Лабораторный бп на основе простого и доступного бп

Мощный источник лабораторного питания на основе доступных модулей

Продолжаю тему самодельных мощных и точных источников питания для ремонта и разработки электроники.

Брендовые модели с поверкой и сертификатом Госреестра избыточны для дома. Вы же не будете покупать Keysight только для того, чтобы залить скетч в Ардуино. А вот недорогие модели с Алиэкспресс и местных радиомагазинов могут быть вполне востребованы. Я постараюсь показать как сделать лабораторный источник питания (ЛБП) своими руками из доступных комплектующих.

Для начала определитесь с требованиями к готовому ЛБП и его функциям: мощности/напряжения/токи на выходе, параметры стабилизации (CV/CC), необходимые защиты выхода от перегрузки (OVP/OCP/OPP), необходимость удаленного управления, калибровки, точность удерживания параметров, а также дополнительные функции: калькуляторы энергии и возможность заряда батарей. Если с суммарной мощностью определились, тогда есть смысл подобрать подходящий источник питания. На фото представлены несколько типовых источников на 350W, 500W и 1000W. Не маловажно и выходное напряжение, так как для преобразователей серий DPH/DPS/DPX требуются источники на 48. 60 Вольт. Можно взять на 48В и «слегка» поднять напряжение на выходе подстройкой «ADJ».

Модулей для управления источниками питания множество, они отличаются по выходным параметрам и по функционалу, подробнее посмотреть можно в статье: «Как сделать лабораторный источник питания своими руками». В основном отличаются величиной стабилизируемого напряжения и тока, но все имеют ограничения по мощности. Так что заранее прикидывайте требуемую выходную мощность ЛБП. Преобразователи небольшой мощности (150-250 Вт) помещаются в компактном корпусе, а повышенной — имеют отдельную плату с пассивным или активным охлаждением.

Я не рекомендую экономить на мощный источниках питания, тем более, питающих точную технику. На дешевых китайцы уже сэкономили на защите, так что берите с хорошими отзывами или проверенные.

Из проверенных можно брать MeanWell, например, серию LRS-350. В источник уже встроен вентилятор, обороты вращения которого управляются автоматически по датчику температуры.

Схемотехника типовая, базовые защиты присутствуют. Хотя источник питания бюджетный, о чем свидетельствуют пустые (не распаянные) места на плате.

Для сборки и управления источником нам потребуется программируемый преобразователь питания RD6006 (в наличии, доставка IML) или аналогичный. Версия RD6006W имеет возможность удаленного управления через Wi-Fi.

Преобразователь предназначен для монтажа в приборный корпус и, фактически, представляет собой лицевую панель лабораторного источника питания. Помимо небольшого цветного дисплея имеется клавиатурно-цифровой блок с функциональными клавишами и энкодером. Подключение осуществляется стандартными клеммами типа Banana-plug.

Внутри установлен мощный преобразователь-стабилизатор питания с контроллером. Есть даже модуль часов точного времени.

Монтаж элементарный, со сборкой можно справиться без специальных навыков или инструментов. Подключаем вход блока питания к сети, выход — к преобразователю.

У модуля RD6006 для подключения предназначена разъемная клемма, которая облегчает монтаж корпус и сборку в общем.

Подключаем и проверяем.

При подаче питания отображается заставка RIDEN RD6006.

Перфекционисты могут прикупить отдельно корпус или напечатать его на 3D принтере. Модели можно найти в свободном доступе.

Дисплей отображает множество параметров: текущий ток-напряжение и мощность, есть указание об системных установках: V-SET, I-SET, а также об ограничительных параметрах OVP/OCP. Присутствует калькулятор энергии и системное время.

Управление простое, энкодером, плюс функциональные клавиши. Версия RD6006W может управляться с компьютера или смартфона. Клавиша «SHIFT» активирует вторую функцию. Есть и ячейки памяти для хранения комбинаций установок.

Для примера — простая нагрузка на 50W. Устанавливаем ровно 12В.

Для контроля — мультиметр HP890CN (можно проверять и другим мультиметром для контроля). Параметры совпадают, на фото отклонение 10 мВ.

Увеличиваю нагрузку до 100 Вт: 18В и 6А.

Просадки напряжения не наблюдается, преобразователь тянет нагрузку спокойно.

Аналогично и с малыми напряжениями — на фото 5В.

Максимум на RD6006 можно установить 60 Вольт. У меня на входе 60.09В, можно слегка поднять входное напряжение, тогда получится ровно 60В с источника.

При выборе источника питания обращайте внимание, что входное напряжение должно превышать выходное примерно на 10%, для учета КПД преобразователя.

Таким образом, за относительно небольшие деньги и за один вечер можно собрать для собственных нужд источник питания с регулировкой и приличной мощностью, с высокой точностью стабилизации выходных параметров. Подобными источниками можно реанимировать и тренировать аккумуляторные батареи и сборки, в режиме стабилизации тока — проводить гальваническое осаждение металлических покрытий (анодирование, хромирование и т.п.). Да и большой диапазон регулировки крайне удобен для домашних экспериментов.

В любом случае, это вполне рабочий вариант. Тем более, если есть готовый приборный корпус (или корпус от старой аппаратуры) или мощный источник: трансформатор, драйвер светодиодных лент, ноутбучный адаптер, блок питания от компьютера и т.п. Тем более, что модули RIDEN DPSxxxx и 6006 далеко не новинка и про них существует множество полезной информации и примеров.

