Измеритель ёмкости на микроконтроллере pic18f1320

Измеритель ёмкости на микроконтроллере PIC18F1320

В прежней версии статьи шла речь о измерителе ёмкости в диапазоне от 50 нФ до 3500 мкФ.

В комментариях мне написали следующие пожелания:

1. Добавить калибровку нуля, так-как при измерении ёмкости с использованием щупов, прибор завышал показания
2. Убрать незначащие нули
3. добавить измерение ESR
4. Увеличить диапазон работы прибора.

К сожалению, самое основное, из выше указанных пожеланий, а именно измерение ESR я пока так и не реализовал. Никак не могу выбрать метод измерения данного параметра. Что касается калибровки нуля — так проблема оказалась связана с плохими контактами в месте соединения проводов и прибора, поэтому решив вопрос с контактами, калибровка нуля отпала за ненадобностью. А вот оставшиеся 2 пожелания я в новом приборе учёл. Теперь на дисплее не раздражают незначащие нули и диапазон измерения увеличен, особенно в меньшую сторону. Нижний предел 10 пФ, верхний так и остался 3500 мкФ, но это достаточно условно. У меня просто нет конденсаторов большей ёмкости, чтобы проверить на них прибор, а так никаких схемных или программных ограничений, для измерения более высокой ёмкости нету.

Если прошлый прибор измерял любую ёмкость путём полной её разрядки, и зарядки через резистор 4,7 кОм, то для увеличения нижнего диапазона пришлось увеличить это сопротивление до 3 МОм. Но если заряжать конденсатор, к примеру, 1000 мкФ через 3 МОм, то можно сходить покурить, пока он зарядится, поэтому было принято решение сделать 2 режима измерения. 1-й: от 10 пФ до 1 мкФ; и 2-й: от 0,1 мкФ до максимума. Во втором режиме зарядка происходит через резистор 10 кОм.

Также в прошлом измерителе ёмкости я использовал дисплей от Nokia 1202, но не оригинальный, а китайскую копию. В процессе использования дисплей периодически полностью отказывался работать. В чём основная причина, то-ли в качестве дисплея, то-ли в не качественной пайке шлейфа к плате, я так и не выяснил, просто решил заменить дисплей на более надёжный и проверенный: Nokia 5110 (3310). Кроме дисплея, в схему добавлен стабилизатор напряжения 3,3 В, для возможности использования батарейки «крона» и более стабильной работы контроллера и переключатель режимов измерения.

При включении измерителя подсветка не загорается до появления на шине измеряемой ёмкости. Это сделано для экономии заряда батарейки. На дисплее появляется информация о выбранном диапазоне измерения и рамка, в которой отображается ёмкость.

В режиме до 1 мкФ, при подсоединении конденсатора к шинам, контроллер подаёт на него логический ноль на 100 мс, для полной разрядки и считает время зарядки через резистор 3 МОм до появления логической единицы. В режиме измерения от 0,1 до 3500 мкФ процесс тот-же, только 0 подаётся на 500 мс, так-как для разрядки конденсаторов более высокой ёмкости необходимо больше времени, и зарядка происходит через сопротивление 10 кОм. При испытания прибора я пробовал предварительно разряжать конденсаторы, перед из измерением. Это не оказало значительного влияния на показания, поэтому считаю, что выбранные промежутки времени, для разрядки — достаточные.

Печатную плату я делал под корпус Z-55, переключатель режимов крепится к корпусу и с платой соединяется проводами, дисплей также соединён с платой через шлейф. Собственно сама плата:

А также фото готового изделия:

Для желающих повторить этот прибор -исходный код, прошивка, схема и плата в формате «lay» прикрепляются к статье.

Код написан в среде MPLAB v8.92, компилятор Hi Tech picc18 v9.66

Измеритель ёмкости на микроконтроллере pic18f1320

Это измеритель ESR (ЭПС) + измеритель ёмкости конденсаторов.

Прибор измеряет ЭПС (эквивалентное последовательное сопротивление) конденсатора и его ёмкость измеряя время зарядки постоянным током. В роли источника тока выступает управляемый стабилитрон TL431 и p-n-p транзистор.

Ёмкость меряет в пределах 1 — 150 000мкФ, ESR — до 10 Ом.

Вся конструкция была успешно позаимствована с сайта pro-radio, где Олег Гинц (он же GO и он же автор конструкции) выложил свою работу на общее обозрение. Эта конструкция была повторена не один десяток, а то и сотню раз, опробована и одобрена народом. При правильной сборке остаётся лишь выставить поправочные коэффициенты на ёмкость и сопротивление.

Прибор собран на микроконтроллере PIC16F876A, распространённом ЖК-дисплее типа WH-1602 на базе HD44780 и рассыпухе. Контроллер можно заменить на PIC16F873 — в конце статьи есть прошивки на обе модели.

Ёмкость и ESR конденсаторов около 1000 мкф измеряет за доли секунды. Так же с большой точностью измеряет малое сопротивление. То есть можно пользоваться, когда необходимо сделать шунт для амперметра 🙂

Так же хорошо меряет ёмкость внутрисхемно. Только, если есть индуктивности — может врать. В этом случае выпаиваем элемент.

