Новые микросхемы linkswich для построения ac/dc-преобразователей

Новые микросхемы linkswich для построения ac/dc-преобразователей

Новые микросхемы LinkSwich для построения AC/DC-преобразователей

LinkSwitch — название новой серии микросхем фирмы Power Integration для построения сетевых обратноходовых преобразователей AC/DC малой мощности. Эти преобразователи применяют в маломощных сетевых изолированных источниках питания, в проводных и беспроводных телефонах, проигрывателях CD, бытовой аппаратуре в качестве источника питания дежурного режима, зарядных устройствах и везде, где требуется небольшая мощность источника — от 2 до 5 Вт. Серия состоит из микросхем LNK500 и LNK5O1. По сути, — это один и тот же кристалл, разница только в проценте разброса выходного напряжения. У LNK500, при включении без обратной связи, разброс выходного напряжения больше, соответственно и цена ниже. У LNK5O1 — наоборот.

В состав микросхем входят (рис. 1): высоковольтный силовой ключ — транзистор POWER MOSFET, компаратор ограничения тока, узел температурной защиты, схема мягкого запуска, усилитель ошибки, генератор, ШИМ компаратор. Микросхемы изготавливаются в корпусах типа DIP-8B (вариант Р, рис. 2) и SMD-8B (вариант G), у которых отсутствует один вывод.

Рис. 1
Состав микросхемы

В состав микросхем входят (рис. 1): высоковольтный силовой ключ — транзистор POWER MOSFET, компаратор ограничения тока, узел температурной защиты, схема мягкого запуска, усилитель ошибки, генератор, ШИМ компаратор. Микросхемы изготавливаются в корпусах типа DIP-8B (вариант Р, рис. 2) и SMD-8B (вариант G), у которых отсутствует один вывод.

Рис. 2
Корпус типа DIP-8B

Преобразователи на основе этих микросхем получаются достаточно компактными, так как в них используется небольшое количество компонентов. Причем плата преобразователя получается гораздо меньше размером и массой, чем трансформатор соответствующей мощности на 50 Гц. Встроенные в микросхему узлы позволяют уменьшить число навесных компонентов, упрощая монтаж и увеличивая надежность системы. Рабочая частота микросхемы — 42 кГц. При такой частоте упрощается фильтрация выходных напряжений преобразователя. Обе микросхемы применяют в преобразователях не только на фиксированное входное напряжение, но и на расширенный диапазон (85. 265 В). Как правило, в дешевой аппаратуре, не требующей высокой стабильности выходного напряжения, используется схема включения без обратной связи (рис. 3). Нестабильность выходного напряжения увеличивается при этом до ±10% у LNK501 и до ±20% — у LNK500. Для устройств с высокими требованиями к стабильности питающего напряжения используется схема включения с обратной связью (рис. 4).

Рис. 3
Схема включения без обратной связи

Рис. 4
Схема включения с обратной связью

Микросхемы соответствуют стандартам EcoSmart, Energy Star, Blue Angel и рекомендациям ЕС. При отсутствии нагрузки и напряжения в сети 265 В они потребляют менее 300 мВт, причем для контроля тока микросхемы не нуждаются во внешнем токовом сенсоре.

Назначение выводов:

D (сток) — соединен со стоком мощного MOSFET-транзистора, по нему подводится питание ко всей схеме управления. Вывод имеет соединение с внутренней схемой ограничения тока.

С (управление) — вход усилителя ошибки, схемы обратной связи по току (регулировка рабочего цикла) и управления схемой ограничения тока. Встроенный параллельный регулятор подключен к внутреннему источнику тока в нормальном состоянии.Вход также используется для подключения сглаживающего конденсатора и конденсатора компенсации/авторестарта.

S (исток) — является выходом мощного ключа для подключения нагрузки, выходом схемы управления первичной обмоткой.

Описание работы типовой схемы преобразователя AC/DC

Включение питания

В течение процесса подачи напряжения, конденсатор СЗ (рис. 3, 4), включенный между выводами С и S микросхемы, заряжается сквозным током от входа D через внутренний источник тока. Когда напряжение на выводе С достигает значения 5,6 В относительно вывода S, ток прекращается, внутренняя управляющая схема активируется и транзистор MOSFET начинает коммутировать первичную обмотку. В этот момент заряд на конденсаторе СЗ используется для питания управляющих цепей микросхемы.

Поддержание заданного тока

Форма выходного напряжения повторяет наклон кривой напряжения приложенного к первичной обмотке трансформатора. Ток IС (рис. 5) на выводе С нарастает. Когда значение IС сравняется с IDCT, внутренняя схема ограничивает нарастание IС по достижении порога ILIM. Внутренняя схема обеспечивает V-образную форму IС для поддержания нормального питания во время просадок напряжения.

Рис. 5
Характеристики, характеризующие режимы работы

Поддержание заданного напряжения

Когда ток IС превышает значение IDCS (рис. 5), уменьшается скважность импульсов. Так как значение IС зависит от напряжения питания, рабочий цикл ограничивается в зависимости от пикового тока, устанавливаемого внутренней цепочкой управления ключом (откуда и название LinkSwitch). В зависимости от положения рабочей точки на графиках рис. 5 микросхема работает либо в режиме поддержания напряжения, либо тока. При минимуме входного напряжения (в случае использования микросхемы в блоке питания с универсальным входом) этот переход происходит приблизительно при 30% скважности. Когда скважность будет менее 4%, уменьшается частота переключений, чтобы снизить потребляемую энергию. Номинал резистора R1 (рис. 3) вследствие этого выбирается таким, чтобы обеспечить равенство токов IC и IDCT, когда VOUT принимает желаемые значения при минимуме входного напряжения.

Режим авторестарта

При возникновении каких-либо отклонений в работе, наприме, прикоротком замыкании или обрыве нагрузки, прекращается ток на выводе С микросхемы. Конденсатор СЗ разряжается до напряжения 4,7 В. При этом активируется схема авторестарта, которая закрывает транзистор MOSFET и переводит управляющую схему в режим низкого потребления мощности. В режиме авторестарта микросхема периодически запускается, но переходит в нормальный режим только после устранения неисправности.

