Источник питания для лдс

Источник питания для ЛДС

Основа светильника, схема которого показана на рисунке — блокинг-генератор на транзисторе VT3. Резистор R7 ограничивает ток базы транзистора. Диод VD1 защищает устройство от подключения к источнику питания (аккумуляторной батарее) в неправильной полярности. Источниками освещения служат две соединенные последовательно лампы дневного света (ЛДС) EL1 и EL2 мощностью по 6 Вт от китайского фонаря «ROBO». Светильник проверен и с одиночными ЛДС мощностью 6 и 20 Вт. По соотношению яркости и потребляемого тока выбор был сделан в пользу двух шестиваттных. Индикатор разрядки батареи не обязателен (все входящие в него элементы можно на плату не устанавливать), но он очень полезен особенно при использовании аккумуляторной батареи сравнительно небольшой емкости (например, мотоциклетной).

Индикатор состоит из свето-диода HL1, транзисторов VT1, VT2, резисторов R1-R5, конденсатора С1 и представляет собой триггер Шмитта. Чтобы достичь достаточно малой ширины петли гистерезиса триггера, номиналы резисторов R1 и R3 пришлось увеличить, а резистора положительной обратной связи R5 уменьшить. Резистор R4 ограничивает ток через светодиод HL1. Конденсатор С1 — помехооодавляющий.

Пока аккумуляторная батарея заряжена в достаточной степени, транзистор VT1 открыт, так как на его базе напряжение больше порога открывания. Транзистор VT2 закрыт — его участок база-эмиттер зашунтирован открытым транзистором VT1. Светодиод HL1 погашен. По мере разрядки батареи напряжение на базе транзистора VT1 снижается, транзистор VT1 начнет закрываться. За счет положительной обратной связи процесс протекает лавинообразно. В результате транзистор VT1 закрывается полностью, VT2 открывается, светодиод HL1 зажигается. В дежурном режиме индикатор потребляет не более 1 мА, а после срабатывания — приблизительно 5 мА.

В устройстве использованы постоянные резисторы МЛТ указанной на схеме мощности. Подстроечный резистор R2 — многооборотный СП5-3. Конденсатор С2 — К73-9, в качестве С1 подойдет любой малогабаритный. Транзисторы VT1, VT2 — серий КТ315, КТ3102 с любыми буквенными индексами. Диод VD1 должен быть рассчитан на ток, не меньший потребляемого светильником от батареи, а он, в свою очередь, зависит от мощности установленных ЛДС. При одной шестиваттной лампе здесь можно применить диод из серии КД226. Светодиод HL1 — любого цвета свечения, но лучше красного, наиболее подходящего для сигнализации о ситуации, требующей вмешательства. Из нескольких транзисторов серий КТ815, КТ817, КТ819, опробованных в качестве VT3, указанный на схеме КТ819Г обеспечил надежное включение ЛДС. Кроме того, у него достаточно большой запас по предельным току и напряжению. Последний особенно необходим при случайном отключении нагрузки от работающего генератора. Например, транзистор КТ815Б с максимальным напряжением коллектор- эмиттер 25 В исправно работал, пока не оборвался один из проводов, соединяющих ЛДС с обмоткой III трансформатора Т1. Транзистор был немедленно пробит.

Магнитопровод трансформатора Т1 — Б22 из феррита 2000НМ1. Обмотки I (9 витков провода ПЭВ-2 0,45) и И (10 витков провода ПЭВ-2 0,3) начинают наматывать одновременно двумя проводами виток к витку. После девятого конец обмотки I закрепляют в прорези каркаса, затем доматывают последний виток обмотки II. Каркас с готовыми обмотками I и II тщательно пропитывают парафином и оборачивают тонкой бумагой в два слоя, проглаживая каждый жалом разогретого паяльника. В результате бумага впитывает излишки парафина и плотно прилегает к проводам обмоток, фиксируя их и обеспечивая необходимую изоляцию. Далее наматывают высоковольтную обмотку III. Для одной ЛДС она должна содержать 180, для двух, соединенных последовательно, — 240. 250 витков провода ПЭВ-2 0,16. Витки укладывают внавал, стараясь распределить их как можно равномернее. Нужно следить, чтобы те из них, которые находятся в начале и в конце обмотки, не касались друг друга. Например, очень нежелательно помещать оба вывода обмотки III в одну и ту же прорезь каркаса. Катушку еще раз пропитывают парафином и вставляют в магнитопровод, который собирают с зазором 0,2 мм между «чашками», используя для этого прокладку из бумаги или тонкой пластмассы. Трансформатор Т1 крепят к плате винтом из немагнитного материала, пропущенным через центральное отверстие магнитопровода. Такой способ, в отличие от сборки на клею, обеспечивает надежную фиксацию трансформатора на плате, а при необходимости — быстрый демонтаж.