Лабораторный БП на основе Простого и доступного БП

Лабораторный блок питания

В этой статье я хотел бы рассказать о своем лабораторном БП, за основу которого была взята схема «Простой и доступный БП». Вариантов этого устройства довольно много, авторы постоянно что-то добавляют, вносят изменения, на тот момент, когда я начал собирать, последней версией была v 13. Однако я немного изменил схему, в свою пользу, т.к. планировал использовать БП на большие токи и хотел добавить схему переключения обмоток трансформатора. Вот схема оригинал:

В своем варианте я убрал «Индикатор перегрузки» на DA 1.3 и «Схему измерителя тока» на DA 1.4 и т.к. теперь два ОУ освободились, я решил на них же собрать «Схему переключения обмоток трансформатора», но об этом позже. Из-за этого была изменена схема стабилизации +12В для микросхемы ОУ, был использован отдельный источник питания со стабилизатором 7812. Также добавил силовых транзисторов, вместо одного 2N3055 я поставил пару 2SC5200. Максимальный отдаваемый ток теперь 5,6А. Вот мой вариант схемы:

В итоге мой вариант регулирует напряжение от 0 до 25В и может ограничивать максимальный ток на уровне от 0,01А до 5,6А. Для окончательной настройки схемы нужно установить максимальное напряжение резистором R13 и подобрать резисторы R14 и R16 для макс. и мин. тока соответственно.

Управление обмотками трансформатора

Бывают такие случаи,что нужно подключить к ЛБП какую-то низковольтную нагрузку, но с довольно большим током, например 5В при токе 5А. Тогда получается, что на силовых транзисторах будет падать несколько десятков вольт. К примеру после диодного моста и конденсатора в фильтре у нас 30В, а на выходе ЛБП всего 5В, значит на транзисторе будет падать 25В, и это при токе в 5А, получается, что бедный транзистор как-то должен превратить 125Вт просто в тепло. Одному мощному транзистору это не под силу, просто напросто произойдет тепловой пробой и он выйдет из строя, да и двум тяжко будет. На этой случай придумана схема, которая переключает обмотки трансформатора в зависимости от выходного напряжения ЛБП. К примеру, если нужно 5В, то зачем подавать на ЛБП 30В?

Ниже изображена схема переключения обмоток:

У меня же сам ЛБП и «схема переключения» собраны на одной плате. Переключение обмоток происходит при напряжениях на выходе 12В и 18В. Настройка схемы сводится к установке нужных напряжений переменными резисторами. Резистором R2 устанавливается деление выходного напряжения на 10, т.е. если на выходе ЛБП 25В, то на среднем выводе R2 (ползунке) должно быть 2,5В. Далее устанавливаем пороги срабатывания реле. Например у меня при 12В срабатывает первое реле, значит на 2 ножке микросхемы нужно установить 1,2В, соответственно при 18В на 6 ножке устанавливаем 1,8В. Позже можно будет заменить переменные резисторы R3 и R5 на два постоянных, спаяв их как делитель напряжения.

Охлаждение

В качестве радиаторов были собраны экспериментальные варианты из алюминиевых карнизов для штор, профили прикручиваются винтами к алюминиевой пластине ( признаюсь, хотелось бы потолще) и естественно промазываются термопастой. Эффективность таких радиаторов довольна неплохая. В верхней крышке корпуса есть отверстия для охлаждения.

Ампервольтметры

В качестве измерителя напряжения и тока была использована довольно известная схема на специализированной мс ICL7107. Я собирал по этой схеме:

Отдельное питание

Для питания индикации и микросхем LM324 в ЛБП используется отдельный трансформатор и стабилизаторы +5В и +12В.

О корпусе

Основой для корпуса стал кусок стеклотекстолита, толщиной около 6-7 мм. На нем все и собиралось, далее были прикручены передняя панель со всеми органами управления и индикацией и задняя с вентиляторами и сетевым разьемом. И сверху П–образная крышка, обклеенная синей самоклейкой.

Трансформаторы я использовал ТН 60. У них довольно мощные обмотки по 6,3В. Ток до 7А. По весу данный аппарат получился около 10кг.

Диодные мосты серии КВРС, 35-амперные, также посаженые на общий радиатор с силовыми транзисторами.

Самодельный лабораторный блок питания

Требования были следующие: регулируемое выходное напряжение до 30 В с регулируемым токоограничением до 5 А. Разумеется должна применяться цифровая индикация. Дизайн должен напоминать MASTECH HY3005D и им подобные. Единственное — мне никогда не нравилось что первый прибор показывает ток. Ну неправильно это — напряжение всегда первично, соответственно первый прибор должен показывать именно напряжение.

Первоначально проектировал схему на базе линейного стабилизатора К142ЕН2А, но в итоге отказался от этой идеи — низкий КПД, регулирующий силовой транзистор сильно грелся даже с учетом того что был предусмотрен переключатель отпаек на вторичной стороне трансформатора. Да и вообще всё как-то криво работало. Пришлось выпилить.

Читайте также  Клоп на 1.5 в

Второй вариант схемы разработал на базе легендарного ШИМ-контроллера TL494, который в разных вариациях встречается во многих компьютерных блоках питания. На этот раз всё получилось как надо.

