника, которая еще имеет вменяемую емкость. В моем случае под руку попалась NOKIA BL-4C.
3. Контроллер заряда/разряда банки. Я у китайцев беру вот такие:

На чипах 4056, под MicroUSB, с защитой. Ценник — $1.4 за 5 штук.
Кому интересно, например, ТУТ
Ну по факту их выгоднее брать по 10 или 20шт — будет дешевле. Если вы, конечно, будете их использовать не только для прибора. Можно и 1шт купить. Все «по нуждам», у китайцев выбор этих контроллеров очень большой.
4. Бустер DC-DC. Я использую 3608, вот такие:

Ценник — $1.9 за 5 штук. То же самое, цена гуляет от количества, продавца и т.д.
Например, ВОТ

У этого производителя есть плата за доставку. Но есть такой момент: если будете брать несколько лотов у него, то доставка будет одна за все и считается она обычно исходя из «минимальной»! Например, вы заказали 3 лота: у первого доставка $0.75, у второго 0.35, у третьего 0.68. В конечном заказе будет одна доставка за 3 позиции и она будет в нашем случае $0.35! В общем, разберетесь. Или купите у другого продавца. Win-Win мне просто понравился. Я у него брал не один раз всякие штуки и проблем не было ни разу.

5. Руки, голова, инструменты, желание, время…

Если все это в наличии, приступаем!
Первое, что нужно определить (после вскрытия прибора), куда все это воткнуть. Если прибор большой — там попроще… В маленькие, типа моего DT-830, к примеру, 18650 не влезет так просто, поэтому я решил от него отказаться и поставить плоскую батарею от старой Нокии. Тут сразу ремарка. ЕСЛИ вы используете 18650 — все гут, если аккум от телефона или еще чего-то, то сначала «верх» батареи нужно разобрать и удалить встроенный контроллер! Вам нужна ТОЛЬКО БАТАРЕЯ, ее «+» и «-» и ничего лишнего, т.к. контроллер у вас уже есть!
В донышке (это верх, морда прибора), на месте кроны, я термоклеем закрепил контроллер, предварительно подпаяв к нему 4 провода и прорезав в бочине прибора отверстие для разъема MicroUSB и световодов к индикаторам.
Затем подпаиваем «на весу» (пока так!) хвосты в такой последовательности:
1. +/- «V IN» бустера к +/- (соответственно) «OUT» контроллера.
2. +/- батареи к «B+/B-» (соответственно) контроллера.
и выставляем бустер (батарею желательно предварительно подзарядить), вот так:

Это напруга на входе бустера. Все хорошо. Теперь перекидываем щупы на выход бустера и подстроечником выставляем нужные прибору 9В. После этого можно подкинуть прибор к выходу бустера и включить его — дабы пошла нагрузка и выставить напругу на выходе уже «в рабочем состоянии», если это потребуется.

Теперь ОТПАИВАЕМ батарею и крепим на свои места батарею и бустер. Для прочности я сделал так: провода к батарее и прибору мягкие, а вот от контроллера к бустеру два штыря жестких (ножки от каких-то радиоэлементов). Их впаял в контроллер, укрепил его. Потом насадил на них бустер, припаял на нужной высоте и обрезал лишнее. И потом уже бустер по краям закрепил термоклеем. Им же прихватил и батарею. Теперь укорачиваем на нужную длину провода от прибора к бустеру и припаиваем их. То же самое делаем с проводами от контроллера к батарее.
Остается уложить аккуратно провода и собрать прибор.
У меня получилось вот так:

Блог компьютерщика

Все, чем занимаюсь на работе: компьютеры, автоматизация, контроллеры, программирование и т.д.

  • Главная страница
  • О себе
  • О блоге
  • Контакты

пятница, 14 октября 2016 г.