Корпус, Z-42, в качестве коннектора подключения щупов по четырёхпроводной схеме выбрал старый, добрый, надёжный USB 2.0 порт.

Старый, советский, подсохший электролитический конденсатор.

А это нерабочий конденсатор с цепи питания процессора на материнской плате.

Конденсатор предварительно разряжается, включается источник тока 10 мА, оба входа измерительного усилителя подключаются на Сх, делается задержка порядка 3.6 мкс для устранения влияния звона в проводах. Одновременно через ключи DD2.3 || DD2.4 заряжается конденсатор С1, который собственно и запоминает самое большое напряжение, которое было на Cx. Следующим шагом размыкаются ключи DD2.3 || DD2.4 и выключается источник тока. Инвертирующий вход ДУ остается подключенным к Сх, на котором после выключения тока напряжение падает на величину 10мА*ESR. Вот собственно и все — далее спокойно можно мерять напряжение на выходе ДУ — там два канала, один с КУ=330 для предела 1 Ом и КУ=33 для 10 Ом.

На форуме-источнике, где выложена печатная плата и прошивки — печатка была двухсторонняя. С одной стороны — все дорожки, с другой — сплошной слой земли и просто дырки под компоненты. У меня такого текстолита на момент сборки не было, поэтому пришлось делать землю проводами. Так или иначе, особых сложностей это не доставило и на работоспособности и точности прибора никак не отразилось.

На последней картинке — источник тока, источник отрицательного напряжения и силовой ключ.

Плата простая, настройка — ещё проще.

Первое включение — проверяем наличие +5V после 78L05 и -5V (4.7V) на выходе DA4 (ICL7660). Подбором R31 добиваемся нормальной контрастности на индикаторе.
Включение прибора при нажатой кнопке Set переводит его в режим установки корректирующих коэффициентов. Их всего три — для каналов 1 Ом, 10 Ом и для ёмкости. Изменение коэффициентов кнопками + и -, запись в EEPROM и перебор — той же кнопкой Set.
Имеется так же отладочный режим — в этом режиме на индикатор выводятся измеренные значения без обработки — для емкости — состояние таймера (примерно 15 отсчетов на 1 мкФ) и оба канала измерения ESR (1 шаг АЦП=5V/1024). Переход в отладочный режим — при нажатой кнопке «+»
И еще один момент — установка нуля. Для этого замыкаем вход, нажимаем и удерживаем кнопку «+» и с помощью R4 добиваемся минимальных показаний (но не нулевых!) одновременно по обоим каналам. Не отпуская кнопку «+», нажимаем Set — на индикатор выведется сообщение о сохранении U0 в EEPROM.
Далее измеряем образцовые сопротивления 1 Ом (или меньше), 10 Ом и емкость (которой доверяете) , определяем поправочные коэффициенты. Прибор выключаем, включаем при нажатой кнопке Set и устанавливаем к-ты соответственно результатам измерений.
Плата в три этапа, вид сверху:

Привожу небольшой список FAQ, сформировавшийся на форуме-источнике.

Q. При подключении резистора в 0,22 Ома — пишет — 1 с копейками, при подключении резистора в 2,7 Ом — пишет ESR > 12.044 Ом.

A. Отклонения могут быть, но в пределах 5-10%, а тут в 5 раз. Надо проверять аналоговую часть, виновниками могут быть в порядке убывания вероятности:

источник тока,
дифф. усилитель
ключи
Начните с источника тока. Он должен выдавать 10 (+/-0.5) мА, его проверить можно либо в динамике осциллографом, нагрузив на 10 ом — в импульсе должно быть не более 100 мВ. Если ловить иголки не хочется — проверьте в статике — уберите перемычку (нулевое сопротивление) между RC0 и R3, нижний конец R3 на землю, и включаете миллиамперметр между коллектором VT1 и землей (правда возможно будет мешать VT2 — тогда при проверке коллектор VT1 лучше отключить от схемы).

На деле решение было такое: -«Перепутал я сослепу 102 и 201 — и вместо 1 килоома забубенил 200 ом.»

Q. Возможна ли замена TL082 на TL072?

A. К ОУ особых требований нет кроме полевиков на входе, с TL072 должно работать.

Q. Зачем на вашей печатке сделаны два входных разъёма: один подключен к диодам-транзисторам, а другой — к DD2?

A. Чтобы скомпенсировать падение напряжения на проводах, тестируемый элемент лучше подключать по 4-х проводной схеме, поэтому и разъем 4-х контактный, а провода объединяются вместе уже на крокодилах.

Читайте также  Диапазонная коротковолновая антенна

Q. На холостом ходу отрицательное напряжение -4 Вольта и сильно зависит от типа конденсатора между 2 и 4 выводами ICL 7660. С обычным электролитом всего -2 В было.