Вкратце о конструкции:

Принципиальная схема (кликабельно)

Как уже говорил — девайс собрал из запчастей, большинство которых были в радиусе 5 метров от меня.

Понижающий трансформатор нашелся под столом, марки я его не знаю. Напряжение на вторичке около 40 В.
D1 — TL494, VD1 — диод шоттки и тороидальный дроссель L1 выпаял из неисправного компьютерного блока питания: диод шоттки используется в схеме выпрямления, он установлен на радиаторе возле импульсного трансформатора, тороидальный дроссель расположен рядом с ним.
LM358 — весьма хороший и распространенный операционный усилитель. Продаётся почти на каждом углу. Рекомендован к приобретению.
Шунт R12 — взял из какого-то старого связисткого оборудования: представляет собой 3 толстых изогнутых проволочки.

Резисторы R9, R10 используются для регулирования выходного напряжения (грубо, точно). Резисторы R3, R4 используются для регулирования токоограничения (грубо, точно).
При наладке БП подстроечным резистором R15 регулируется порог переключения светодиодной сигнализации. Еще возникли проблемы с интегральным стабилизатором 7805 — при входном напряжении около 40 В он начинал ужасно глючить — просаживал выходное напряжение, решил проблему установив по входу 1 Вт гасящий резистор R13.

Сам корпус взят от древнего самопишущего регистратора. Компоновка получилась следующей — в середине корпуса установлен силовой трансформатор, который вошел туда как родной, видимо они были созданы друг для друга. В передней части БП расположена электронная схема управления, органы управления и сигнализации. В задней части корпуса расположена вся силовая электроника. Таким образом трансформатор как бы делит БП на 2 части — слаботочную и силовую.

Передняя часть корпуса с откинутой лицевой крышкой. Цифровые измерительные приборы приехали из Китая, они заводского производства. Электронная схема управления состоит из 2 плат: плата регулятора напряжения — TL494 c обвязкой, и плата сигнализации — включает в себя микросхемы D3,D4. Почему не сделал на одной плате? Просто сигнализацию я делал несколько позже чем регулятор, и отдельно доводил её «до ума». Там тоже были свои заморочки.

Задняя часть корпуса. На общем радиаторе установлены диодный мост KBPC 3510, силовой транзистор КТ827А, дроссель L1, шунт R12. Всё это дело изнутри обдувается 12 сантиметровым вентилятором. В задней части корпуса установлены также предохранители, сглаживающие конденсаторы C1, C4 и маленький вспомогательный импульсный блок питания для работы вентилятора и цифровых измерительных приборов.

Конечно, можно было бы купить фирменный БП и не городить огород. Но иногда хочется самому поизобретать велосипед

Если кто-то задумает повторить конструкцию вот здесь выложил принципиальную схему в высоком разрешении и чертежи печатных плат в формате Sprint Layout.

Обновление 09.01.2019

По прошествии времени пользователи в комментариях поделились своими модификациями блоков питания. Рассмотрим подробнее предложенные варианты. Обсуждение всех конструкций по-прежнему доступно в комментариях

Модификация № 1

Предложена acxat_smr

Драйвер полевика (точнее, двух параллельно — выравниванием токов занимаются сами полевики) запитан от отдельного источника 15в. У себя взял промагрегат 9-36в/15в TEN 12-2413. От него же запитаны кулеры.
TL494 запитана от отдельного источника 24 в.
Потенциометр вольтажа любой, замер тока с шунта амперметра. Трансформатор выдает 34 в, выпрямленного около 45.
Проблема мощности упиралась в дросселе. Если 5-амперник нормально шел, то 20 помучал.
Практическим путем нашел вариант два параллельно на кольцах от компового. 23 витка проводом 1,15мм.

Внешний вид конструкции

Модификация № 2

Предложена rond_60

Недавно натолкнулся на эту статью про ЛБП на TL494. Загорелся желанием собрать БП по этой схеме, тем более уже давно валялся трансформатор от польского блока питания на 24в и 4а. Вторичка выдает 34в переменки, после моста с кондером 10000х63в — 42в. Собрал навесным монтажом по этой схеме, включил и сразу дым из 494-й. Все проверил, заменил микросхему, включаю — на холостом работает, на выходе напряжение пытается регулироваться, прикоснулся к 494 — горячая! Добавил номинал 4.7к резистору R1 — блок работает, но стоило подключить лампочку 24в 21вт, как взорвалась микросхема в районе 9, 10 ножки. Отмотал с вторичной обмотки транс-ра несколько витков (снизил напряжение на 4 вольта) и все равно горят микросхемы. Питание на 8,11,12 ноги подавал 12в с другого БП, мотал дроссель разным по диаметру проводом и количеством витков — толку нет (сжег 6 микрух). У меня есть кой — какой опыт по переделке компьютерных блоков в зарядные устройства и регулируемые блоки питания на основе TL494 и ее аналогах. Начал собирать обвязку ШИМа по схемам к комповым БП. Изменил управление силовым транзистором, подал питание на ШИМ от отдельного источника на 12в (переделал зарядку от сотового телефона) и все — блок заработал! Пару дней настраивал на регулировки и свист дросселя (оссцила нет) теперь надо отлутить плату управления и можно собирать в корпус.