На регулировку выходного напряжения влияет напряжение на конденсаторе С4, которое в свою очередь зависит от ЭДС самоиндукции первичной обмотки трансформатора. Резистор R3 и конденсатор С4 образуют фильтр, на котором выделяется напряжение ошибки.

На рис. 4 показана типовая схема включения микросхем с оптроном обратной связи. В первичных целях добавлены элементы R4, С5 и транзистор оптрона DA2. Светодиод оп-трона включен во вторичной цепи вместе с элементами R5, R6, VD7. Резистор R6 задает рабочий ток VD7. Резистор R5 ограничивает сквозной ток через светодиод оптрона и VD7. Как только напряжение на вторичной обмотке трансформатора Т1 превышает порог открытия светодиода и стабилитрона, фототранзистор открывается и шунтирует резистор R4, увеличивая напряжение на конденсаторе С4. Изменение напряжения на этом конденсаторе вызывает уменьшение скважности импульсов, подаваемых на мощный ключ, и как следствие уменьшение напряжения на стороне вторичной обмотки.

Рис. 6
Выходная характеристика микросхем

Выходная характеристика микросхем показана на рис. 6.

AC/DC (Zelo-модуль)

AC/DC (Zelo-модуль) — решит проблему подключения микроконтроллеров к сети 220 В. Модуль преобразует входящий переменный ток в постоянный, необходимый для питания микроэлектроники, и выступит в роли реле для потребителей нагрузки до 10 А.

Внимание! На плате существуют области, прикосновение к которым приведёт к поражению электрическим током. Не работайте с платой, если она подключена к бытовой сети. Для готового устройства используйте изолированный корпус.

Если вы сомневаетесь как подключить к реле электроприбор, работающий от общей сети 220 В и у вас есть сомнения, вопросы на тему того как это делается, остановитесь: вы можете устроить пожар или убить себя. Убедитесь, что у вас в голове — кристальное понимание принципа работы устройства и опасностей, которые связаны с высоким напряжением.

Видеообзор

Подключение и настройка

AC/DC (Zelo-модуль) позволит питать управляющую плату от бытовой сети 220 вольт без использования дополнительных блоков питания. Рассмотрим пример на Arduino Uno. После подачи питания от сети, светодиод ON на плате загорится. Усложним задачу, добавим к проекту нагрузку и будем управлять ей с помощью реле, установленного на AC/DC модуле. Мы используем Troyka Shield для быстрого подключение реле к управляющей плате. Теперь, если на 8 пине управляющей платы установить высокий уровень, реле включится и на нагрузку поступит напряжение 220 вольт.

Обратите внимание, на Troyka-контакты подключения реле:

Это значит, что при подключении реле к управляющей плате через Troyka Shield, вы подключаете по Troyka-шлейфу питание 5 вольт к управляющей плате. Для платформ с рабочим напряжением 3,3 вольта, установите джампер выбора питания в положение V2 + 5V и подключите реле ко второй группе Troyka-контактов

Примеры работы

Используя AC/DC-преобразователь соберём новую версию SMS-розетки. Для работы ниже приведённого скетча скачайте и установите новую версию библиотеки для GPRS Shield’a — AmperkaGPRS

Пример кода для Arduino

Элементы платы

AC/DC преобразователь

AC/DC преобразователь модели HLK-PM01 , предназначен для преобразования переменного напряжения питающей сети 220 вольт в постоянное напряжение 5 вольт.

На AC/DC (Zelo-модуль) установлено электромеханическое реле, имеющее нормально замкнутый (normal closed, NC) и нормально разомкнутый (normal open, NO) контакты. Если на управляющей обмотке реле отсутствует напряжение, то между нормально замкнутым и коммутируемым контактами есть электрическая связь, а между нормально разомкнутым и коммутируемым — нет. При подаче напряжения на управляющую обмотку нормально разомкнутый контакт замыкается, а нормально замкнутый — размыкается.

Входной разъём питания

AC/DC (Zelo-модуль) питается через клеммник входного напряжение INPUT .

Если вы не знаете, где в вашей сети фаза и ноль, ничего страшного. Провода L и N можно менять местами. Через данный клеммник входное напряжение поступает на AC/DC преобразователь и коммутирующие контакты реле.

Разъём подключения нагрузки

Провода нагрузки подключаются через выходной клеммник OUTPUT . Один провод нагрузки подключается к выводу N , а второй — к контакту L.NO или L.NC , в зависимости от задачи которую должно выполнять реле. Чаще всего реле используется для замыкания внешней цепи при подаче напряжения на управляющую обмотку. При таком способе даже если напряжение на управляющей плате по какой-то причине пропадёт, управляемая нагрузка будет автоматически отключена.

Выходной разъём преобразователя питания

Выход с преобразователя питания с напряжением 5 вольт подключены к винтовому разъёму:

Troyka-контакты

Реле подключается к управляющей электронике по трём проводам. Назначение контактов 3-проводного шлейфа:

При появлении логической единицы на сигнальном контакте реле срабатывает. При этом напряжение логической единицы может быть как 5 В, так и 3,3 В. При срабатывании реле нормально замкнутый контакт размыкается, а нормально разомкнутый — замыкается. При подаче на сигнальный контакт логического нуля или при исчезновении напряжения реле возвращается в нормальное положение: нормально замкнутый контакт замыкается, а нормально разомкнутый — размыкается.

Новые ШИМ-контроллеры фирмы Texas Instruments (Unitrode)

За более чем 10 лет, прошедшие с момента разработки компанией Unitrode ШИМ-контроллеров серии UC38хх, на них базируется около 2/3 мирового объема производства DC/DC-преобразователей и AC/DC импульсных источников питания (ИИП) средней мощности. Удачность изначальной конструкции подтверждается надежностью ИИП, выпущенных за эти годы миллионными тиражами. Эти микросхемы стали, фактически, «промышленным стандартом» и клонированы в разных модификациях почти всеми производителями интегральных схем: Fairchild, LG, ON Semiconductor, Philips, Samsung, ST Microelectronics, Texas Instruments и другими. Значительная часть микросхем с маркировкой UC38хх выпускается безымянными азиатскими фирмами с весьма невысоким качеством.