A. После замены на танталовый, выдранный с 286 материнки стало -4 В.

Q. Индикатор WH-1602 не работает или греется контроллер индикатора.

A. Неверно указана цоколевка индикатора WINSTAR WH-1602 в плане разводки питания, перепутаны 1 и 2 выводы! На alldatasheet 1602L, который совпадает с цоколевкой, указанной Winstar и на схеме. Мне же попался 1602D — вот он имеет «спутанные» 1 и 2 выводы.

Надпись Cx —- выводится в следующих случаях:

При измерении емкости срабатывает тайм-аут, т.е. за отведенное время измерения прибор не дождался переключения обоих компараторов. Это происходит при измерении резисторов, закороченных щупах, либо когда измеряемая емкость >150000 мкФ и т.п.
Когда напряжение, измеренное на выходе DA2.2 превысит 0x300 (это показания АЦП в 16-ричном коде), процедура измерения емкости не выполняется и на индикатор также выводится Cx —-.
При разомкнутых щупах (или R>10 Ом) так и должно быть.

Знак «>» в строке ESR появляется при превышении напряжения на выходе DA2.2 0x300 (в единицах АЦП)

Подводя итог: травим плату, без ошибок паяем элементы, прошиваем контроллер — и прибор работает.

Спустя пару лет решил сделать прибор автономным. По мотивам зарядного устройства для смартфонов был сделан step-up преобразователь на 7 В выходного напряжения. Можно было бы сразу на 5 В, но так как плата закреплена в корпусе на клей — отдирать не стал, да и падение напряжения на КРЕН7805 в два Вольта — небольшая потеря 🙂

Мой новый конструктор выглядел так:

Маленькая платка преобразователя была «обута» в термоусадку, произведена распайка всех проводов, разъём для кроны нам больше не понадобится. Просто дырка в корпусе смотрится не очень, поэтому мы его оставим, но провода откусим. Внутри корпуса не осталось места для аккумулятора, поэтому я приклеил батарею на тыльную сторону прибора и приделал ему ножки, чтобы в рабочем состоянии он не лежал на аккумуляторе.

На лицевой стороне вырезал отверстия для кнопки питания и светодиода индикации успешной зарядки. Индикацию заряда аккумулятора не делал.

Потом решил, что раз пошла такая пьянка неплохо было бы видать экран в темноте, на случай ремонта при свечах, если отключат свет, а работать хочется 🙂

Но это уже после того, как появился более понтовый RLC-2. Подробнее об этом приборе в этой статье.

Уже не одну сотню приборов эта маленькая штучка помогла восстановить за считанные минуты. Делайте, не пожалеете. Или заказывайте у меня:)

Наша группа Вконтакте, где можно задать вопрос, на который всегда будет дан ответ!

Проекты : Показометры: спектроанализаторы, тестеры, термометры, измерители, пробники

Прецизионный измеритель ёмкости и индуктивности

Внимание! Перед сборкой смотри установку кнопки и полярных конденсаторов.

29.02.16 обнаружен первоисточник (архив первоисточника)
Прибором очень доволен. Заводские индуктивности и ёмкости измеряет точно. Рекомендую.

В какой-то момент мне нужно было измерить индуктивность, однако такого измерителя у меня не было. Постоянной потребности в подобных измерениях у меня нет, а посему нет нужды покупать какой-то фирменный прибор (ради кружки молока не покупают корову). Решил не напрягаться теорией, а повторить что-то готовое из Интернета. Поиск на запрос » LC метр на PIC » выдал следующие интересные ссылки:

То ли подходящих деталей у меня не было, то ли конструктив не понравился, то ли стало жалко времени на подбор деталей… в итоге решил посмотреть подходящее на алиэкспрессе.

В данной статье представлена конструкция, которая была собрана из набора деталей, приобретенного в интернет-магазине ссылка

Диапазон измерения индуктивности: 0.1μ H -2 H

Диапазон измерения ёмкости: 1 pF -2.5μ F

Диапазон измерения электролитических конденсаторов: 0.1μ F -30000μ F

Набор состоит из двухсторонней печатной платы и комплекта деталей (картинки плат кликабельны).

Пробовал считать прошивку (оптимист ), не считывается.

Порадовало наличие фурнитуры в виде панелек и стоечек. Однако, под восьмивыводную микросхему панели не было; добавим свою. Резисторы по расцветке с 1% точностью. Два плёночных конденсатора также добавляют убедительности конструкции.

Схемы в наборе не было; позднее, после некоторых траблов, продавец прислал схему. Как видим, продавец от руки внес некоторые корректировки в схемотехнику – транзисторные ключи в цепь управления реле. Даже с этими правками продавца, схема точно не отражает действительность, например, во входных цепях питания.

Сборка не составляет большого труда. Маркировка на плате понятная и не вызывает трудностей по расстановке компонентов (за исключением полярных конденсаторов и кнопки).

Сначала монтируем малогабаритные элементы – сопротивления, диоды, индуктивность. Предполагается, что у вас есть мультиметр, которым вы измерите номинал сопротивлений.