Как переделать тестер на питание от розетки вместо батарейки

Батарейки периодически садятся, а новые стоят денег по нынешним временам немалых- 1 $. Вместо батарейки-кроны, напряжение которой составляет 9 В, можно использовать любой блок питания на 9 В постоянного тока. Таких блоков питания от старых поломанных свичей у меня достаточно и можно легко питание от них завести на тестер. Но просто просверлиться в корпусе и завести туда провода от БП 9 В неинтересно. Захотелось сделать красиво, насколько хватит рук.

Итак, взял плату со старого неработающего свича и примерился к его гнезду питания.

Если под рукой нет поломанного свича, не беда. Можно просто купить такое же гнездо и припаять на перфорированную макетную плату. Но получится, конечно, не так красиво.

Производители свича любезно оставили возле разъема площадку, которую удобно использовать для подпайки проводов питания нашего тестера.

Отверстие в корпусе для посадки гнезда я сначала выпилил электродрелью(тонким сверлом, пилил по принципу электролобзика), а потом дорабатывал набором надфилей.

Получилось вот так.

Теперь тестер работает от розетки и не зависит от батареек.

А как работает?

Проверим, имеется ли разница при измерениях, если запитать тестер от импульсного БП(кликабельно).

P.S. Еще можно сделать отдельный включатель питания вместо штатного барабана. Например, так: meandr.org/archives/25019

3 комментария:

Задумка интересная 🙂 тягать с собой удлинитель тоже выход однако 😉
Молодец. Реально интересно придумано!

Техническая сторона понятна. Я где предостережения для детей, чайников и представителей поколения ЕГЭ, что при питании от некоторых импульсных устройств может здорово тряхонуть, или создать в исследуемом устройстве сноп искр (нет гальванической развязки)?

Ништяк получилось 😉 Просто эти марки коорые на кроне они ебаные и жрут ее немерено у меня был такой .Самые глуховые на 2-3 мизинчиковых ,пальчиковых батарейках хватает при ежедневном использовании 4-5 часов гдето на пол года .И БП не нужен раз в пол года купить 3 мизинца 😉

Питание мультиметра. Li-ion вместо кроны. Защита от разряда, таймер

Долгое время пользовался мультиметром DT9202A, в очередной раз села «крона», а покупать новую было в лом. Решил купить новый мультиметр. В качестве замены выбрал Fluke 15B+. Ну а старый мультиметр бросил в коробку с хламом. Пролежал он там пару лет, пока я в очередной раз не наткнулся на него.

Читайте также  Измеритель тока в антенне

Вроде бы и выкинуть жалко, и пользоваться нельзя, и на запчасти разобрать рука не поднимается, ведь мультиметр исправно служил мне в течении нескольких лет. Было решено сделать ему новую систему питания. Хотелось подойти к делу основательно, а не гнать вот такую халтуру:

Хотелось запитать мультиметр от Li-ion аккумулятора, но возник ряд проблем:

  • Напряжение питания мультиметра 9 вольт, нужен повышающий преобразователь;
  • Штатная система автоотключения перестанет работать, нужно городить свою;
  • Необходимо защитить аккумулятор от переразряда;
  • Нужно чтобы на борту был контроллер зарядки аккумулятора с индикацией.

Кроме того, хотелось собрать конструкцию из дешевых и доступных деталей, и главное — без использования микроконтроллеров. Решать такую простейшую задачу на микроконтроллере как-то скучно и не интересно. Да и радиолюбители-новички будут не против «прокачать» свои мультиметры, используя радиодетали с помойки 😉

После нескольких вечеров, проведённых с паяльником и макетной платой, родился такой вот монстр:

Основные характеристики:

  • Выходное напряжение 9 В
  • Напряжение питания 3,6. 4,2 В
  • Напряжение срабатывания защиты от разряда 3,6 В
  • Ток заряда аккумулятора 250 мА
  • Таймер автоотключения 5 мин

А так выглядит устройство в сборе:

На одной стороне платы расположены SMD компоненты, а на другой стороне находится аккумулятор от старого мобильника. Изначально я хотел поставить аккумулятор Nokia BL-5C, но он оказался на 2 мм длиннее отсека и не влез по размерам.