Сегодня настраивал свой БП. Спасибо большое shc68 за подсказку проверять пульсации на выходе динамиком если нет осциллографа. При малой нагрузке (лампочка 12в, 21вт) из динамика слышался гул и вой когда крутил регулятор тока. Устранил это безобразие установкой дополнительных конденсаторов (на схеме обведено красным цветом).
Как рекомендовал shc68 конденсатор С15 действительно жизненно важный. Еще с помощью динамика определил бракованный потенциометр на регулировку тока. При его вращении из динамика слышался шорох и треск. После его замены и установки доп. конденсаторов из динамика тишина (чуть слышное шипение) при разной нагрузке на выходе БП.
Делал тест на нагрев деталей блока. При такой нагрузке в течении 1.5 часов только транзистор грелся (трогал пальцем его корпус), а радиатор, где он установлен, чуть теплый (обдувается вентилятором). Дроссель — холодный, трансформатор тоже.

Внешний вид конструкции

Модификация № 3

Предложена andrej_l

За основу была взята схема с полевиком https://ic.pics.livejournal.com/rond_60/78751049/3328/3328_original.jpg
При отладке появились проблемы с управлением полевика через трансформатор. На небольших токах нагрузки он работал, при увеличении более 2 ампер происходил срыв и падение тока (при скважности ШИМ > 30%). Пришлось убрать трансформатор и вместо него поставить оптодрайвер ACPL3180 с питанием от отдельной обмотки трансформатора.
Сделал 2 независимых канала с регулировкой напряжения до 30V и ограничения тока до 10A. Второй канал запустился сразу, только пришлось подстроить максимальные значения напряжения и тока. Регулировочные резисторы — 10 оборотные
https://ru.aliexpress.com/item/Free-Shipping-3590S-2-103L-3590S-10K-ohm-Precision-Multiturn-Potentiometer-10-Ring-Adjustable-Resistor/32673624883.html?spm=a2g0s.11045068.rcmd404.3.de3456a4CSwuV3&pvid=b572f0cb-2d84-4353-a657-a28824b99672&gps-id=detail404&scm=1007.16891.96945.0&scm-url=1007.16891.96945.0&scm_id=1007.16891.96945.0
В качестве V-A метра применён китайский модуль
https://ru.aliexpress.com/item/DC-100-10A-50A-100A/32834619911.html?spm=a2g0s.9042311.0.0.466b33edLWGUwZ с доработкой, достигнута точность показаний 2% при больших токах и 10 мА при токах до 1А.
Радиатор на транзисторе и диоде один от компьютерного блока питания. При нагрузке на лампу 15V 150W он нагревается до 80 градусов (больше греется диод). Настроил включение вентилятора охлаждения на 50 град. (один на 2 канала)
Окончательная схема одного канала

Rшунт 0,0015 Ом — Это встроенный шунт прибора, к нему добавляются сопротивление проводов от индикатора до клемм XS104 и «-«, при большом токе они оказывают значительное влияние. Провод 1,5 кв.мм
Настройка:
1 Запускаем задающий генератор на TL494 и драйвер с отключенным затвором VT101. На выходе драйвера будет ШИМ около 90%. Настраиваем частоту TL в пределах 80 — 100 кГц подбирая R107
2 Подключаем затвор транзистора (для подстраховки питание +45 подаём через токоограничивающий балласт, я брал 2 лампы 24V 150W последовательно) и смотрим выход БП. Подключаем небольшую нагрузку (я брал 100 Ом). Если напряжение на выходе регулируется то устанавливаем максимальное значение выхода с помощью R122.
3 Убираем токоограничивающий балласт, нагружаем выход сильнотоковой нагрузкой (я брал лампу 15V 150W) и настраиваем максимальный ток в нагрузке: R106 постепенно выводим в нижнее по схеме положение, подбираем R104 и R105 добиваясь срабатывания защиты по току (у меня ограничение по току 10А). При сработке токовой защиты регулировка напряжения с помощью R101 в большую сторону не приводит к его росту на выходе.
4 Узел индикации на операционнике и светодиодах не нуждается в настройке (его единственный недостаток — небольшая подсветка красного светодиода когда горит зелёный, можно исправить включив последовательно с красным обычный диод.
5 настраиваем Р101 на нужную температуру срабатывания вентилятора нагрузив блок питания на приличную нагрузку измеряя температуру диода и транзистора на радиаторе.

2 схемы

  1. Импульсный блок питания на TL494 своими руками — схема и подробная инструкция по монтажу
  2. Требования к прибору
  3. Список элементов.
  4. Питающие напряжения
  5. Варианты БП для самостоятельного монтажа
  6. Простой БП 0-30 В
  7. Мощный импульсный БП
  8. На Ардуино
  9. Варианты БП для самостоятельного монтажа
  10. Простой БП 0-30 В
  11. Мощный импульсный БП
  12. На Ардуино
  13. Испытания блока питания
  14. Схемы модулей лабораторного БП
  15. Ðа Ñладкое немного о вÑводе 4.
  16. Исходная схема
  17. Заключение

Импульсный блок питания на TL494 своими руками — схема и подробная инструкция по монтажу