Затем монтируем компоненты средних габаритов. Я рекомендую монтировать кнопку в самом конце, после отмывки платы. Кварц монтируете с небольшим зазором от платы, т.к. оставшаяся под кварцем отмывочная жидкость может срывать генерацию.

Рекомендую сразу заменить ряд гнёзд под индикатор. В комплекте гнездо высотой 6 мм. Когда я его запаял и стал соединять индикатор, то увидел, что разъем питания не даёт полностью соединить гнёзда и штыри. Радости от этого мало, а матерных слов в процессе демонтажа много. В итоге установил более высокое гнездо высотой 9 мм.

Отдельно меня напрягла маркировка полярности на конденсаторах на рисунке ниже.

Считается, что более длинный вывод это положительный вывод. Пусть так и будет.

Ну и маркировка полярности на плате также сделана как-то не по-человечески. Жирная полоска у кружка на плате – это минус.

В заключении монтируем оставшиеся компоненты. Я добавил панель под восьмивыводную микросхему и трехконтактную клемму с винтовыми зажимами.

Плату отмываем спиртом (я использую изопропиловый спирт) и сушим.

Теперь пару слов о кнопке. Кнопку я не прозванивал и не подумал, что она может работать на переключение. В схеме в нормальном состоянии (не нажатом) кнопка должна быть разомкнутой (или нормально разомкнутой). В итоге я неправильно смонтировал кнопку и в ненажатом состоянии были замкнуты линии. Из-за этого тестер работал неправильно, показывал какую-то ерунду. Неделю я напрягал продавца и, наконец, он мне выслал инструкцию на английском, где я увидел отдельную рекомендацию по кнопке.

На корпусе кнопки на одной из сторон видимо обозначен ключ, по которому ориентируют правильный монтаж. Однозначно на это я бы не стал полагаться, а доверился бы прозвонке тестером.

Вынимаем микроконтроллер и подключаем разъем питания с напряжением 7,5…12 Вольт. Внешний контакт в разъеме питания это минус, центральный плюс.

Далее на панели микросхемы на контактах 7 и 22 замеряем напряжение. Это напряжение должно быть на уровне 5 вольт.

Отключаем питание. Вставляем микроконтроллер с соблюдением положения ключа. Вставляем гребёнку штырей с индикатором, подаем питание и крутим подстроечный резистор 10К до появления изображения на индикаторе. Примерно должны наблюдать следующее

Затем нам нужно выставить напряжение 3,16 Вольт в точках – TP +. Многооборотным подстроечным резистором 5К выставляем напряжение 3,16 Вольт

На этом настройка закончена. Всё – можно приступать к измерениям.

После подачи питания в измерительных клеммах не должно быть деталей, т.к. в этот момент происходит самокалибровка. При измерении малых емкостей в единицы пикофарад в разряде десятых наблюдается изменение показаний. Это, со слов продавца, является нормальным явлением, называемым флуктуацией.

Общее впечатление о наборе хорошее. Приятный конструктор. Удачи в сборке и точных измерений.

О сайте.
Электронные устройства и модели,
обучение и консультация,
документация и средства разработки.
Принимаем на реализацию проекты,
услуги, идеи. Возмездная помощь.

Здесь может быть
ваша реклама

Понравилась конструкция,
но не можете собрать?

Обращайтесь, мы удовлетворим
ваши запросы и пожелания!
Напишите нам письмо.

В русском Интернете бестолку защищать свои права. Хотите использовать материалы — используйте,
но с письменного согласия авторов. В противном случае будут высланы соответствующие письма
в поисковые системы об ограничении индексации ваших сайтов. Не доводите до греха.

Обход встроенной защиты PIC-микроконтроллеров

В комментариях к недавнему топику о вскрытии процессора была упомянута статья о том, как удалось обойти встроенную защиту от чтения прошивки микроконтроллера (т.н. Fuse-биты). Мне она понравилась, ниже — перевод с некоторыми дополнениями и пояснениями.

Взлом МК PIC18F1320

Ну, сами понимаете, есть еще некоторые ситуации, когда такие навыки могут пригодиться.

Я купил четыре PIC18F1320 и начал их мучать. Вот так выглядит PIC18F1320 в первозданном, не раскуроченном виде:

Первое, что предстоит сделать, это внять верхнюю часть корпуса, чтобы стали доступны кремниевые внутренности микроконтроллера. Хотя существует достаточно много любительских способов сделать это, но обычно они основаны на применении азотной или серной кислоты. Во-первых, это, скорее всего, не те вещи, которые вы очень хотите видеть рядом с собой. Во-вторых, их непросто достать, поскольку, например, азотная кислота является одним из компонентов для изготовления взрывчатых веществ. Я решил, что самый простой и надежный способ — отправить микроконтроллеры в лабораторию анализа отказов, такую как MEFAS, и за $50 и 2 дня получить на руки уже «обезглавленные» компоненты. Для этого проекта я удалил компаунд с трех микроконтроллеров. Два из них остались полностью рабочими, а один лишился корпуса полностью, т.е. остался только сам чип. Это было продиктовано конструктивными особенностями моего микроскопа при больших увеличениях.