Читайте также  Отопление дома электричеством

После приобретения Unitrode компанией Texas Instruments в 1999 году значительно расширились исследовательские работы по внедрению новых технологий и разработке современной схемотехники импульсных преобразователей. По результатам прошлого года, компания Texas Instruments занимает 4 место среди ведущих поставщиков микросхем, с годовым оборотом 6,2 млрд. долларов, 18% из которых традиционно вкладываются в перспективные исследования. Продолжающиеся в настоящее время разработки ШИМ-контроллеров идут по ряду направлений:

  • переход с биполярной на БиКМОП-технологию со снижением потребляемого тока;
  • повышение предельной рабочей частоты;
  • внедрение синхронного выпрямления;
  • развитие контроллеров для полумостовых, мостовых и многофазных инверторов;
  • введение дополнительных потребительских функций, направленных на повышение экономичности и надежности источников (корректор коэффициента мощности — ККМ, «мягкое» включение/отключение и т.п.).

Движущей силой новых разработок являются требования рынка:

  • повышение КПД источников питания;
  • снижение напряжения питания современной элементной базы высокой степени интеграции и быстродействия до 3,3√1,2 В, и в субвольтовый диапазон в ближайшем будущем;
  • повышение качества низких напряжений питания: точности, динамической стабильности, снижение пульсаций.

Рассмотрим новые микросхемы Texas Instruments (Unitrode) подробнее.

UCC38C40√UCC38C45 — БиКМОП-версия популярных микросхем UC3840√UC3845. Рабочая частота повышена до 1 МГц. Пусковой ток снижен до 50 мкА. Не требуют внешнего драйвера ключевого транзистора. Предназначены для производства малогабаритных DC/DC- и AC/DC-преобразователей. При мощностях, меньших 20 Вт, ИИП, выполненные на первоначальном варианте UC384x, проигрывали традиционным 50-Гц трансформаторам по размерам и стоимости. БиКМОП-технология сдвигает вниз до 5┘10 Вт границу рациональной применимости ИИП, позволяя создавать более компактные и экономичные изделия.

Получающие сейчас распространение микросхемы для построения ИИП с интегрированным высоковольтным транзистором имеют в своем составе тот же ШИМ-контроллер, аналог UC384х. Эти микросхемы являются, обычно, гибридными, так как сочетают в одном корпусе кристаллы, изготовленные по различным технологиям. Они больше подвержены импульсным помехам, защелкиванию и температурному дрейфу из-за близости ключевого транзистора к схеме управления. С другой стороны, комплект из дискретного МОП-транзистора и UC384х ведет себя устойчивее. По цене же такое традиционное решение дает фору гибридным контроллерам на 15┘20%, благодаря продолжающемуся снижению цен на транзисторы, в сочетании с дешевыми микросхемами контроллеров Texas Instruments.

UCC35705, UCC35706 — высокочастотные ШИМ-контроллеры (более 4 МГц) для создания однотактных DC/DC- или AC/DC-преобразователей до 200√250 Вт. Диапазон напряжений питания 4:1. Эти микросхемы выпускаются в малогабаритных 8-выводных корпусах. Необходимо учесть, что для корректной работы на максимальной частоте необходим внешний драйвер ключевого транзистора, в качестве которого может быть использована одна из недорогих микросхем серии TPS281x (улучшенный вариант IR442x IRF).

UC28025 — дальнейшее развитие микросхемы UC3825. UC28025 — двухтактный, многорежимный универсальный контроллер для построения полумостовых источников мощностью до 800 Вт. Оптимизирован для высокочастотных применений. Микросхема имеет широкий диапазон напряжения питания 9┘30 В и «мягкий» запуск. Мощный выходной каскад рассчитан на ток ╠1,5 А и, в большинстве приложений, не требует внешнего драйвера ключевых транзисторов. На рис. 1 представлена типовая схема малогабаритного 50-Вт DC/DC-преобразователя на UC28025, рабочая частота — 1,5 МГц.

UCC28220, UCC28221 — двухфазные ШИМ-контроллеры, оптимизированные на действующий ток нагрузки 50√100 А. Частота коммутации фаз — 1 МГц, сдвиг — 180 градусов. Имеют независимый контроль и активное выравнивание токов фаз. Эти микросхемы в наибольшей степени подходят для питания систем связи (входное напряжение — 36√76 В) или сварочного оборудования благодаря специфике двухфазной схемы (минимальное время реакции на импульсный ток нагрузки и минимальные пульсации выходного напряжения). Типовая упрощенная схема включения приведена на рис. 2.

UCC3895 — дальнейшее развитие серии микросхем универсальных контроллеров для построения резонансных мостовых преобразователей с фазовым сдвигом на мощности до 2 кВт UC3875√UC3878. Специфические особенности контроллера: «мягкая» коммутация выходных транзисторов при нулевом напряжении, программируемая задержка переключения, плавное включение и выключение устройства по внешнему управляющему сигналу. Рабочая частота — до 1 МГц. Требуется внешний драйвер МОП-транзисторов. Типовая упрощенная схема включения UCC3895 приведена на рис. 3.

Идя по пути повышения степени интеграции, компания Texas Instru-ments (Unitrode) разработала микросхемы UCC38500√UCC38503, UCC28510√UCC28517, совмещающие ШИМ-контроллер и корректор коэффициента мощности (ККМ) в одном корпусе. ККМ представляет собой первичный импульсный повышающий стабилизатор, включенный между диодным мостом и высоковольтным накопительным конденсатором, модулирующий потребляемый ток синфазно с входным напряжением, приближая коэффициент мощности к единице. Реальное значение коэффициента мощности составляет 0,98√0,99 при нагрузке 60√100% от максимальной при 3√5% гармонических искажений тока. Совмещение ШИМ и ККМ в одном корпусе позволило взаимно синхронизировать их для снижения помех и повышения КПД, а также реализовать «мягкий» запуск источника с ограничением тока без применения дополнительных компонентов. Мощные выходные каскады UCC2851x не требуют внешних драйверов ключевых транзисторов.