Схема импульсного блока питания на TL494

  • ШИМ контроллер (IC1) — TL494.
  • Операционный усилитель (IC2) — LM324.
  • 2 линейных регулятора (VR1, VR2) — L7805AB и LM7905.
  • 4 биполярных транзистора T1, T2 — C945 и T3, T4 — MJE13009.
  • 2 диодных моста — VDS2 (MB105) и VDS1 (GBU1506).
  • 5 выпрямительных диодов (D3–D5, D8, D9) — 1N4148.
  • 2 выпрямительных диода (D6, D7) — FR107.
  • 2 выпрямительных диода (D10, D11) — FR207.
  • 2 выпрямительных диода (D12, D13) — FR104.
  • Диод Шоттки (D15) — F20C20.
  • 5 дросселей — L1 (100 мкГн), L5 на желтом кольце (100 мкГн), L3, L4 (10 мкГн), L6 (8 мкГн).
  • Синфазный дроссель (L2) — 29 мГн.
  • 2 импульсных трансформатора — Tr1 (EE16) и Tr2 (EE28–EE33, ER35).
  • Трансформатор (Tr3) — BV EI 382 1189.
  • Предохранитель (F1) — 5А.
  • Терморезистор (NTC1) — 5.1 Ом.
  • Варистор (VDR1) — 250 В.
  • Резисторы — R1, R9, R12, R14 (2.2 кОм); R2, R4, R5, R15, R16, R21 (4.7 кОм); R3 (5.6 кОм); R6, R7 (510 кОм); R8 (1 Мом); R13 (1.5 кОм); R17, R24 (22 кОм); R18 (1 кОм);
  • R19, R20 (22 Ом); R22, R23 (1.8 кОм); R27, R28 (2.2 Ом); R29, R30 (470 кОм, 1–2 Вт); R31 (100 Ом, 1–2 Вт); R32, R33 (15 Ом); R34 (1 кОм, 1–2 Вт).
  • Переменные резисторы (R10, R11) — 10 кОм, можно использовать 3 или 4.
  • Резисторы (R25, R26) — 0.1 Ом; шунты, мощность зависит от выходной мощности БП.
  • Конденсаторы — C1, C8, C27, C28, C30, C31 (0.1 мкФ); C3 (1 нФ, пленочный); C4–C7 (0.01 мкФ); C10 (0.47 мкФ, 275 В, X); C12 (0.1 мкФ, 275 В, X); C13, C14, C19 (0.01 мкФ, 2 кВ, Y); C20 (1 мкФ, 250 В, пленочный); C21 (2.2 нФ, 1 кВ); C23, C24 (3.3 нФ).
  • Электролитические конденсаторы — C2, C9, C22, C25, C26, C34, C35 (47 мкФ); C11 (1 мкФ); C15, C16 (2.2 мкФ); C17, C18 (470 мкФ, 200 В); C29, C32, C33 (1000 мкФ, 35 В).
  • 2 светодиода — D1 (зеленый, 5 мм) и D2 (красный, 5 мм), либо просто диоды, если не нужна индикация.
  1. Корпус Z4A.
  2. Выключатель — 250 В, 6 А.
  3. Держатель для предохранителя.
  4. Розетка для подключения к сети 220 В.
  5. Вилка для подключения к сети 220 В.
  6. Разъём для выходного напряжения.
  7. Вентилятор 12 В.
  8. Вольтметр.
  9. Амперметр.
Читайте также  Ик пульт управления для компьютера

  1. Входное напряжение — 220 вольт переменного тока.
  2. Выходное напряжение — от 0 до 30 вольт постоянного тока.
  3. Выходной ток составляет более 15 А (фактически тестированное значение).
  4. Режим стабилизации напряжения.
  5. Режим стабилизации тока (защита от короткого замыкания).
  6. Индикация обоих режимов светодиодами.
  7. Малые габариты и вес при большой мощности.
  8. Регулировка ограничения тока и напряжения.

pechatnaya-plata-dlya-impulsnogo-bloka-pitaniya.rar Видео о тестировании данного блока питания:

Требования к прибору

Чтобы создать простой, но одновременно качественный и мощный блок питания с возможностью регулировать напряжение и ток своими руками, необходимо знать, какие требования существуют к такому типу преобразователей.
Эти технические требования выглядят так:

  • регулируемый стабилизированный выход на 3–24 В. При этом нагрузка по току должна составлять минимум 2 А;
  • нерегулируемый выход на 12/24 В. При этом предполагается большая нагрузка по току.

Чтобы выполнить первое требование, следует использовать в работе интегральный стабилизатор. Во втором случае выход необходимо сделать уже после диодного моста, так сказать, в обход стабилизатора.

Список элементов.

R1 = 2,2 кОм 1W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R13, R20, R21 = 10 кОм 1/4W
R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K триммер
P1, P2 = 10KOhm линейный потенциометр
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ полиэстр
C5 = 200нФ полиэстр
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5402,3,4 диод 2A — RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V зенеревский
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548, NPN транзистор или BC547
Q2 = 2N2219 NPN транзистор — (Заменяют на КТ961А — все работает)
Q3 = BC557, PNP транзистор или BC327
Q4 = 2N3055 NPN силовой транзистор (заменить на КТ 827А)
U1, U2, U3 = TL081, опер. усилитель
D12 = LED диод

В итоге я самостоятельно собрал лабораторный блок питания, но столкнулся на практике с тем, что считаю нужным подправить. Ну во первых это силовой транзистор Q4 = 2N3055 его нужно в срочном порядке вычеркнуть и забыть. Не знаю как других устройствах, но в данном регулируемом блоке питания он не подходит. Дело в том, что данный тип транзисторов выходит из строя моментально при коротко замыкании и ток в 3 ампера не тянет совершенно. Я не знал в чем дело пока не поменял его на наш родной совковый КТ 827 А. После установки на радиатор я и горя не знал и больше не возвращался к этому вопросу.