Светильник собирают на деревянном (фанерном) основании размерами 280x75x6 мм. В верхней части основания параллельно друг другу располагают две ЛДС, в нижней — печатную плату, накрытую кожухом из алюминиевого листа. В кожухе предусматривают отверстия для светодиода HL1 и соединительных проводов, в том числе двух многожильных с зажимами «крокодил» для подключения к аккумуляторной батарее. Транзистор VT3 крепят к кожуху, используя последний в качестве теплоотвода. ЛДС устанавливают на два приклеенных к основанию деревянных бруска сечением 15×10 мм. Один из них располагают у верхней кромки основания, другой — ниже, на расстоянии, равном длине ЛДС без выводов (215 мм). Под выводами ламп на брусках устанавливают контакты из жести. Контакт на верхнем бруске служит одновременно перемычкой между двумя ЛДС, а к двум на нижнем подключают выводы обмотки III трансформатора Т1. ЛДС крепят четырьмя ввинченными между их выводами шурупами. В контактах необходимо заранее просверлить отверстия под шурупы, а под головки последних обязательно подложить шайбы. Такой способ крепления обеспечивает надежное соединение ЛДС с трансформатором и позволяет заменять лампы, не прибегая к паяльнику. Для лучшей светоотдачи основание под лампами оклеивают светоотражающей пленкой или фольгой.

Перед первым включением светильника обязательно проверяют качество соединения ЛДС с обмоткой III трансформатора Т1. Плохой контакт может привести к пробою не только транзистора VT3, но и трансформатора. Если после подачи напряжения питания отсутствует даже слабое свечение ЛДС, следует поменять местами выводы одной из обмоток I или II трансформатора Т1. Затем подбирают резистор R6, добиваясь требуемой яркости света и учитывая, что вместе с ней растет ток, потребляемый от аккумуляторной батареи. Обычно достаточной яркости удается достичь при токе 600. 650 мА. Если яркость необходимо регулировать плавно, резистор R6 можно заменить двумя, соединенными последовательно, — постоянным 680 Ом и переменным 3,3 кОм. При регулировке потребляемый ток будет изменяться приблизительно от 0,2 до 1,4 А.

Чтобы настроить индикатор разрядки батареи, последнюю временно заменяют регулируемым источником постоянного напряжения с максимальным его значением не менее 12В. Если источник маломощный, следует предварительно выключить блокинг-генератор, отпаяв от контактной площадки один из выводов обмотки I трансформатора Т1. Вращая движок подстроечного резистора R2, добиваются, чтобы светодиод HL1 зажигался при уменьшении напряжения источника с 12 до 10,8. 11 В. Порог срабатывания индикатора выбирают несколько большим минимального напряжения, до которого можно разряжать аккумуляторную батарею (10,5 В), с тем, чтобы после зажигания светодиода светильник не требовалось выключать немедленно. Подобный светильник с одной ЛДС мощностью 6. 10 Вт можно установить и в салоне автомобиля вместо стандартного плафона с лампами накаливания. В этом случае необходимость в индикаторе разряда аккумуляторной батареи отпадает, но питать генератор следует через помехоподавляющий фильтр.