Применение ККМ может быть актуально для разработчика в нескольких случаях:

  • значительная мощность преобразователя и, соответственно, повышенные требования к входным цепям;
  • очень широкий диапазон входных напряжений (60√280 В);
  • повышенные требования к электромагнитной совместимости;
  • производство высокотехнологичной продукции, в том числе, и на экспорт, где наличие ККМ в AC/DC-преобразователях необходимо начиная уже с 75 Вт.

Для знакомства и макетирования рекомендуется оценочный модуль ИИП, выпускаемый Texas Instruments (Unitrode), UCC38500EVM с универсальным входом, выходом 12 В при 8,3 А и ККМ, показанный на рис. 4. В н╦м применена микросхема UCC38500 в полумостовом включении.

Во многих случаях возникает необходимость создания ИИП незначительнной мощности, при минимальных размерах и цене. Решение, предлагаемое фирмой Texas Instruments, — микросхемы UCC3888 и UCC3889. Это ШИМ-контроллеры, предназначенные для преобразователей из 80┘400 В в 5 или 12 В без гальванической развязки. UCC388x используют оригинальную технологию последовательного двухступенчатого преобразования на одном ключевом транзисторе, запатентованную компанией Lambda Electronics. Значительное упрощение конструкции преобразователей и снижение цены достигается применением двух стандартных индуктивностей вместо традиционного изолирующего трансформатора. Высокая частота преобразования (около 100 кГц) позволяет использовать компоненты только поверхностного монтажа. Отличаются микросхемы диапазонами выходных напряжений: UCC3888 рассчитана на стабилизацию 2,7√5 В, а UCC3889 — на 12√18 В. Допустимая мощность нагрузки около 1 Вт при КПД преобразователей до 60%.

Дешевые малогабаритные неизолированные источники питания идеально подходят для счетчиков электроэнергии, распределенных датчиков систем контроля доступа или удаленных контроллеров в системах автоматического управления, объединенных локальной сетью. В последнем случае развязка может быть легко обеспечена оптроном или импульсным трансформатором в канале связи. Типовая схема включения UCC3889 приведена на рис. 5.

Отдельно стоит упомянуть новые драйверы МОП/IGBT-транзисторов, предназначенные для применения в мощных преобразователях. Они необходимы для:

  • повышения устойчивости управляющего ШИМ-контроллера при работе на значительных мощностях (свыше 500 Вт), либо на высоких частотах (свыше 100 кГц);
  • снижения потерь при переключении за счет уменьшения его продолжительности благодаря низкому сопротивлению выходного push-pull каскада драйвера.

Современные микросхемы одноканальных (UCC37321, UCC37322) и двухканальных (UCC37323┘5) драйверов, выполнены по БиКМОП-технологии в 8-выводных корпусах. Различия между микросхемами серии заключаются в наличии инверсного канала; кроме того, UCC37321/2 рассчитаны на выходной ток ╠9 А, а UCC37323/5 — на ╠4 А. Все они имеют скорость нарастания/спада импульса около 25 нс. Интерфейс UCC37325 с транзистором верхнего плеча реализуется подключением малогабаритного импульсного разделительного трансформатора между выходами драйвера, работающими в противофазе. Драйверы МОП-транзисторов серий UCC27221, UCC27222 предназначены для низковольтных DC/DC-преобразователей с синхронным выпрямлением без гальванической развязки.

UCC27221/2 сопрягаются с любым однотактным ШИМ-контроллером, управляя транзисторами и силового ключа и выпрямителя, отличаясь друг от друга только наличием инверсии входа. Особенность этих драйверов в формировании сигнала управления синхронным выпрямителем на основании адаптивного предсказания момента открывания внутреннего диода соответствующего МОП-транзистора. Своевременно открытый канал транзистора полностью принимает на себя ток диода, минимизируя падение напряжения на выпрямителе. Использованный алгоритм предсказания моментов переключения транзистора синхронного выпрямителя позволяет снизить почти вдвое потери на частотах свыше 400 кГц и выходном напряжении менее 3,3 В.

Микросхемы рассчитаны на выходной ток до ╠3,3 А. Типовая схема включения UCC27222 приведена на рис. 6.

Полезно знать систему обозначений фирмы Texas Instruments (Unitrode): префикс UCC означает БиКМОП, а UC — биполярную технологию производства. Расширенный рабочий температурный диапазон -55┘+125ºC имеют микросхемы, номера которых начинаются с цифры 1, индустриальный диапазон -40┘+85ºC обозначается цифрой 2, коммерческий 0┘+70ºC — цифрой 3 (например, UC1842, UC2842 и UC3842, соответственно). Коммерческий и индустриальный варианты имеют все микросхемы производства Texas Instruments. Суффикс N соответствует пластмассовому DIP-корпусу, суффиксы D и DW — SOIC, PW — TSSOP-корпусу.

Продукция фирмы Texas Instruments заслуживает особого внимания как «устанавливающая традиции» и имеющая наибольшее количество практических реализаций и технических наработок. Несмотря на значительную консервативность реализуемых уже более 10 лет схемотехнических решений, использованных в импульсных преобразователях на основе серии UC38хх, новые интересные микросхемы контроллеров появляются регулярно и требуют от разработчиков постоянного внимания, информированности и ждут своего внедрения.

Для каждой из микросхем ШИМ-контроллеров фирма Texas Instruments предлагает оценочные модули, на которых можно досконально исследовать требуемые режимы работы и варианты включения. Такая возможность важна для быстрой проверки проектируемого ИИП и изучения его поведения в реальных условиях.

AC/DC-преобразователи от STMicroelectronics

В AC/DC-преобразователях компании STMicroelectronics в одном корпусе объединены микросхема ШИМ-контроллера и силовой ключ MOSFET. Наличие встроенного ключа в AC/DC-преобразователе заметно упрощает жизнь разработчику, позволяет сэкономить место на печатной плате и упростить ее топологию. К сожалению, в этом случае приходится вспомнить пресловутую палку о двух концах. Чтобы уменьшить габариты преобразователя, необходимо уменьшить и площадь кристалла встроенного MOSFET, следовательно, увеличивается сопротивления открытого канала RDS(ON).