Пришлось ставить мелкий аккумулятор Nokia BL-4B. Закрепил его при помощи двустороннего скотча.

Для внедрения новой системы питания в мультиметр, необходимо:

  1. Превратить штатный выключатель в тактовую кнопку, удалив фиксирующий элемент;
  2. Продолбить необходимые отверстия, разместить плату в корпусе;
  3. Соединить плату питания с платой мультиметра.

1. Модификация кнопки

Так как штатная кнопка включения имеет фиксацию, пришлось немного доработать её. Для этого нужно вскрыть корпус кнопки, удалить оттуда фиксирующий элемент, и собрать всё как было 😉

Теперь кнопка не фиксируется при нажатии, и работает как обычная тактовая кнопка.

2. Сверление отверстий, размещение платы в корпусе

Плата питания содержит контроллер зарядки аккумулятора. Подзарядка осуществляется через разъём USB-B, который был весьма уютно размещён в корпусе мультиметра.

В батарейном отсеке пришлось уменьшить высоту стенок, чтобы они не мешали плате.

В верхней части корпуса были вырезаны отверстия для разъёма USB и для светодиода, отображающего процесс зарядки.

Во время зарядки светодиод горит, по окончании зарядки — гаснет.

Плата фиксируется в корпусе мультиметра без единого болта. Продавить USB гнездо мешает ступенька в корпусе. Достать гнездо наружу мешает форма платы, повторяющая внутреннюю часть корпуса. Шевелить плату влево-вправо мешают стенки батарейного отсека. Наклонить плату вверх мешает аккумулятор, наклон вниз блокирует стенка батарейного отсека. Плата сидит внутри крепко, как влитая.

3. Подключение платы питания к мультиметру

Ниже представлена штатная схема автоотключения мультиметра. Отрубает питание примерно через 10 минут работы.

При использования мультиметра совместно с моей платой питания, штатную схему нужно немного модернизировать:

Так как на моей плате для питания мультиметра использован DC-DC преобразователь, таймер автоотключения должен обесточивать питание до преобразователя. Родной таймер автоотключения стоит в самом мультиметре, то есть после преобразователя. При срабатывании автоотключения, родная схема обесточит мультиметр, а преобразователь продолжит работать, разряжая аккумулятор. Поэтому такой вариант не годится. Пришлось сделать свою систему автоотключения, а штатную обойти, подав питание непосредственно на измерительную часть схемы (цепь V+). Также необходимо демонтировать штатную колодку «кроны» и конденсатор C19.

Ставим перемычку на резистор R53.

Подключаем плату питания к мультиметру при помощи трёх проводов:

  • GND
  • MULTIMETER_9V
  • MULTIMETER_ON

Внедрение новой системы питания прошло безболезненно. Даже не пришлось резать ни одной дорожки на плате мультиметра. Устройство не требует настройки и начинает работать сразу после сборки.

Описание работы схемы.

На операционном усилителе DA2.1 собран узел защиты от разряда аккумулятора. Напряжение отключения задаётся номиналами делителя R4R7. В качестве источника опорного напряжения используется микросхема линейного стабилизатора DA1 (LM1117). Стабилизатор нагружен резистором R3, так как не умеет работать без нагрузки.

На операционном усилителе DA2.2 собран таймер автоотключения. При включении питания заряжается конденсатор C3, затем он постепенно разряжается через резистор R10. Время срабатывания таймера задаётся номиналами C3R10. При срабатывании таймера открывается транзистор VT3, заставляя сработать схему защиты от разряда.

Операционный усилитель DA2 (LM358) работает как компаратор, поэтому может быть заменён на микросхему компаратора LM393.

На микросхеме DA4 (MC34063) собран импульсный повышающий преобразователь, который выдаёт напряжение 9 вольт для питания мультиметра.

На микросхеме DA3 (TP4056) собран узел автоматической зарядки аккумулятора. Во время зарядки светодиод HL1 светится, по окончании зарядки — гаснет.