ПИТАНИЕ ЛДС

ПИТАНИЕ ЛДС

Лампы дневного света всё ещё находят применение в осветительных приборах и данный преобразователь как раз и служит для питания экономичных ЛДС цокольного типа. Лампы дневного света на настоящее время признаны наиболее эффективным источником света. Обыкновенная лампа накаливания имеет эффективность около 10 Люмен/Ватт, в то время как эффективность ЛДС достигает 100 Люмен/Ватт. ЛДС потребляет почти в 7 раз меньше электроэнергии, чем обыкновенная лампа накаливания, и к тому-же имеет в 12 раз большее время работы. Конечно с каждым годом всё большее распространение получают сверхъяркие светодиоды , даже под ЛДС их уже стали делать,

Но их окончательное превосходство ещё будет не скоро. Тем более, что за хорошие яркие светодиоды надо платить денюжку, а всяких ламп дневного света у многих, и у меня в том числе, валяется достаточно. Собрав эту схему мы получим автономное, яркое и экономичное освещение дома, гаража, салона автомобиля или походного фонарика.

Тех, кто ожидал увидеть в этой схеме микроконтроллеры с фазоимпульсным управлением и ШИМ-модуляцией, вынужден огорчить — это обычный вульгарный блокинг-генератор. Почему? Потому, что повторялся сотни раз разными людьми и отлично работает. И нечего всё усложнять. Помните, краткость — сестра таланта. Схема преобразователя для ЛДС не требует дорогостоящих деталей, к тому-же позволяет использовать неисправные лампы. На транзисторе Т1 КТ817, собран блокинг-генератор. Резистор на 3 кОм задает ток и режим работы транзистора. В результате работы генератора на верхней обмотке появляется импульсное высокое напряжение, поступающее на ЛДС.

Базовая обмотка трансформатора, намотанного на ферритовом сердечнике содержит 20 витков ПЭВ-2 0,5мм, коллекторная 40 витков того-же провода, а высоковольтная около 500.

Радиатор нужен, т.к. продолжительная работа вызывает ощутимый нагрев транзистора. В качестве него используем кусок алюминия со спичечный коробок. Нити накала лампы шунтированы перемычкой и выполняют функцию электрода, на который подают напряжение, необходимое для включения лампы. Происходит холодное зажигание с помощью резкого повышения напряжения на ЛДС при пуске, без предварительного подогрева электродов ЛДС.


Другой вариант преобразователя для ЛДС немного сложнее, но и стабильнее. Схема срисована с китайского походного фонаря.

Питается от 6 — 12В и потребляет ток до 0.5А. Транзистор лучше заменить на КТ805 — для надёжности. Настройка заключается в подборе тока и частоты, для получения максимальной яркости свечения ЛДС. Внимание, на выходе схемы высокое напряжение и оно может серьезно ударить! Будьте внимательны при сборке схемы. Представляется интересным использование в качестве трансформатора строчный трансформатор от телевизоров ТВС, как это реализовано тут .

Ценные рекомендации Александра: Из недостатков вышеуказанных схем стоит отметить отсутствие плавного прогрева нитей лампы, что уменьшит срок службы, хоть и могут применяться в таких схемах лампы с перегоревшей нитью но света от них значительно меньше чем от новой лампы, в таких схемах довольно быстро выгорает люминофор, низкое КПД, много энергии уходит просто в нагрев транзистора. При перегорании ЛДС или просто если при работе преобразователя отошел контакт лампы произойдёт работа на холостом ходу, без нагрузки, что может привести к перегреву транзистора и выходу его из строя, либо что еще хуже — к пробою высоковольтной обмотки трансформатора. Напряжение на высоковольтной обмотке на холостом ходу может достигать 1200 В, под нагрузкой примерно 80-120 В, зависит от мощности самой ЛДС. Для подобия плавного запуска ЛДС, ее надо подключить не сразу к высоковольтной обмотке,а через конденсатор (его емкость подбирают экспериментально). Конденсатор ставится только на провод фазы, а не на нулевой! Не перепутайте! После этого ЛДС начнет запускаться более плавно! При этом у нее несколько упадет яркость свечения. Но это все поправимо подбором резистора.

Читайте также  Сетевой выпрямитель - стабилизатор напряжения и тока

Что можно предпринять для предотвращения выхода из строя генератора?
1 — Сделать обратную связь.
2 — Самое простое: подключить параллельно самой ЛДС неоновую лампу или стартер через резистор на 1 мОм, (можно чуть меньше). На работе самой ЛДС неонка не отразиться, зато при внештатных ситуациях она вполне может сыграть роль нагрузки и тем самым спасти сам блокинг-генератор.