В результате возрастает падение напряжения на открытом канале при протекании тока, что может создать условия для отпирания внутреннего паразитного биполярного транзистора MOSFET и вызвать его лавинный пробой. Для предотвращения этого явления в STMicroelectronics используют специальную технологию avalanche ruggedness, позволяющую избежать лавинного пробоя MOSFET.

Читайте также  Новые цифровые потенциометры от компании microchip с spi интерфейсом

Если требуется уменьшить статические потери в силовом ключе из-за относительно высокого значения сопротивления RDS(ON) и нет жестких ограничений на габариты решения или не устраивают реализуемые преобразователями топологии, можно использовать ШИМ-контроллеры или контроллеры полумостовых резонансных преобразователей, которые также присутствуют в производственной линейке STMicroelectronics. В этом случае выбор внешнего MOSFET и трассировку печатной платы придется делать разработчику.

Однако в данной статье речь пойдет только об AC/DC-преобразователях. Всего в состав производственной линейки компании входят три семейства AC/DC-преобразователей:

  • VIPer;
  • Altair;
  • VIPerPlus.

Все преобразователи являются конструктивно и функционально законченным решением, имеют всю необходимую защиту по напряжению и току. Диапазон максимальных выходных мощностей, охватываемый ими, составляет 4–65 Вт. Такой мощности вполне достаточно для многих электронных систем в разных приложениях. Кроме того, во всех преобразователях имеется токовый контур управления, что позволяет предотвратить насыщение сердечника трансформатора или дросселя и ускорить протекание переходных процессов.

Малые габариты преобразователей, а также их невысокая стоимость, которая в зависимости от условий поставки варьируется в пределах нескольких десятков центов, представляются весомыми аргументами в их пользу.

Поскольку семейство VIPER появилось на свет более 10 лет назад и с тех пор не претерпело изменений, мы ограничимся в его описании перечислением основных параметров, которые указаны в таблице 1. Выходная мощность зависит от типа корпуса и диапазона изменения выходного напряжения. Максимальная выходная мощность достигается при изменении входного напряжения в пределах 195–265 В. При входном напряжении 85–265 В максимальная выходная мощность уменьшается.

Параметр

12A-E

VIPER22 A-E,

VIPER22ADIP-E,

VIPER22AS-E

VIPER53-E,

VIPER53E-E

Напряжение силового ключа (макс.), В

Ток силового MOSFET (макс.), А

Сопротивление RDS(ON) открытого канала MOSFET, Ом

Выходная мощность, Вт

Рабочая частота, кГц

Корпус

Затем в производственной линейке STMicroelectronics появилось семейство Altair. В его состав вошли две микросхемы – ALTAIR04-900 и ALTAIR05T-800 с максимально допустимым напряжением 900 и 800 В и максимальным током 0,7 и 0,65 А, соответственно. Они были созданы для работы в квазирезонансном режиме, с отпиранием силового MOSFET при нулевом напряжении (ZVS) и регулированием по первичной стороне (PSR). Обе микросхемы выпускаются в корпусе SO16.

На смену семейству VIPER пришли микросхемы VIPerPlus, о которых мы расскажем немного подробнее. В состав семейства VIPerPlus входят следующие серии:

  • VIPerPlus0P;
  • VIPerPlus серии 1;
  • VIPerPlus серии 5;
  • VIPerPlus серии 6;
  • VIPerPlus серии 7;
  • VIPerPlus серии 8.

Каждая серия состоит из одной–трех микросхем (см. табл. 2). В ней же приведены основные параметры преобразователей. Максимальное напряжение всех силовых MOSFET семейства VIPerPlus составляет 800 В. Преобразователи могут регулироваться только по вторичной стороне (SSR) или и по первичной PSR, и по вторичной сторонам SSR.

VIPerPlus серии 1

VIPerPlus серии 5

VIPerPlus серии 6

VIPerPlus серии 7

VIPerPlus серии 8

Ток силового MOSFET (макс.), мА

Сопротивление RDS(ON) открытого канала MOSFET, Ом

Выходная мощность, Вт

Рабочая частота, кГц

30, 60, или 115/120

30, 60, или 115/120

30, 60, или 115/120

30, 60, или 115/120

30, 60, или 115/120

30, 60, или 115/120

30, 60, или 115/120

30, 60, или 115/120

30, 60, или 115/120

30, 60, или 115/120

30, 60, или 115/120

* PSR – регулирование по первичной стороне обратноходового преобразователя. SSR – регулирование по вторичной стороне обратноходового преобразователя.

Преобразователи серий VIPerPlus0P, VIPerPlus серии 1 и VIPerPlus серии 6 помимо стандартной изолированной обратноходовой топологии могут работать и в качестве неизолированного обратноходового преобразователя, когда обратная связь по напряжению поступает в преобразователь напрямую, без гальванической развязки. Кроме того, на их основе можно создать повышающий, понижающий или повышающе-понижающий несинхронный преобразователь; при этом в нижнем плече вместо силового MOSFET используется диод.

Все перечисленные выше топологии хорошо известны, а в документации производителя приведены рекомендуемые варианты схем использования преобразователей для разных топологий. Мы не будем дублировать их в настоящей статье, но кратко рассмотрим особенности каждой серии семейства VIPerPlus.

Во всех сериях преобразователей кроме VIPerPlus серии 5, использующей квазирезонансную топологию, применяется технология «джиттера частоты». Суть ее в том, что частота коммутации во время работы «плавает» на несколько процентов вокруг центрального значения. Например, в одной из модификации преобразователя VIPer38 центральная рабочая частота составляет 60 кГц, а в другой модификации – 120 кГц. При этом в первом случае частота колеблется вокруг центрального значения в пределах ±4 кГц, а во втором – в пределах ±8 кГц.