На схеме есть кнопка отключения, но я её не использовал, т.к. хватает таймера. Питание отключается автоматически по таймеру, время задаётся номиналами C3R10. Желающие могут для отключения питания задействовать кнопку «HOLD», всёравно толку от неё никакого.

В конце статьи можно скачать Excel файл со всеми необходимыми расчётами.

Напоследок прилагаю видео работы мультиметра с новой системой питания.

sxemy-podnial.net

Предлагаю вашему вниманию три разных схемы, позволяющие переделать в мультиметре систему питания. Первых две схемы мои, а третья моего ученика (прошу заметить, что мне уже 57 лет, а моему ученику около пятидесяти). Тема переделки – отказ в использовании гальванического элемента типа Крона (1604, 6F22, 6R61) [1] для питания мультиметра, так как его ёмкости хватает максимум на два месяца работы. Многие радиолюбители хотят отказаться использовать эти батареи в своей практике. Вот и я задался целью создать подобную схему, для чего я ранее и «поднимал» схему своего мультиметра M890G. За основу взял мою любимую микросхему К561ЛН2, это может быть видно по предыдущим конструкциям на этом сайте.

Первая конструкция, можно сказать, классическая. Её можно встроить в практически любой мультиметр с питанием от Кроны. Плата получится небольшой, если собирать схему не только на SMD, но и на обычных радиодеталях, так как отсек для батареи «Крона» в мультиметрах достаточно большой. В этой конструкции предполагалось больше функциональных возможностей, чем получилось. Но когда сумею воплотить все свои замыслы в «железо», то тогда и опубликую. А сейчас предлагаю вашему вниманию только этот вариант схемы:

Электронный выключатель мультиметра с преобразователем напряжения. Схема

Объяснять работу схемы подробно, не вижу смысла, поэтому расскажу нужное и по порядку схемы. J1 – это разъём microUSB, предназначен для зарядки Li-Ion аккумулятора GB1 отслужившего свой срок работы в мобильном телефоне (можно конечно применить и новый) со своим контроллером защиты при заряде и разряде. Заряд происходит через резистор R2 сопротивлением 8,2 Ома. Такая схема зарядки, даёт не только малый ток заряда, в течении примерно 8 часов, но и не требует каких-то схемных ухищрений по контролю температуры аккумулятора. Схема контроля заряда состоит из транзистора VT1 и резисторов R2 и R3. Индикация заряда – это сверхяркий светодиод VD1, который погаснет по окончании зарядки аккумулятора GB1. Номинал резистора R1 нужно подобрать по требуемой яркости светодиода. Кнопка SB1, светодиод HL1, стабилитрон VD1 и резистор R3 – схема контроля заряда аккумулятора при работе. Как настроить этот узел описано здесь. Так же, там же, описана и схема работы узлов на логических элементах DD1.1-DD1.3. На DD1.1 собран таймер отключения. При указанном номинале конденсатора C2 и диоде VD2 (его нужно подобрать по времени удержания таймера примерно 3 секунды, при ёмкости конденсатора C2 – 0,01 микрофарад) таймер отключится примерно через 30 минут. Если вам нужно другое время, то придётся «поиграться» ёмкостью конденсатора C2 и/или rобр. диода VD2. При срабатывании таймера (DD1.1) откроется транзистор VT2 и перебросит триггер, состоящий из логических элементов DD1.2 и DD1.3, в закрытое состояние. При закрытом (выключенном) состоянии триггера включения (выв. 4 DD1.3 низкий уровень) тормозится работа генератора преобразователя напряжения через открытый диод VD3, разряжается конденсатор таймера C2 через токоограничительный резистор R4 и закрывается ключ включения нагрузки на транзисторе VT3. Так же, низкий логический уровень на выводах 6 и 8 микросхемы DD1 закроет выходной транзистор преобразователя VT5.

Читайте также  Универсальные бп с защитой от перегрузок и к.з.