Недолгое обследование поверхности чипов позволило выявить некоторые характерные участки микроконтроллера, показанные ниже:

Видны (по часовой стрелке): 8 KB flash-памяти, источник опорного напряжения, зарядовый насос для программирования flash/EEPROM памяти, 256 байт EEPROM памяти, втроенные таймеры и цепи тактирования, вычислительное ядро, ПЗУ с микрокодом, массив с fuse-битами, 256 байт ОЗУ, АЦП. (

Читайте также  Регулируемый стабилизатор напряжения/тока
было бы очень интересно узнать, как он все это определил по внешнему виду

)
Одна структура сразу привлекла мое внимание: ряд металлических экранов над транзисторами, которые располагались в правильном порядке, и количество которых совпадало с количеством fuse-бит. Полное перекрытие элементов металлическими экранами на кремниевых кристаллах встречается очень редко, и само собой такие элементы привлекают к себе внимание, т.к. содержат что-то крайне важное.

Немного подумаем об этих металлических экранах. Для чего они нужны? Во-первых, вспомним некоторые интересные факты о технологии flash (этот тип памяти применяется в том числе и в PIC-микроконтроллерах для хранения fuse-бит). Flash-технология подразумевает использование транзисторов с плавающим затвором, очень похожие на те, что применялись в старых микросхемах ПЗУ с ИФ-стиранием (вы же помните 2616-е в керамическом корпусе и с кварцевым стеклом?). И во flash, и в УФ-ППЗУ данные сохраняются путем инжектирования электронов на плавающий затвор при помощи тоннельного эффекта, где эти электроны могут находиться десятилетиями. Дополнительные электроны в плавающем затворе создают заметные изменения в характеристиках транзистора. Разница заключается в том, что во flash-памяти для стирания информации достаточно электрических импульсов, в то время как в УФ-ППЗУ для того чтобы «выгнать» электроны с плавающего затвора необходимы фотоны с высокой энергией. Для этого необходим ультрафиолет с длинной волны примерно 250 нм. Для того, чтобы УФ-излучение не слишком сильно ослабевало, применяются кварцевые стекла (те самые окошечки на старых микросхемах ПЗУ).
Важный вывод, который можно сделать из вышеуказанных фактов: flash память тоже может быть стерта при помощи УФ-излучения, т.к. она имеет практически ту же транзисторную структуру, что и УФ-ППЗУ устройства. Корпус устройств с flash-памятью обычно мешает попаданию ультрафиолета на поверхность кристалла, но так как наш PIC микроконтроллер теперь лишен пластиковой верхушки корпуса, то мы может применить УФ-излучение и посмотреть, что из этого выйдет.
Я провел эксперимент, в котором запрограммировал PIC-контроллер последовательными значениями от 0x00 до 0xFF, и затем проэкспонировал его в моем УФ-ППЗУ стирателе, пока принимал душ и проверял почту.
Когда я извлек контроллер из стирателя, то обнаружил, что flash-память действительно была очищена и вернулась в изначальное состояние (все значения 0xFF), и что защитные fuse-биты так же были деактивированы. Так же следует учитывать, что УФ-излучение действует и на EEPROM-память.
Ясно, что металлические пластины над защитными fuse-битами как раз служат защитой от того, чтобы сбросить их отдельно от flash-памяти программ.

Картинка иллюстрирует проблему (и ее решение), с которой я столкнулся. Для того чтобы стереть информацию на транзисторе flash-памяти, сильное УФ-излучение должно достигать его плавающего затвора. А металлические экраны препятствуют этому, эффективно отражая УФ-лучи.
Однако, благодаря разности между коэффициентами преломления света для оксида и кремния, свет, падая под некоторым углом, будет отражаться от его поверхности. Чтобы получше понять этот эффект можете прыгнуть в бассейн и посмотреть на воду почти на уровне глаз. Вода будет обладать очень хорошей отражательной способностью как раз из-за разницы коэффициентов преломления воды и воздуха. Это называется полное внутреннее отражение.
Это отражение как раз можно использовать, чтобы заставить УФ-излучение отражаться от металлической поверхности экрана и падать обратно на плавающий затвор транзистора. Итак, поворачивая PIC-микроконтроллер внутри ПЗУ-стирателя, я могу направить достаточно света для того чтобы он, отразившись в области транзистора flash-памяти, вызвал его стирание. После нескольких попыток я разработал технологию, которая кажется работает вполне неплохо.

Это фото микроконтроллера внутри ПЗУ-стирателя (синее свечение вокруг контроллера обусловлено работой УФ-лампы). Микроконтроллер закреплен под углом в антистатическом материале.
Но все это не может защитить от стирания нужных данных в той части flash-памяти, где хранится программа микроконтроллера. Для того чтобы предотвратить стирание этих данных используется сплошная маска, которая была очень аккуратно вырезана из изоленты и прикреплена к кристаллу с помощью двух пинцетов, микроскопа и недрогнувшей руки ) Изолента эффективно блокирует прохождение ультрафиолета, тем самым защищая закрытую область памяти от стирания, а так же поглощает отраженный от кремниевой подложки ультрафиолет.