Такое колебание частоты «размазывает» спектр электромагнитных помех и уменьшает пиковое и среднее значение электромагнитных помех. Примерно по такому же принципу построена технология расширения спектра (spread spectrum), но в ней колебания частоты значительно больше, из-за чего могут возникнуть проблемы при выборе ЭМП-фильтра и сглаживающего фильтра на выходе преобразователя. В случае небольшого колебания частоты, как это происходит в VIPerPlus, такие проблемы не возникают.

Конечно, из-за меньшего колебания рабочей частоты в VIPerPlus генерируемые помехи ослабляются в меньшей степени. Однако, учитывая компактный монтаж, при котором ШИМ-контроллер и силовой ключ находятся в одном корпусе, а также относительно небольшую мощность преобразователей, расширение спектра было бы избыточным. К тому же, усложнилась бы задача по выбору фильтра.

Серия VIPerPlus0P характеризуется режимом нулевого потребления ZPM. В нем отсутствует коммутация силового ключа, и отключается питание от значительной части внутренней схемы, что позволяет снизить ток собственного потребления до 20 мкА. Включение/выключение режима ZPM происходит по внешнему сигналу. На рисунке 1 показана схема включения преобразователя VIPerPlus0P в конфигурации изолированного обратноходового преобразователя с регулированием PSR по первичной стороне.

Рисунок 1. Схема включения преобразователя VIPerPlus0P в конфигурации изолированного обратноходового преобразователя с регулированием PSR по первичной стороне

Широкий диапазон питания 4,5–30 В серии VIPerPlus1, как и у серии VIPerPlus0P, позволяет использовать для питания преобразователей либо вспомогательную, третью, обмотку обратноходового трансформатора, либо внешний низковольтный источник. На рисунке 2 показана схема включения преобразователя VIPer11 в конфигурации повышающее-понижающего неизолированного преобразователя с отрицательным выходным напряжением.

Рисунок 2. Схема включения преобразователя VIPer11 в конфигурации повышающее-понижающего неизолированного преобразователя с отрицательным выходным напряжением

Квазирезонансная обратноходовая топология серии VIPerPlus5 позволяет уменьшить коммутационные потери в силовом ключе и упростить ЭМП-фильтр. Детектирование нулевого значения тока первичной обмотки происходит по напряжению вспомогательной обмотки трансформатора которое поступает на внешний вывод преобразователя через резисторный делитель напряжения. Схема включения преобразователя в описанной конфигурации показана на рисунке 3.

Рисунок 3. Схема включения квазирезонансного преобразователя VIPer35

Компоненты серии VIPerPlus6 при работе по схеме изолированного обратноходового преобразователя могут использовать оптопару для обратной связи. В этом случае не требуется третья вспомогательная обмотка трансформатора. На рисунке 4 в качестве примера показана изолированная топология с использованием оптопары для обратной связи.

Рисунок 4. Изолированная топология на базе преобразователя VIPer26с использованием оптопары для обратной связи

В преобразователи серии VIPerPlus7 встроен узел для обнаружения прерывания питания BR (Brown out protection), который позволяет измерять сетевое напряжение питания. Если в течение определенного времени его значение ниже допустимой величины, это состояние распознается как авария сетевого напряжения, и силовой MOSFET выключается. На рисунке 5 показана схема включения преобразователя с использованием BR. Если эта функция не используется, то внешний вывод BR замыкается на землю.

Рисунок 5. Схема включения преобразователя с VIPer37с использованием функции BR

Преобразователи серии VIPerPlus8 способны в течение 2 с выдать пиковое значение мощности, заметно превышающее номинальное. Например, максимально допустимая мощность преобразователя VIPer38 при входном напряжении 85–265 В составляет 15 Вт, а пиковая мощность при температуре окружающего воздуха не более 50°С достигает величины 25 Вт. Типовая съема включения преобразователя этого семейства ничем не отличается от таковой для преобразователей серии VIPerPlus7, поэтому мы не будем ее приводить.

AC/DC-преобразователи от STMicroelectronics в наличии на складе Промэлектроника:

Преобразователи постоянного тока в постоянный (DC-DC). Какие они бывают (подборка с Алиэкспресс)

По жизни иногда случается так, что в распоряжении пользователя есть одно напряжение, а какое-либо устройство надо запитать другим напряжением.

Особенно часто такие ситуации встречаются, когда речь идёт об автономном питании: в этом случае другое напряжение взять просто неоткуда.

Ситуацию спасают DC-DC преобразователи.

В силу схемотехнических особенностей они отличаются огромным разнообразием решений.

Они бывают понижающими, повышающими, понижающе-повышающими, на отрицательную полярность, изолирующими, двухполярными, а также могут представлять собой различные комбинации перечисленных вариантов.

Всё разнообразие вариантов в рамках одной небольшой подборки осветить невозможно, но некоторые «ходовые» случаи будут представлены.

Известные с древности линейные стабилизаторы тоже можно в какой-то степени считать DC-DC преобразователями (понижающими), но они в этой статье рассматриваться не будут. Хотя, во многих случаях их может оказаться достаточно для решения проблемы.

Цены далее в тексте указаны примерные на дату публикации с доставкой в Россию (в дальнейшем могут меняться). Если найдутся такие же устройства, но дешевле, то тоже можно покупать — товар одинаковый.

DC-DC преобразователь в корпусе USB-разъёма с выходом 9 или 12 V

Сам DC-DC преобразователь как таковой находится внутри кожуха разъёма USB, и, конечно, мощным быть не может.

Преобразователь выпускается в вариантах с напряжением выхода 9 В или 12 В (т.е. с фиксированным напряжением без переключения).

Максимальный ток выхода — 800 мА; максимальный потребляемый ток — до 2.1 А от источника 5 В (т.е. от порта USB компьютера или зарядного устройства телефона).

При его использовании надо помнить о двух моментах.

Во-первых, не рекомендуется использовать длительное время при максимально-допустимых параметрах нагрузки (впрочем, это относится к любым источникам питания).

А во-вторых, при питании от порта USB компьютера не рекомендуется нагружать порт USB 2.0 более, чем на 0.5 А; а порт USB 3.0 — более 0.9 А. Ток нагрузки преобразователя в этом случае не должен превышать примерно половину от этой величины для преобразователя на 9 В, и 1/3 — для преобразователя на 12 В.