Если нажать на кнопку включения/выключения SB2, то на выводе 4 DD1.3 появится высокий уровень и запустит всё то, что до этого тормозил. Начнёт заряжаться конденсатор таймера C2 через rобр. диода VD2. Закроется диод VD3 и разрешит работу задающему генератору (частота работы примерно 50 кГц) на логических элементах DD1.4 — DD1.6 (генератор прекрасно работает и без DD1.6, он просто «лишний» и поэтому его, если потребуется, можно и исключить). Далее следует ключ преобразователя напряжения на высокочастотном транзисторе VT5 запитанный через дроссель L1 нагруженный на потребителя в виде мультиметра с током потребления 5-10 миллиампера через выпрямительный диод Шоттки — VD4. После этого диода также включена схема стабилизации выходного напряжения на транзисторах VT3, VT5 и стабилитроне VD5. Эта схема была взята из схем стабилизации напряжения китайских скутеров и показала прекрасную работу. Выходное напряжение колеблется от 9,0 до 9,1 вольт при питании преобразователя от 3,0 до 4,2 вольт. При простой схеме стабилизации (без VT6), выходное напряжение колебалось примерно в районе одного -двух вольт.

Так же, после включения триггера, был включен ключ включения нагрузки на транзисторе VT3. Почему ключ стоит по выходу? Просто, потому, что такое схемное решение оказалось проще, чем, если бы ставить ключ в разрыв питания выходного ключа преобразователя. А почему по «минусу»? И опять из-за простоты реализации. Кстати, ради интереса ставил вместо транзистора VT3 полевой транзистор с изолированным затвором. И да, всё работает и без резистора R9.

Конденсатор C8 нужно поставить как можно большего номинала. Если нужно организовать лучше защиту от ВЧ помех, то можно порекомендовать экранировку и ВЧ фильтра по выходу. Но думаю, что это будет лишним.

Все транзисторы нужно подбирать с возможно большим коэффициентом усиления по постоянному току, и они должны быть не менее 200.

Так же я опробовал в роли выходного ключа VT5 разные транзисторы. На схеме указан самый лучший. Чем «хуже» транзистор, тем больший разброс выходного напряжения, с отключенной схемой стабилизации. Далее список транзисторов начиная от лучших: BC337-25, 2SD1616YC, SS8050D, 2N5551, 2SC945, SS9014, КТ972А, КТ503Б, КТ3102Б, КТ315Е.

Я также подстраивал частоту генератора преобразователя по максимальному напряжению на выходе с отключенной схемой стабилизации резистором R11. В моём случае номинал этого резистора оказался 123,35 кОм при выходной частоте 46,65 кГц. Выходное напряжение было примерно 14 вольт.

Дроссель L1 типа «гантелька» с внешним диаметром 4 мм., и высотой 5,4 мм. Использовал то, что было под рукой. Кажется, этот дроссель был изъят из наручных электронных часов типа «Монтана». Для объективности схемы с дросселя была срезана термоусадка и смотаны витки с подсчётом последних. Их оказалось 126 витков. Диаметр определил штангенциркулем – 0,1 мм. Индуктивность дросселя до разборки была 0,27 мГн. Намотать обратно виток к витку не представлялось возможным (отсутствует нужная оснастка для намотки, да и зрение подводит уже), поэтому мотал внавал. Количество витков уменьшилось до 116, а индуктивность до 0,22 мГн. На работоспособность эти манипуляции не повлияли.

J2 – от «старой» Кроны. Хотя можно запаять и на прямую.

Li-Ion аккумулятор GB1 нужно разместить в корпусе мультиметра. К примеру, в мультиметре M890G, между монтажной платой и пластиком корпуса довольно большое пространство и можно там разместить большую аккумуляторную батарею. Если в вашем мультиметре не будет возможности расположить аккумулятор, то его можно вынести за пределы корпуса, и приклеить там клеевым пистолетом. А там уже закрыть её как кусочками пластика, так и банально примотать изолентой.