Можно применить в данных схемах готовый трансформатор. В 1-м варианте можно применить трансформатор из дежурной марки EEL-19 (или подобный) из компьютерного БП. Возможно так-же применение трансформатора ТВС от черно-белых ламповых телевизоров. Для второй схемы вполне подходят сетевые трансформаторы от лазерных принтеров и сетевые трансформаторы от ЖК мониторов. В этих случаях трансформаторы можно применять как есть без перемотки.

Расчёт тока потребления преобразователя можно вести по такой приближённой методике: Например лампе ЛБ-20 нужно 1,66 А, следовательно — 20 Ватт/12 в=1,66 А. Умножаем на кпд 90% — получится должен потреблять около 1.8 А.

Ещё одно: первый вариант схемы блокинг- генератора допускает применение радиатора меньшего размера — будет меньший нагрев транзистора, чем второй вариант схемы питания ЛДС. В первом варианте желательно поставить конденсатор на 0,01 мкф — 0,022 мкф, меду базой и эмиттером, тем самым уменьшив нагрев транзистора. Самая оптимальная мощность для таких схем 9-11 W! Но не более 20W. Нежелательно применять резисторы менее 0.5-1W. Применять в схеме КТ817 не рекомендую, так как он не предназначен для таких рабочих токов, соответственно в этой схеме с невысоким КПД, он еще больше упадет. Диод на входе я бы советовал поставить обязательно, так как даже при случайном кратковременном перепутывании полярности питания, произойдёт сгорание транзистора!

KOMITART — развлекательно-познавательный портал

Разделы сайта

  • » На Главную
  • » Радиолюбителю
  • » APEX AUDIO
  • » Блоки питания
  • » Гитарные примочки
  • » Своими руками
  • » Автомобилисту
  • » Service-Manual
  • » PREAMPLIFIERS
  • » Бесплатные программы
  • » Компьютер
  • » Книги
  • » Женские штучки
  • Готовим вкусно и быстро
  • » Игры на сайте
  • » Юмор
  • » Разное — интересное

DirectAdvert NEWS

GNEZDO NEWS

Друзья сайта

Статистика

Как запитать ЛДС от автомобильного аккумулятора

Питание ламп дневного света (ЛДС) от аккумулятора 12 вольт.

Преобразователь позволяет запитывать ЛДС мощностью до 20 Вт от автомобильного аккумулятора с длительностью свечения порядка 60 часов. Ток потребления устройства приблизительно 0,75 ампер. Принципиальная схема преобразователя представлена на рисунке ниже.

Трансформатор ТР1 реализован на ферритовом Ш-образном сердечнике Ш8х8. Намотка провода выполняется виток к витку с обмоткой каждого слоя провода конденсаторной бумагой (вместо бумаги подойдет тонкая фторопластовая лента). Качеству намотки трансформатора уделите особое внимание, мотайте аккуратно, а в конце процедуры во избежание пробоя пропитайте его эпоксидной смолой (смолу перед пропиткой разводят спиртом).

Намоточные данные трансформатора ТР1:

● I обмотка — 30 витков провода ПЭВ-2 диаметром 0,5мм;
● II обмотка — 12 витков провода ПЭВ-2 диаметром 0,3мм;
● III обмотка — 500 витков провода ПЭВ-2 диаметром 0,15мм.

На схеме точками обозначены начала каждой из обмоток. Обратите внимание на последовательность намотки:

● первой наматывается третья обмотка, обматывается конденсаторной бумагой;
● к началу первой обмотки присоединяется провод для второй обмотки и мотается она в противоположном направлении, далее слой бумаги или фторопластовой ленты;
● наматывается третья обмотка с последующей пропиткой.

Для исключения теплового пробоя транзистора, его следует установить на радиатор, который можно изготовить самостоятельно из листового алюминия. Площадь пластины радиатора должна быть не меньше 20 см2. Параметры транзистора КТ863 смотрите на рисунке ниже.

Кнопка SW1, замыкающая цепь конденсатора С4, необходима для старта ЛДС, но, как правило, после подачи питания на преобразователь ЛДС зажигается сразу.

После сборки преобразователя перед включением еще раз убедитесь в отсутствии ошибок монтажа, подключите лампу и подайте напряжение на устройство. Лампа должна загореться. Если лампа не зажглась, и кнопка SW1 не помогает — проверьте исправность транзистора, если транзистор исправен — перебросьте местами выводы первой обмотки, генератор должен заработать.