Читайте также  Блок питания 0…30в/5а с цифровой индикацией напряжения и тока

DC-DC преобразователь в корпусе USB-разъёма с регулируемым выходом 1 — 24 V

Когда требуется какое-либо нестандартное напряжение, то помочь могут DC-DC преобразователи с регулируемым выходом.

Представленный в этой карточке преобразователь изготовлен в корпусе разъёма USB и может отдавать на выход напряжение в широком диапазоне — от 1 до 24 Вольт (понижающе-повышающий; на основе схемотехники SEPIC).

Точность установки напряжения — 0.1 В; имеется встроенный вольтметр.

Максимальная выходная мощность — 3 Вт.

Аналогично предыдущему преобразователю, при питании от порта USB компьютера мощность на выходе будет меньше.

Подробный обзор этого преобразователя — здесь.

Понижающий DC-DC преобразователь с 5-40 V до 1.2-35 V мощностью 300 W

Этот DC-DC преобразователь, можно сказать, «классический» понижающий преобразователь.

Он работает в широком диапазоне напряжений, но при этом обязательно должно соблюдаться условие, что входное напряжение должно быть выше выходного.

Преобразователь снабжен потенциометрами для регулировки выходного напряжения и ограничения тока нагрузки.

Вместе с тем он требует внимательного обращения при подключении, так как не имеет диода защиты от переполюсовки входного напряжения.

В случае использования на мощность, близкую к максимальной, рекомендуется дополнительное охлаждение.

Цена — около $4.5 с учётом доставки.

Повышающий DC-DC преобразователь с 3-35 V до 5-45 V мощностью 150 W

Ещё один DC-DC преобразователь из серии «классика жанра»; на этот раз — повышающий с регулируемым напряжением выхода.

Преобразователь снабжен встроенным вольтметром с ценой деления 0.1 Вольт.

Его предельно-допустимый входной ток ограничен величиной 5 А, поэтому не следует рассчитывать, что при низких входных напряжениях он сможет развить высокую выходную мощность.

Для получения высокой мощности на выходе соотношение напряжений на входе и выходе должно быть разумным (насколько это позволяют обстоятельства применения); при этом выходное напряжение должно быть строго выше входного.

Понижающе-повышающий DC-DC преобразователь на отрицательную полярность малой мощности

DC-DC преобразователи с переворотом полярности на отрицательную стоят немного особняком.

Обычно они применяются в тех случаях, когда требуется создать напряжение отрицательной полярности для устройств, требующих двухполярного питания (как правило, небольшой мощности).

В отличие от обычных понижающих и повышающих преобразователей, они являются истинно понижающе-повышающими «в одном флаконе» в силу особенностей схемотехники.

Преобразователи, представленные в этой серии, выпускаются на ряд фиксированных напряжений от минус 3.3 до минус 15 Вольт.

Мощность, отдаваемая в нагрузку, может быть от 0.12 Вт до 2.7 Вт в зависимости от соотношения напряжений на входе и выходе.

Цена — около $2.3 с учётом доставки.

Понижающе-повышающий DC-DC преобразователь с двухполярным выходом до ±24 V

Этот DC-DC преобразователь хорошо подходит для тех случаев, когда пользователю требуется симметричное двухполярное напряжение. Предположительно, он основан на двухполярном варианте схемы SEPIC.

Напряжение на выходе может регулироваться от ±3 В до ±24 В; при допустимом диапазоне входных напряжений от 3.6 до 24 В.

Максимальная мощность на выходе — 20 Вт, но в реальности она будет очень сильно зависеть от соотношения входного и выходного напряжения (низкое входное напряжение и высокое выходное являются крайне неблагоприятным сочетанием).

Кроме того, производитель запрещает использовать преобразователь только по отрицательному напряжению (положительное плечо должно быть нагружено обязательно); а также не рекомендуются нагрузки менее 15 мА.

При всём позитиве этого преобразователя, надо заметить, что производитель забыл разместить на плате отверстия для её крепления к чему-либо.

Цена — около $8 с учетом доставки.

Сдвоенный однополярный понижающий DC-DC преобразователь с 5-40 V до 1.25-35 V

Иногда бывает нужно получить от одного источника два разных напряжения одной полярности.

В этом случае можно использовать два отдельных DC-DC преобразователя; а можно и один сдвоенный. В этом случае пользователь получит экономию в габаритах и упрощение монтажа.

Данный DC-DC преобразователь содержит два одинаковых блока с максимальной мощностью каждого выхода до 20 Вт (при условии, что ток выхода не будет превышать 2.5 А при длительной эксплуатации и 3 А — кратковременно).

Регулировка напряжения выходов каналов — независимая.

Цена — около $9 с учетом доставки.

Изолирующий понижающе-повышающий DC-DC преобразователь с одно- или двухполярным выходом 10 W

Иногда питаемое устройство должно быть гальванически изолировано от источника питания. Это может требоваться по разным причинам: от требований по электробезопасности до защиты от помех, создаваемых исходным источником питания.

Данный преобразователь оформлен в виде модуля в корпусе, защищённом от проникновения посторонних предметов (что поможет соблюдению требования по изоляции).

Производитель гарантирует электропрочность изоляции до 1500 В постоянного напряжения.

Преобразователь не имеет регулировки выходного напряжения; потребителю следует заказывать устройство с напряжением из числа предлагаемых фиксированных значений от 5 до 24 В в однополярном исполнении, или от ±5 до ±15 В в двухполярном исполнении. Мощность на выходе — 10 Ватт.

Цена — около $20 с учетом доставки.

Автомобильный повышающий DC-DC преобразователь с 12 V до 24 V мощностью до 480 W

DC-DC преобразователи существуют не только в виде отдельных плат и модулей, но и в виде законченных конструкций в добротных и прочных корпусах.

В качестве примера — автомобильный повышающий DC-DC преобразователь с 12 до 24 Вольт.