Если такую схему встраивать в мультиметр M890G, то придётся «выбрасывать» внутреннюю схему включения/выключения/автоотключения и использовать «сломанную» кнопку включения. А можно организовать кнопку включения прямо на плате и соответственно включать мультиметр новой кнопкой, а освободившуюся кнопку (бывшая вкл./выкл.) отдать для включения подсветки индикатора. Я на своём мультиметре M890G пытался так сделать. Получилось не так как хотелось, но получилось.

Так что, дерзайте, кому понравилось!

Вторая схема родилась после прочтения очередных возгласов: — Низзя. Нельзя ставить в корпус мультиметра всякие там преобразователи напряжения, так как они будут сбивать правильные показания (к примеру, посмотрите вот здесь [2])! И подумалось, что и им нужно помочь…. Схема родилась почти сразу….

Замена Кроны тремя Li-Ion аккумуляторами. Схема

Вот здесь я нарисовал три варианта одной идеи. Первый вариант — а., самый «правильный» и самый простой (по количеству деталей). Три аккумулятора, три схемы контроля заряда и один переключатель на пять переключаемых групп (к примеру – ПКн61). И всё! Аккумуляторы лучше применить одинаковые, но можно и разные, всё равно у каждого своя линия зарядки и индикации. По показанию светодиодных индикаторов при заряде, можно увидеть, кто из аккумуляторов уже «слабое звено».

Второй вариант – б. тоже правильный, но добавлены развязывающие диоды. Здесь три группы на переключателе.

Третий вариант – в. самый «не правильный» :), так как при заряде аккумуляторов на выходе будет присутствовать напряжение порядка 4,5 вольт. Но зато, здесь переключатель всего с двумя переключаемыми группами.

У всех вариантов так же присутствует интегральный стабилизатор напряжения 78L09. Конденсаторов не ставил, так как они есть на платах мультиметров (ну, или должны быть)!

Третий вариант сделал мой ученик для своего мультиметра M890B. У этого мультиметра немного другой корпус, чем у M890G, он более прямоугольный, более «правильный». И поэтому ему удалось расположить внутри корпуса бэушный Li-Ion аккумулятор от планшетного компьютера с начальной ёмкостью 2400 мАч. По его отзывам, схема показала прекрасную работу и работает от одной зарядки уже полтора года. Схема собрана из готовых модулей: модуля зарядки на TP4056, модуля повышающего преобразователя MT3608 и собственно аккумулятора. И ещё добавлен выключатель.

DC-DC преобразователь для мультиметра. Схема

Кроме схемы, представляю несколько фотографий, любезно предоставленных моим учеником, его «конструкции выходного дня». Как видно по фотографиям, монтаж вёлся с помощью клеевого пистолета. Так же видно, что маленькая дырочка в корпусе и клей создали своеобразный световод для индикаторных светодиодов платы TP4056.

Расположение радиокомпонентов в корпусе мультиметра. Фото Вид с внешней стороны. Фото

Поделки своими руками для автолюбителей

Как переделать «Крону» на аккумулятор в мультиметре

Всем привет. У многих есть мультиметры, которые питаются от батареи типа «Крона», если мультиметр не имеет автоотключения, то батарея быстро выходит из строя, даже если мультиметр с автоотключением, то всё равно приходится несколько раз в год менять батарейку.

Вот в этой статье и расскажу, как можно избавиться от батарейки и перейти на литиевый аккумулятор, который можно будет подзаряжать от простой зарядки.

Главное подобрать аккумулятор небольшого размера, в моём случае подошёл аккумулятор от старого видеорегистратора на 3,7 Вольта 400 ма.

Аккумулятор имеет напряжение 3,7 вольт, а мультиметр работает от 9 вольт, поэтому нужен преобразователь напряжения. Купить компактный dc-dc преобразователь не проблема, популярная плата повышающего преобразователя МТ3608, стоит копейки и по карману каждому.

Читайте также  Схема сигнализации с оповещением через мобильный телефон

Этот преобразователь имеет ток холостого хода около 1,5 миллиампера, поэтому даже если мультиметр отключён, от аккумулятора потребляется ток.

Можно конечно поставить небольшой выключатель,

который бы включал аккумулятор, но мы пойдём другим путём. Также нам понадобится и плата заряда, которая даст возможность зарядить аккумулятор от usb-порта.