Это фото кристалла с прикрепленной маской над областью flash-памяти.
Используя эту технику я наконец смог сбросить защитные fuse-биты без стирания основной программы микроконтроллера. Этим же способом можно стирать только некоторую часть flash-памяти. Ура!

Замечания

Очевидно, что описанный способ подходит только для тех устройств, которые содержат перепрограммируемые fuse-биты. Если биты защиты программируются лишь однократно (а такое бывает), то такая методика не подходит. В этих устройствах просто пережигаются тонкие проводники на кристалле. Однако мой коллега сказал, что и на этот случай разработаны свои методы борьбы (я думаю, восстанавливают контакт каким-то схожим микрохирургическим образом). Знаю так же, что эта операция стоит ой как недешево.
Так же хочется заметить, что во всенародно любимых микроконтроллерах AVR fuse-биты имеют похожую структуру (точно так же перепрограммируются), что позволяет надеяться, что описанная методика пригодна и для них!

UPD: исправил по возможности огрехи перевода (про ширину запрещенной зоны, магнитную ленту и способ заполнения памяти контроллера).

UPD 2: эта же тема, но для микроконтроллеров AVR, затрагивается здесь и здесь. Вот тут можно заказать чтение прошивки и даже купить спец. приборы.

—> YL2GL

Хотя у меня и имеется в наличии профессиональный автоматический мост Е7-8, но уж слишком он громозкий и тяжёлый — 35 кГ!
Поэтому, мне и захотелось попробовать свои силы в изготовлении несложного измерителя LC на микроконтроллере. Была найдена самая простая (но с претензиями на хорошее качество работы) схема на устаревшем, но достаточно доступном микроконтроллере 16F84A, LM311N и LCD индикаторе типа 1601.
Описание измерителя LC и несколько вариантов прошивки можно найти на сайте:
http://www.rlocman.ru/shem/schematics.html?di=33994
Авторский вариант выполнения прибора:

Авторский вариант печатки:

Вариант печатной платы 90х65 мм этого LC измерителя от YL2GL (джампер J3 на плату не устанавливал (в нём нет надобности) — подсветка LCD индикатора 1601, если она у него есть, включена постоянно!):

Рисунок печатной платы в формате *.lay, от YL2GL, можно взять здесь (зеркалить, при печати для ЛУТ, не нужно!):

Вид некоторых деталей , под которые разработана печатная плата (одна кнопка с фиксацией, вторая — без):

Один из вариантов печатной платы LC измерителя выполненный методом ЛУТ:

Четыре версии файла прошивки в *.hex формате для программирования PICа 16F84A помещёны в Каталог файлов сайта (рекомендуют третью версию прошивки, как версию с автокалибровкой прибора при включении):

Программирование PIC 16F84A можно осуществить при помощи простейшего JDM программатора, подключаемого к порту COM1 компьютера (нужно помнить, что JDM программатор хорошо работает с более старыми компьютерами, а вот с новейшими — двухъядерными и всеми видами лаптопов, нотебуков, может не работать, так как у них принудительно ограничен ток на контактах COM порта. Поэтому, ищите компьютер, который будет работать с JDM программатором без проблем, или делайте программатор по другой схеме — с внешним питанием):

и программы ICprog.
Информацию по изготовлению печатной платы для простого JDM программатора можно найти здесь:

С учётом покупки LCD индикатора 1601 на:

у китайцев (очень рекомендую, пересылка — бесплатно!), цена комплектующих на такой прибор получается менее 10. 12 USD.
Хотелось бы отметить по схеме прибора, что нужно обратить внимание на наличие или отсутствие установленного на плате LCD индикатора 1601 резистора 10. 12 Ом в цепи подсветки. При отсутствии, его нужно припаять последовательно с подсветкой, в противном случае можно её просто сжечь при установке джампера J3!
Имеется две схемы LC измерителя, отличающиеся схемой включения обмотки низковольтного реле. Во второй схеме обмотка реле через гасящий резистор подключается на землю, а не на +5В:

Прошивки PIC 16F84A приведены под первый вариант схемы, находящийся в начале статьи. Они могут, конечно, работать и с последним вариантом схемы, но перед показаниями значений ёмкости и индуктивности появится знак «-«.

После сборки LC метра прибор запускается с первого включения. Для однострочного LCD индикатора 1601 необходимо замкнуть джампер J1. Для двухстрочного, типа 1602 — оставить разомкнутым. Подстроечным резистором 10К нужно отрегулировать контрасность LCD дисплея. Чем ближе движок резистора к «земле», тем выше контрасность дисплея.

Читайте также  Домашний кинотеатр и технологии dolby laboratories

Внимание!
В авторской схеме включения микросхемы LM311 нужно замкнуть между собой выводы 5 и 6, что повышает верхний предел измерений ёмкости в 10 раз!
До 0.5 мкФ место 0.047 мкФ!