Что же касается остальной схемотехники и деталей, то трудностей нет. За исключением трансформатор — мотать пришлось. Ну это чисто из-за жадности, пол ведра их стоит в углу — не покупать же =))

Ну и чтобы не нарушать старую добрую традицию, я выкладываю результат своей работы на общий суд пришлось по шаманить с колонкой, но в целом получилось не дурно :

Собственно лицевая панель — вынес потенциометры в левую часть в правой разместились амперметр и вольтметр + светодиод красного цвета, для индикации ограничения по току.

На следующей фотографии вид сзади. Тут я хотел показать способ монтажа кулера с радиатором от материнской платы. На этот радиатор с обратной стороны примостился силовой транзистор.

Вот и он, силовой транзистор КТ 827 А. Смонтирован на заднюю стенку. Пришлось просверлить отверстия под ножки, смазать все контактные части теплопроводной пастой и закрепить на гайки.

Вот они….внутренности! Собственно все в куче!

Лабораторный блок питания своими руками

Подача напряжения питания для различной электронной аппаратуры может осуществляться не только от заводских устройств. Блок питания (БП) своими руками можно сделать и в домашних условиях. В том случае, когда такой аппарат нужен для постоянной работы с различными напряжениями при регулировке: усилителей, генераторов и других самодельных схем, желательно, чтобы он был лабораторным.

Схемы блоков питания

Напряжение лабораторного БП располагается в интервале от 0 до 35 вольт. Для этой цели подходят схемы, по которым можно собрать следующие БП:

  • однополярный;
  • двуполярный;
  • лабораторный импульсный.

Конструкции подобных устройств обычно собраны либо на обычных трансформаторах напряжения (ТН), либо на импульсных трансформаторах (ИТ).

Внимание! Отличие ИТ от ТН в том, что на обмотки ТН подается синусоидальное переменное напряжение, а на обмотки ИТ приходят однополярные импульсы. Схема включения обоих абсолютно идентична.

Простой лабораторный

Однополярный БП с возможностью регулировать выходное напряжение можно собрать по схеме, в которую входят:

  • понижающий трансформатор Tr ( 220/12…30 В);
  • диодный мост Dr для выпрямления пониженного переменного напряжения;
  • электролитический конденсатор С1 (4700 мкФ*50В) для сглаживания пульсации переменной составляющей;
  • потенциометр для регулировки выходного напряжения Р1 5 кОм;
  • сопротивления R1, R2, R3 номиналом 1кОм, 5,1 кОм и 10 кОм, соответственно;
  • два транзистора: Т1 КТ815 и Т2 КТ805, которые желательно установить на теплоотводы;
  • для контроля напряжения на выходе устанавливают цифровой вольтамперметр, с интервалом измерений от 1,5 до 30 В.

В коллекторную цепь транзистора Т2 включены: С2 10 мкф * 50 В и диод Д1.

К сведению. Диод устанавливают для защиты С2 от переполюсовки при подключении к аккумуляторам для подзарядки. Если такая процедура не предусмотрена, можно заменить его перемычкой. Все диоды должны выдерживать ток не менее 3 А.

Двухполярный источник питания

Для питания усилителей низкой частоты (УНЧ), имеющих два “плеча” усиления возникает необходимость в применении двухполярного БП.

Важно! Если монтировать лабораторный БП, стоит остановить внимание именно на аналогичной схеме. Источник питания должен поддерживать любые форматы выдаваемого постоянного напряжения.

Для такой схемы допустимо применять трансформатор с двумя обмотками на 28 В и одной на 12 В. Первые две – для усилителя, третья – для питания охлаждающего вентилятора. Если таковой не окажется, то достаточно двух обмоток равного напряжения.

Для регулировки выходного тока применены наборы резисторов R6-R9, подключаемые с помощью сдвоенного галетного переключателя (5 положений). Резисторы подбирают такой мощности, чтобы они выдерживали ток более 3 А.

Внимание! Установленные светодиоды гаснут при срабатывании защиты по току, если он превышает значение 3 А.

Переменный резистор R нужно брать сдвоенный номиналом 4.7 Ом. Так проще осуществлять регулировку по обоим плечам. Стабилитроны VD1 Д814 соединены последовательно для получения 28 В (14+14).

Для диодного моста можно взять диоды подходящей мощности, рассчитанные на ток до 8 А. Допустимо устанавливать диодную сборку типа KBU 808 или аналогичную. Транзисторы КТ818 и КТ819 необходимо установить на радиаторы.

Подбираемые транзисторы должны иметь коэффициент усиления от 90 до 340. БП после сборки не требует специальной наладки.

Лабораторный импульсный бп

Отличительной чертой ИПБ является рабочая частота, которая в сто раз выше частоты сети. Это дает возможность получить большее напряжение при меньшем количестве витков обмотки.