Как видно из блок-схемы преобразователь всегда подключён к аккумулятору и потребляет от него некоторый ток, даже в режиме покоя.

В качестве преобразователя напряжения очень желательно использовать вот такой

построенный на базе микросхемы МЕ2149 и ей подобных, такие преобразователи без проблем можно купить в интернет-магазинах. Фишка таких преобразователей заключается в том, что они имеют очень маленький ток холостого хода, в пару-тройку сотен микроампер.

К сожалению у меня такого преобразователя не было, а заказывать и ждать целый месяц мне не хотелось и я пошёл другим путём. Я взял преобразователь МТ3608 и немного его переделал, а переделал потому что он посадил бы наш аккумулятор за 30-40 дней даже если не включать мультиметр, а это никуда не годится.

Поэтому было решено переделать плату преобразователя,

после чего он стал потреблять ток всего 50-55 микроампер, вместо 1,5 миллиампера, а это значит, что аккумулятор разрядится полностью за 300 дней, а это уже круто…

Вот исходная схема данного преобразователя.

А вот уже переделанная

В самом начале нужно подать на вход преобразователя напряжение около 4 Вольт и вращением подстроечного резистора на выходе выставить 9 вольт или просто можете выпаять подстрочник и впаять на его место постоянной резистор на 70 кОм.

Далее, берём иголку или лезвие канцелярского ножика и разрезаем 4 вывод микросхемы от 5 вывода, после собираем всё по схеме, что опубликована немного выше…

Можно естественно всё сделать покрасивее, но сделал как сделал)

Ну и на всякий случай несколько слов о работе схемы.

Четвёртый вывод микросхемы даёт возможность управлять преобразователем, если на него поступает плюс питания, преобразователь запускается, если масса выключается. В выключенном состоянии преобразователь потребляет мизерный ток, 50-55 ма.

Если на выход преобразователя подключается нагрузка, образуется некоторое падение напряжения на резисторе,

этого падение достаточно для того чтобы сработал маломощный транзистор, по открытому переходу транзистора на четвёртый вывод микросхемы поступает «+» питания, вследствие чего преобразователь запускается и на его выходе мы получаем заданное напряжение 9 вольт.

Переделка не занимают много времени и почти не требует затрат. Транзистор любой малой или средней мощности, советую взять транзистор с большим коэффициентом усиления по току.

Плату МТ3608 мне пришлось урезать чтобы та влезла в корпус, ну и добавил электролит в 10 мкф на выход, чтобы сгладить пульсации.

Система зарядки стандартная построена на базе микросхемы ТР4056 на плате имеется индикатор заряда и плата защиты для аккумулятора.

Этот модуль позволит заряжать литиевый аккумулятор от обычного usb-порта с током до 1 ампера, так как аккумулятор у меня имеет емкость 400 миллиампер я снизил заряд в 2 раза путём замены токозадающего резистора на плате…

Таблица зависимости тока заряда сопротивления данного резистора сейчас перед вами

Эту плату так же пришлось урезать, систему защиты аккумулятора выкинул, так как на самом аккумуляторе уже имелась такая защита.

Корпус я напечатал на 3D принтере,

ну а вы можете разместить данную поделку на ваше усмотрение, можно также разместить всё и без корпуса, единственное надо только будет вырезать окошко под гнездо заряда. А также можно использовать корпус от старой, использованной батарейки типа «Крона». Вытащить из неё все потроха, вставить наши платы и залить клеем.

Ну а теперь давайте протестируем, что у нас получилось, вставляем нашу «батарейку» в мультиметр, как видим напряжение на батарейке около 4 Вольт, это значит, что наш преобразователь находится в режиме сна и потребляет от аккумулятора ничтожный ток.

Теперь включаем мультиметр и снова проверяем напряжение на «батарейки», как видим оно уже в районе 8 вольт, это значит, что система среагировала на нагрузку и преобразователь запустился. Всё работает прекрасно, в противном случае мультиметр бы показал значок разряженной батарейки.