Кратковременно нажимаем кнопку SW1 — калибровка.
На экране обнулятся показания до C=0.0 pF.

Вставляем в гнёзда эталонную ёмкость и если показания прибора отличаются от необходимого значения, то подбираем ёмкость, включённую последовательно с контактами низковольтного реле, подпаивая к ней конденсаторы небольшой ёмкости, каждый раз повторяя калибровку прибора, пока не добьёмся совпадения показаний прибора с номиналом эталонной ёмкости.
Не забываем, что конденсаторы 1000 пФ и индуктивность 82 мкГ нужны с наименьшими температурными коэффициентами ТКЕ и ТКИ, чтобы уменьшить температурный дрейф показаний прибора!

Для измерений индуктивностей, прибор нужно переключить в режим измерений индуктивностей — L.
Далее, вставляем перемычку в измерительные гнёзда прибора и нажимаем кнопку Калибровка. На экране появляется надпись Calibrating и показания прибора обнуляются L=0.00 mkH.

Вытаскиваем перемычку и подключаем измеряемую индуктивность. Больше ничего нажимать не нужно. Считываем показания прибора.

Ну и напоследок, фотографии прибора с прищепкой для замера параметров SMD деталей:

Надеюсь, что это описание поможет и другим коллегам в повторении измерителя LC.
Успешного изготовления прибора!

Измеритель ESR+LCF v3.

Давно не секрет, что половина отказов в современной бытовой технике связана с электролитическими конденсаторами.
Вздувшиеся конденсаторы видно сразу, но есть и такие, которые выглядят вполне нормально. Все неисправные конденсаторы имеют потерю ёмкости и увеличенное значение ESR, или только увеличенное значение ESR(ёмкость нормальная или выше нормы).
Вычислить их — не так просто, приходится выпаивать их, если параллельно подключено несколько конденсаторов, или параллельно к измеряемому конденсатору подключены какие либо шунтирующие элементы, проверять и исправные запаивать обратно. Многие конденсаторы приклеены к плате, находятся в труднодоступных местах и демонтаж/монтаж их, занимает много времени. Ещё при нагревании, неисправный конденсатор может на время восстанавливать работоспособность.
Поэтому радиомеханики, да и не только они, мечтают иметь прибор для проверки исправности электролитических конденсаторов, внутри-схемно, не выпаивая их.
Хочу огорчить, на все 100% — это не возможно. Не возможно правильно измерять ёмкость и ESR, но проверить исправность электролитического конденсатора без выпаивания, во многих случаях возможно по увеличенному значению ESR.
Неисправные конденсаторы с увеличенным ESR и нормальной ёмкостью встречаются часто, а с нормальным ESR и с потерей ёмкости нет.
Уменьшение ёмкости от номинальной на 20% — не считается дефектом, это нормально даже для новых конденсаторов, поэтому для начальной дефектации электролитического конденсатора достаточно измерить ESR. Показания ёмкости при внутрисхемных измерениях, только для информации и в зависимости от шунтирующих элементов схемы, могут быть значительно завышенными или не измеряться.

Ориентировочная таблица допустимых значений ESR, приведена ниже:

Было разработано несколько версий измерителя ESR.
Измеритель ESR+LCF v3 (третья версия), разрабатывался с учётом максимальных возможностей при внутрисхемных измерениях. Кроме основного измерения ESR (на дисплее Rx>x.xxx), имеется дополнительная функция для внутрисхемного вычисления ESR, названная анализатором — «aESR» (на дисплее a x.xx).
Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR.
При измерении исправного конденсатора “aESR” и “ESR” близки по значению. На дисплее дополнительно выводится значение “aESR”.
Эта функция не имеет прототипа, поэтому на момент подготовки основной документации, был очень не большой опыт в её использовании.

На данный момент, есть множество положительных отзывов от разных людей с рекомендациями по её использованию.
Данный режим не даёт сто процентного результата, но при знании схемотехники и накопленном опыте — эффективность данного режима велика.
Результат внутрисхемного измерения, зависит от шунтирующего влияния элементов схемы.
Полупроводниковые элементы (транзисторы, диоды) не оказывают влияния на результат измерения.
Наибольшее влияние оказывают низкоомные резисторы, индуктивности, а так же другие конденсаторы, подключенные к цепям измеряемого конденсатора.
В местах, где шунтирующее влияние на проверяемый конденсатор не велико, неисправный конденсатор хорошо измеряется в обычном режиме «ESR», а в местах, где шунтирующее влияние велико, неисправный конденсатор (не выпаивая) можно вычислить только с помощью «анализатора — aESR».

Следует помнить, что при внутрисхемных измерениях исправных электролитических конденсаторов, показания «aESR» в большинстве случаев немного выше показаний «ESR». Это нормально, так как многочисленные соединения с измеряемым конденсатором, вносят погрешность.

Наиболее сложными местами для измерения, являются схемы с одновременным шунтированием множеством элементов разных видов.

На схеме выше, неисправный конденсатор С2+1ом, шунтируется C1+L1+C3+R2.