Информация. Чтобы получить 12 В на выходе ИПБ с током 1 А для сетевого трансформатора достаточно 5 витков при сечении провода 0,6-0,7 мм.

Простой полярный ИП можно собрать, используя импульсные трансформаторы от компьютерного БП.

Читайте также  Светодиодный куб 4x4x4

Лабораторный блок питания своими руками можно собрать по схеме приведенной ниже.

Данный источник питания собран на микросхеме TL494.

Важно! Для управления Т3 и Т4 используется схема, в которую входит управляющий Тr2. Это связано с тем, что встроенные ключевые элементы микросхемы не имеют достаточной мощности.

Трансформатор Тr1 (управляющий) берут от компьютерного БП, он «раскачивается» при помощи транзисторов Т1 и Т2.

Особенности сборки схемы:

  • для минимизации потерь при выпрямлении используют диоды Шоттки;
  • ESR электролитов в фильтрах на выходе должен быть как можно ниже;
  • дроссель L6 от старых БП применяют без изменения обмоток;
  • дроссель L5 перематывают, намотав на ферритовое кольцо медный провод диаметром 1,5 мм, набрав 50 витков;
  • Т3, Т4 и D15 крепят на радиаторы, предварительно отформатировав выводы;
  • для питания микросхемы, управления током и напряжением применяют отдельную схему на Tr3 BV EI 382 1189.

Вторичная обмотка выдает 12 В, которые выпрямляются и сглаживаются при помощи конденсатора. Микросхема линейного стабилизатора 7805 стабилизирует его до 5 В для питания схемы индикации.

Внимание! Допустимо использовать в этом БП любую схему вольтамперметра. В таком случае микросхема для стабилизации 5 В не понадобится.

Изготовление печатной платы и сборка

Схема подразумевает изготовление трёх печатных плат. Платы подбираются для корпуса Kradex Z4A.

Платы выполнены из фольгированного гетинакса путем фотопечати и протравки дорожек.

Настройка блока питания

Правильно собранное устройство не нуждается в особой регулировке. Необходимо лишь подстроить диапазоны регулировки тока и напряжения.

Четыре операционных усилителя в микросхеме LM324 осуществляют регулировку тока и напряжения. Микросхема питается через фильтр, собранный на L1, C1 и С2.

Чтобы настроить схему регулировки, нужно подобрать элементы, помеченные звёздочкой, для маркировки регулирующих диапазонов.

Индикация

Для индикации обычно используются устройства индикации и модуль измерения на микроконтроллерах. Питание таких контроллеров лежит в пределах 3-5 В.

Рекомендации по улучшению надежности

Лабораторный бп должен простоять под нагрузкой не менее 2 часов. После этого проверяют температуру корпусов трансформаторов, работу теплоотводов. При намотке трансформаторов для снижения шума при работе намотку обмоток осуществляют плотно виток к витку. Готовую конструкцию заливают парафином. При установке элементов на радиаторы места контактов промазывают теплопроводящей пастой.

В корпусе просверливают ряд отверстий, напротив теплоотводов, сверху дополнительно устанавливают кулер.

Защита блока питания

Токовая стабилизация (защита) микросхемы LM324 срабатывает при превышении установленного токового порога. В этом случае на микросхему приходит сигнал о понижении напряжения. Красный светодиод служит индикатором повышения напряжения или возникновения короткого замыкания. В рабочем режиме светится зеленый светодиод.

Советы по оформлению корпуса

Корпус Kradex Z4A позволяет выводить элементы управления и индикации, как на лицевую, так и на боковые панели. Ручки регулировки, индикатор лучше всего устанавливать на лицевую панель. Разъем для выходного напряжения можно крепить где угодно.

Собранный своими руками лабораторный блок питания с использованием мощных полевых транзисторов и импульсных трансформаторов незаменим для работы. В качестве индикаторов желательно использовать цифровые электронные ампервольтметры.

Видео

Лабораторный бп на основе простого и доступного бп

  • Усилители мощности
  • Светодиоды
  • Блоки питания
  • Начинающим
  • Радиопередатчики
  • Разное
  • Ремонт
  • Шокеры
  • Компьютер
  • Микроконтроллеры
  • Разработки
  • Обзоры и тесты
  • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
    • Усилители мощности
    • Светодиоды
    • Блоки питания
    • Начинающим
    • Радиопередатчики
    • Разное
    • Ремонт
    • Шокеры
    • Компьютер
    • Микроконтроллеры
    • Разработки
    • Обзоры и тесты
    • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
  • Простейший лабораторный блок питания для начинающего

    Приветствую всех зрителей , особенно начинающих радиолюбителей, поскольку именно они очень часто сталкиваются с проблемой поиска источников питания для самодельных конструкций и поэтому в этом ролике будет рассмотрен вариант постройки простейшего лабораторного блока питания с возможностью ограничения тока.

    Наш блок питания может обеспечивать на выходе стабилизированное напряжение от 0 до 15 вольт и ток до полутора Ампер.

    Естественно наиболее простым решением является использование специализированных микросхем на подобии LM317, которая обеспечивает хорошую стабилизацию, стоит дешево и может отдавать в нагрузку ток до полторы ампер, но я этого не сделал, зная что многие радиолюбители могут не иметь возможности приобретения специализированных микросхем по тем или иным причинам, поэтому рассмотрим самый простой стабилизированный блок питания построенный всего на двух транзисторах.