Такие преобразователи могут быть полезны для питания различного оборудования, для которого не подходит стандартное напряжение автомобильной бортовой сети 12 В.

Цена — от $17 до $38 в зависимости от требуемой мощности.

Существуют, естественно, преобразователи и на другие напряжения.

Как можете видеть, DC-DC преобразователи — это широкий класс устройств с огромным разнообразием технических и конструктивных решений.

Они также могут иметь и огромный разброс по мощности: от милливатт до киловатт!

При этом они попутно выполняют и ещё одну функцию: стабилизацию напряжения питания. Если исходный источник будет с «плавающим» напряжением (например, батарея или аккумулятор), то на выходе преобразователя напряжение будет стабильным.

Эти устройства могут очень сильно облегчить потребителю обеспечение устройств питанием даже в самых нестандартных случаях. Но при этом важно правильно рассчитать требуемые параметры необходимого DC-DC преобразователя; причём, как в отношении параметров выхода, так и в отношении потребления от «исходного» источника питания.

Интегральные микросхемы · AC/DC конвертеры

Фото Наименование Производитель Тех. параметры Цены (руб.) Купить
AVS1ACP08 STMicroelectronics IC SWIT SMPS HV 8DIP

46кГц · Выходное напряжение: 600В · Корпус: 8-DIP (300 mil) · Рабочая температура: 0°C

18 В · Мощность (Ватт): 650мВт · Корпус: 8-SOIC (3.9мм ширина) · Рабочая температура: -40°C

18 В · Мощность (Ватт): 1Вт · Корпус: 8-DIP (300 mil) · Рабочая температура: -40°C

400кГц · Входное напряжение: 8

16.6 В · Выходное напряжение: 600В · Корпус: 16-SOIC (3.9мм ширина) · Рабочая температура: -40°C

45кГц · Входное напряжение: 5.5

15 В · Выходное напряжение: 30В · Мощность (Ватт): 660мВт · Корпус: 8-SOIC (3.9мм ширина) · Рабочая температура: -40°C

45кГц · Входное напряжение: 5.5

15 В · Выходное напряжение: 30В · Мощность (Ватт): 660мВт · Корпус: 8-SOIC (3.9мм ширина) · Рабочая температура: -40°C

53кГц · Входное напряжение: 5

25 В · Мощность (Ватт): 660Вт · Корпус: 8-SOIC (3.9мм ширина) · Рабочая температура: -40°C

65кГц · Входное напряжение: 9.5

30 В · Мощность (Ватт): 400мВт · Корпус: 8-SOIC (3.9мм ширина) · Рабочая температура: -40°C

106кГц · Мощность (Ватт): 1.56Вт · Корпус: 16-DIP (300 mil) · Рабочая температура: -40°C

106кГц · Мощность (Ватт): 1.13Вт · Корпус: 16-SOIC (5.3мм ширина), 16-SO, 16-SOEIIJ · Рабочая температура: -40°C

77кГц · Входное напряжение: 9

35 В · Выходное напряжение: 650В · Мощность (Ватт): 46Вт · Корпус: TO-220-5 Full Pack (Straight Leads) · Рабочая температура: 25°C

77кГц · Входное напряжение: 9

35 В · Выходное напряжение: 650В · Мощность (Ватт): 46Вт · Корпус: TO-220-5 Full Pack (Bent and Staggered Leads) · Рабочая температура: 25°C

77кГц · Входное напряжение: 9

35 В · Выходное напряжение: 650В · Мощность (Ватт): 50Вт · Корпус: TO-220-5 Full Pack (Bent and Staggered Leads) · Рабочая температура: 25°C

150кГц · Входное напряжение: 9

35 В · Выходное напряжение: 650В · Мощность (Ватт): 240Вт · Корпус: TO-3P-5 · Рабочая температура: 25°C

150кГц · Входное напряжение: 9

35 В · Выходное напряжение: 650В · Мощность (Ватт): 270Вт · Корпус: TO-3P-5 · Рабочая температура: 25°C

330кГц · Входное напряжение: 9

35 В · Выходное напряжение: 200В · Мощность (Ватт): 14Вт · Корпус: D2Pak, TO-263 (6 leads + tab) · Рабочая температура: -25°C

330кГц · Входное напряжение: 9

35 В · Выходное напряжение: 200В · Мощность (Ватт): 14Вт · Корпус: D2Pak, TO-263 (6 leads + tab) · Рабочая температура: -25°C

330кГц · Входное напряжение: 9

35 В · Выходное напряжение: 200В · Мощность (Ватт): 26Вт · Корпус: D2Pak, TO-263 (6 leads + tab) · Рабочая температура: -25°C

330кГц · Входное напряжение: 9

35 В · Выходное напряжение: 200В · Мощность (Ватт): 26Вт · Корпус: D2Pak, TO-263 (6 leads + tab) · Рабочая температура: -25°C

330кГц · Входное напряжение: 9

35 В · Выходное напряжение: 200В · Мощность (Ватт): 45Вт · Корпус: D2Pak, TO-263 (5 leads + tab, variant) · Рабочая температура: 25°C

330кГц · Входное напряжение: 9

35 В · Выходное напряжение: 200В · Мощность (Ватт): 36Вт · Корпус: D2Pak, TO-263 (6 leads + tab) · Рабочая температура: -25°C

330кГц · Входное напряжение: 9

35 В · Выходное напряжение: 200В · Мощность (Ватт): 36Вт · Корпус: D2Pak, TO-263 (6 leads + tab) · Рабочая температура: -25°C

330кГц · Входное напряжение: 9

35 В · Выходное напряжение: 200В · Мощность (Ватт): 45Вт · Корпус: TO-220-5 Full Pack (Bent and Staggered Leads) · Рабочая температура: 25°C

72кГц · Входное напряжение: 9

30 В · Выходное напряжение: 800В · Мощность (Ватт): 150Вт · Корпус: TO-3P-5 · Рабочая температура: 25°C

72кГц · Входное напряжение: 9

30 В · Выходное напряжение: 800В · Мощность (Ватт): 150Вт · Корпус: TO-3P-5 · Рабочая температура: 25°C