При измерении такого конденсатора, значение ESR в норме, а анализатор показывает ”0,18” – это превышение нормы.

К сожалению, не всегда удаётся внутри-схемно определить исправность электролитического конденсатора.
Например: в материнских платах по питанию процессора не получится, там слишком велико шунтирование. Радиомеханик, как правило, ремонтирует однотипную аппаратуру, и со временем у него накапливается опыт, и он уже точно знает в каком месте и как диагностируются электролитические конденсаторы.

И так, что же может мой измеритель.

Измеритель ESR+LCF v3 — измеряет

ESR электролитических конденсаторов 0 — 50 Ом
Ёмкость электролитических конденсаторов 0,1 — 60 000 мкФ
Ёмкость неэлектролитических конденсаторов 1 пФ — 2,0 мкФ
Индуктивность 0,1 мкГн — 1,0 Гн
Частоту до 50 мГц
Напряжение питания батарея 7 — 9 вольт
Ток потребления 10 — 30 мА

Дополнительные функции:

— В режиме ESR можно измерять постоянные сопротивления 0.001 – 100Ом, измерение сопротивления цепей, имеющих индуктивность или ёмкость, невозможно (т.к. измерение производится в импульсном режиме и измеряемое сопротивление шунтируется). Для корректного измерения таких сопротивлений необходимо нажать кнопку «+» (при этом измерение производится при постоянном токе 10мА). В этом режиме диапазон измеряемых сопротивлений равен 0.001 – 20Ом.
— В режиме ESR при нажатой кнопке «L/C_F/P» включается функция внутрисхемного анализатора ( подробное описание см. далее).
— В режиме частотомера при нажатой кнопке «Lx/Cx_Px» включается функция «счетчик импульсов» (непрерывный счёт импульсов поступающих на вход “Fx“). Обнуление счетчика производится кнопкой «+».
— Индикация разряда батареи.
— Автоматическое отключение — около 4х минут (в режиме ESR-2мин.). По истечении времени простоя, загорается надпись «StBy» и в течении 10 сек, можно нажать любую кнопку и продолжится работа в том же режиме.

В современной технике электролитические конденсаторы часто шунтируются индуктивностью менее 1 мкГн и керамическими конденсаторами. В обычном режиме здесь, измеритель не способен выявить неисправный электролитический конденсатор без выпаивания. Для этих целей, добавлена функция внутрисхемного анализатора.
Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR(Rx) = aESR(a). На дисплее дополнительно выводится значение aESR (a). Наиболее эффективна данная функция при измерении ёмкостей выше 300мкФ. Для включения этой функции необходимо нажать кнопку «L/C_F/P».

Принципиальная схема.

«Сердцем измерителя является микроконтроллер PIC16F886-I/SS. В этом измерителе также, без изменения прошивки, могут работать и микроконтроллеры PIC16F876, PIC16F877.

Конструкция и детали.

ЖК — индикатор на основе контроллера HD44780, 2 строки по 16 знаков.
Контроллер – PIC16F886-I/SS.
Транзисторы BC807 — любые P-N-P, близкие по параметрам.
ОУ TL082 – любой этой серии (TL082CP, AC и др.). Возможно применение ОУ MC34072. Применение других ОУ (с другим быстродействием) не рекомендуется.
Полевой транзистор P45N02 – 06N03, P3055LD и др., подходит практически любой из материнской платы компьютера.
Дроссель L101 – 100мкГн +-5%. Можно изготовить самому или применить готовый. Диаметр провода намотки должен быть не менее 0.2мм.
С101 — 430–650пФ с низким ТКЕ, К31-11-2-Г — можно найти в КОС отечественных телевизоров 4-5 поколения ( КВП контура ).
С102, С104 4–10мкФ SMD — можно найти в любой старой компьютерной материнской плате Пентиум-3 возле процессора, а также в боксовом процессоре Пентиум-2.
BF998 — можно найти в СКВ, телевизоров и видеомагнитофонов ГРЮНДИК.
SW1 (размер7*7mm)- обратите внимание на распиновку, встречаются двух типов. Разводка печатной платы соответствует рис 2.

Печатная плата выполнена из одностороннего стеклотекстолита.

Одновременно печатная плата служит основанием для корпуса. По периметру платы припаяны полоски стеклотекстолита шириной 21мм.

Крышки сделаны из чёрной пластмассы.

Сверху расположены кнопки управления, а спереди три гнезда типа «ТЮЛЬПАН», для съёмного щупа. Для режима “R/ESR” – гнездо более высокого качества.

Конструкция щупа:

В качестве щупа, использован металлический штекер типа « тюльпан». К центральному выводу припаяна игла.

Из доступного материала для изготовления иглы можно использовать латунный стержень, диаметром 3мм. Через некоторое время, игла окисляется и для восстановления надёжного контакта, достаточно протереть кончик, мелкой наждачной бумагой.

Ниже в архиве есть все необходимые файлы и материалы для сборки и настройки данного измерителя.

Удачи всем и всего наилучшего!

Архив Измеритель ESR+LCF v3.