Данное устройство, то есть «батарейка», специально заточена для питания мультиметра.

У вас конечно же возникнет вполне справедливые вопрос — А зачем всё это надо, когда можно купить батарейку и не париться?… Да отвечу Вам просто, мне интересно делать поделки своими руками, чтобы они работали и приносили в будущем пользу, а пойти в магазин и просто купить — это не для меня.

Li-Ion аккумулятор в мультиметре

Стабилизированный преобразователь напряжения

В моем мультиметре AM-1006 фирмы «Актаком» за один год истощились три батареи типоразмера 6F22, сходные по размерам и параметрам с отечественной «Кроной”. Среди них была одна фирмы Duracell, славящаяся своей ёмкостью и долговечностью. И вот, когда очередная батарея «села», а новой под рукой не было, мне попалась на глаза статья о питании мультиметра от двух аккумуляторов типоразмера АА. В наличии у меня был Li-Ion аккумулятор от мобильного телефона ,,Сони-Эриксон-Т-290м» и я стал его прикладывать к моему мультиметру. К счастью, аккумулятор удачно вписался в нишу под крышкой в верхней части корпуса прибора (рис. 1).

Для надёжного крепления потребовалось просверлить всего два отверстия диаметром 3 мм для его удержания в этой нише аналогично тому, как это сделано в мобильном телефоне.

Поскольку аккумулятор практически идеально размещался в мультиметре, осталось собрать стабилизированный преобразователь с выходным напряжением 8. 9 В и габаритными размерами, позволяющими разместить его в батарейном отсеке. Схема преобразователя показана на рис. 2

Схема преобразователя

Он собран на двух транзисторах по схеме несимметричного мультивибратора. В качестве нагрузки транзистора VT2 применён дроссель L1. Импульсы напряжения на коллекторе этого транзистора амплитудой 15 В и частотой следования 250 кГц выпрямляет диод VD1, а выпрямленное напряжение, сглаживаемое конденсатором СЗ. затем поступает на параметрический стабилизатор R5VD2. Напряжение 8,2 В поступает на колодку Х1 (снятой с вышедшей из строя батареи типоразмера 6F22). Преобразователь обеспечивает ток, потребляемый мультиметром (до 4 мА). Для выключения питания преобразователя пришлось в левом нижнем углу мультиметра (рис. 3) установить выключатель SA1 (любой малогабаритный движковый).

Места для него там достаточно. Наличие этого выключателя избавило от использования галетного переключателя мультиметра при его включении или выключении.

В авторском варианте плата была изготовлена из односторонне фольгированного стеклотекстолита. Она вырезана по размерам батареи 6F22, а фольга с помощью резака разделена на прямоугольные площадки, к которым припаяны выводы деталей. Для повторения радиолюбителями разработана печатная плата, чертёж которой показан на рис. 4.

Применены резисторы МЯТ, С2-23, оксидный конденсатор —-импортный, остальные — керамические импортные, дроссель — ДПМ-0,1, стабилитрон — любой маломощный с напряжением стабилизации 6,5. 9 В. так как мультиметр сохраняет работоспособность при снижении напряжения питания до 6 В. Пары вилка/гнездо ХР1, XS1 и ХР2, XS2 могут быть любыми, но чтобы исключить возможность неправильного подключения полярности, они должны быть разного диаметра.

При зарядке аккумулятора вилки ХР1 и ХР2 отсоединяют от преобразователя и подключают к зарядному устройству. Применённый мною аккумулятор содержит контроллер зарядки/разрядки и его можно заряжать, подключив к ЗУ или блоку питания с выходным напряжением 5 В. Большинство аккумуляторов сотовых телефонов содержат такие контроллеры. А если аккумулятор без него, придётся изготовить зарядное устройство [2]. Контакты колодки XI припаивают к двум жёстким Г-образным держателям из проволоки от металлической скрепки. Преобразователь размещают в батарейном отсеке мультиметра (рис. 5).