Любители всякого рода “мулек”, “фенек”, и прочих автомобильных прибамбасов, наряду с преукрашательством салона своего авто добираются и до днища кузова, им нравится когда, проезжая по вечернему городу, их боливар светится как новогодняя елка.
Конечно, в наше время в магазинах можно купить готовые всякого рода автомобильные “примочки”, в том числе и подсветку днища кузова, но цена порой не всех устраивает. Поэтому и приходится народным умельцам прикладывать руки, чтобы изготовить подобное “светило” своими руками.

Ниже представляем вашему вниманию простую, не раз повторяемую схему преобразователя, способную зажигать лампы дневного света мощностью от 20 до 40 ватт при питании устройства от автомобильного аккумулятора напряжением 12 вольт.

Стоит отметить, что назначение этого преобразователя для ламп ЛДС не ограничивается лишь подсветкой днища кузова. Его можно применить как резервное устройство освещения при отключении основного энергоснабжения (аварийное освещение), изготовить переносной низковольтный светильник для применения во всякого рода походах (поездки в лес или на рыбалку, отдых на природе с ночевкой и т.д. ). В общем вещь полезная, осталось только его изваять, благо схема устройства довольно примитивна и детали для нее не дефицитны. Единственное на что нужно обратить внимание, так это на качество намотки трансформатора, который, в отличие от предыдущего варианта описанного выше, мотается на ферритовом стержне диаметром 8 мм, а длина составляет порядка 5 – 8 см.

И так, как намотать трансформатор:

● Берем ферритовый стержень нужного нам размера, наматываем на него слой тонкой, хорошо липнущей (лучше импортной) изоленты;
● Мотаем высоковольтную обмотку III следующим образом: берем катушку провода диаметром 0,2 – 0,3мм и к концу припаиваем кусочек многожилки, который будет служить отводом, прикладываем к одному краю обмотанного слоем изоленты ферриту, и мотаем плотно виток к витку один слой обмотки до заполнения длины феррита. На этот слой обмотки накладываем один слой изоленты. Продолжаем делать намотку в обратную сторону также на всю длину ферритового стержня. Второй слой обмотки также покрываем слоем изоленты. Таким образом наматываем всю высоковольтную обмотку. Для ламп от 8 до 16 ватт обмотка содержит 600…700 витков, для ламп от 20 до 40 ватт – намотайте на 100 витков больше.

● Осталось намотать первичную и вторичную обмотки. Они мотаются поочередно в одном направлении как показано на схеме (точками обозначены начала обмоток), и не забудьте между этими обмотками проложить слой изоляционной ленты. Диаметр провода, допустимый для намотки первичной и вторичной обмоток — 0,5…1,2мм (лучше выбрать что то среднее). Первичная обмотка содержит 25 витков, вторичная — 45 витков.

В процессе сборки устройства не перепутайте где какая обмотка, это чревато тем, что ЛДС у вас гореть не будет (в лучшем случае), или “крякнет” транзистор преобразователя (в худшем).

Что еще можно сказать по сборке…

Диод КД226 можно заменить любым другим “токистым” (ампера на 3) диодом, на напряжение не менее 50 вольт, или каким импортным с похожими параметрами (например FR607 — ток 6А, 1000 вольт). Ниже для справки смотрите характеристики КД226 и подбирайте подходящий, если не имеете указанного на схеме.

Резисторы R1 и R2 лучше поставить не пол ваттные, как на схеме, а одноваттные, особенно R2, потому как в процессе работы они имеют свойство греться. Подбором этих резисторов задается необходимый ток потребления преобразователя (0,6…0,8А), от которого зависит то, насколько ярко будет светиться лампа. Увеличивать ток потребления не стоит, разница в яркости при дальнейшем увеличении тока будет не большая, а транзистор при этом будет калиться “мама не горюй…” . Если при настройке ток уже достаточно высок, а ЛДС все никак не хочет светить нормально, лучше не гнаться за током потребления, а попробовать увеличить или уменьшить емкость конденсатора С1, его емкость можно порулить в пределах 0,05…0,5 мкф.