    В проекте специально использованы наиболее доступные радиокомпоненты, чтобы ни у кого не возникли трудности с их поиском.

    А теперь давайте рассмотрим схему и поймем как она работает. Состоит она из трех основных частей:

    Сетевой понижающий трансформатор для обеспечения нужного нам напряжения а также для гальванической развязки с сетью. В своем варианте я использовал трансформатор от блока питания кассетного магнитофона, подойдет любой другой, основные параметры блока будут зависеть в первую очередь от трансформатора, притом нужно учитывать один момент — максимальное выходное напряжение блока питания будет на несколько вольт меньше, чем напряжение на выпрямителе.

    Трансформатор подбирается с нужным током, в моем случае имеются две обмотки по 20 Вольт, ток с каждой из них составляет около 0,7 Ампер, обмотки подключены параллельно, т.е общий ток около полутора ампер.

    Вторая часть из себя представляет выпрямитель для выпрямления переменного напряжения в постоянку и конденсатор для сглаживания напряжения после выпрямителя и фильтрации помех.

    Третий узел это плата самого стабилизатора, рассмотрим ее поподробней. А работает схема следующим образом.

    Сетевое напряжение поступает на первичную обмотку трансформатора, на вторичной обмотке уже получаем пониженное напряжение, максимальный ток будет зависеть от габаритных размеров трансформатора и от диаметра провода вторичной обмотки.

    Далее переменное напряжение со вторичной обмотки трансформатора поступает на двухполупериодный выпрямитель диодного типа, построенный на 4-х одинаковых диодах.

    После выпрямителя установлен электролитический конденсатор для сглаживания напряжения до «идеальной постоянки». Уже постоянное напряжение поступает на схему стабилизатора где стабилизируется до некоторого уровня, напряжение стабилизации будет завесить от стабилитрона, в нашем случае он на 15 Вольт, который задает максимальное напряжение на выходе.

    Но беда в том, что ток такого простого стабилизатора невелик, по нему протекает около 15 -20 мА, вот поэтому его нужно усилить с помощью простого каскада усиления по току построенный на транзисторе VT1 и VT2 , транзисторы подключены таким образом для того , чтобы обеспечить максимально большое усиление, т.е. по сути это аналог составного транзистора.

    Регулятор напряжения в лице переменного резистора R1 выполняет функцию простого делителя напряжения и может быть рассмотрен как два последовательно соединенных резистора с отводом от места их соединения, изменяя сопротивление каждого, мы можем регулировать напряжение, это напряжение усиливается ранее указанным каскадом. Второй переменный резистор позволит ограничивать выходной ток.

    Большую их часть, а если быть точнее то все компоненты можно найти в старой аппаратуре, например в советских телевизорах, усилителях, приемниках, магнитолах и в прочей технике, также возможно использование импортных аналогов, которые имеют одинаковое расположение выводов.

    Диодный мост — можно использовать готовые мосты, которые можно найти в компьютерных блоках питания или же собрать мост из любых 4-х аналогичных диодов с током от 2-х ампер, список некоторых таких диодов тоже найдешь в архиве проекта, ссылка на архив как всегда в описании.

    Для увеличения выходного напряжения блока питания нужно во первых найти соответствующий трансформатор а также заменить стабилитрон на более высоковольтный , скажем на или 18 или 24 Вольта, Резистор ограничивает ток через стабилитрон, расчет производится исходя из напряжения с выпрямителя, резистор рассчитывают так, чтобы ток через стабилитрон не превышало значение в 25-30мА в случае стабилитронов пол ватта и 40-45 мА в случае если использован одноваттный стабилитрон.

    Если нет нужного стабилитрона, то можно последовательно соединить два или несколько, для получения нужного напряжения стабилизации.

    Схема стабилизатора работает в линейном режиме, поэтому силовой транзистор VT22 нуждается в радиаторе.

    Теперь проверим конструкцию в работе. Как видим напряжение плавно регулируется от нуля до 15 Вольт

    Теперь проверим ограничение тока. Без нагрузки вращая регулятор тока, напряжение у нас почти не меняется, что свидетельствует о корректной работе функции ограничения. Ток регулируется плавно от 180мА.

    Максимальный выходной ток, в моем случае составляет около 1,5 Ампер, этого вполне достаточно для средних нужд большинства радиолюбителей.

    Не смотря на простоту конструкции при выходных токах токах около 1А , наблюдаем просадку выходного напряжения меньше 0,2 вольт, это очень хороший показатель для стабилизаторов такого класса.

    Блок питания может переносить короткого замыкания с продолжительностью не более 5 секунд, в этом режиме ток ограничивается в районе 1,7А.

    Монтаж можно сделать и навесным, но более красиво смотрится конструкция на печатной плате, тем более, что я для вас ее нарисовал.

    В качестве индикаторов советую использовать стрелочные приборы, чтобы не путаться с подключением, хотя можно и цифровые.

    Корпусом может служить кожух от компьютерного блока питания, либо любой другой удобный вариант, хоть фанерные доски.

    По мне, довольно годный вариант в качестве первого лабораторного блока питания, смело собирайте.