Сопротивление R1 подбирается в зависимости от мощности лампы , которую планируете использовать, его номинал может лежать в пределах 430 Ом … 2кОм . Например при использовании ЛДС мощностью 8 ватт R1 будет порядка 2кОм, а при ЛДС на 30…40Вт — в пределах 360…820 Ом.

Транзистор КТ805АМ устанавливается на радиатор, можно из листового алюминия, с площадью охлаждения порядка 100 см2. А лучше запустите готовое устройство в работу на часок, а потом проконтролируйте на сколько сильно транзистор нагрелся. Слегка тепленький – значит нормально, жить будет. Да, и от транзистора зависит качество свечения лампы, с одним ЛДС может загораться не уверенно, а с другим таким же – загорается сразу, хотя оба транзистора исправны. Ниже в таблице приведены параметры транзисторов КТ805. Возможна замена на КТ819Г.

Читайте также  Пиропатрон - элемент активной охраны

Для увеличения таблицы кликните левой клавишей мыши на изображении.

Как проверить работоспособность преобразователя:

● Обязательно подсоедините лампу (не подавайте питание на преобразователь без подключенной лампы, а также не отсоединяйте лампу во время работы преобразователя);

● Подайте питание на преобразователь. ЛДС сначала зажглась тускло, а через секунду горит ярко — все значит хорошо.

● Если ваше светило загорелось тускловато, а по одному краю ЛДС наблюдается свечение, попробуйте увеличить Iпотр, если ток потребления в норме — меняйте VT1 на другой.

● Не делайте слишком большую длину проводов, соединяющих лампу с преобразователем, и не берите для этих целей слишком тонкий провод, от этого зависит, насколько хорошо ЛДС будет зажигаться, и зажгется ли она вообще.

● И еще один способ проверить преобразователь: аккуратно сдвиньте провода от высоковольтной обмотки до зазора примерно в 5 … 10 мм. Если в этом зазоре проскакивает тянущаяся искра, значит устройство работает. Если нет – укорачивайте провода, не хватает количества витков высоковольтной обмотки, или меняйте VT1.

Внимание. Будьте осторожны при наладке преобразователя, на 3-й обмотке трансформатора при поданном на схему питании присутствует высокое напряжение, убить, конечно, не убьет, но “шибануть” может – мало не покажется. Соблюдайте меры электробезопасности.

Вообще такие лампы выпускаются не только белого свечения, они бывают и розового цвета, и голубого, и зеленого. Ламп стандарта Т4 и мощностью ватт в 20 вполне хватает для этих целей. Например, можно применить F20W T4 BLUE, эта лампа голубого свечения. Размеры этой лампы: длина – 57см, диаметр – 1см.

Прежде чем крепить лампу к днищу кузова, к ее контактам присоединяются провода, и она помещается в прозрачную ПВХ трубку. Длина трубки выбирается сантиметров на 8…10 длиннее лампы, чтобы была возможность заполнить концы трубки жидкими гвоздями, и за оставшиеся свободные участки с помощью саморезов прикрепить светило к кузову или раме.

PS. Номиналы деталей (R1, R2, C1) лучше подбирать под каждую конкретную лампу. Если настройка преобразователя осуществляется в домашних условиях при работе от блока питания, добейтесь уверенного зажигания ЛДС при напряжении 11 вольт. При настройке на Uпит = 13В , и последующей установке устройства на автомобиль, лампы могут плохо светиться даже при использовании проводов сечением 0,75мм.

3 схемы подключения люминесцентной лампы без дросселя и стартера.

Лампы дневного света несмотря на всю их «живучесть», по сравнению с обычными лампочками накаливания, в один прекрасный момент также выходят из строя и перестают светить.

Конечно, срок их службы не сравнить со светодиодными моделями, но как оказывается, даже при серьезной поломке, все эти ЛБ или ЛД светильники опять можно восстановить без каких либо серьезных капитальных затрат.

В первую очередь вам нужно выяснить, что же именно сгорело:

    сама люминесцентная лампочка
    или дроссель

Как это сделать и быстро проверить все эти элементы, читайте в отдельной статье.

Если сгорела сама лампочка и вам надоел такой свет, то вы легко можете перейти на светодиодное освещение, без какой-либо серьезной модернизации светильника. Причем делается это несколькими способами.

Одна из наиболее серьезных проблем — это вышедший из строя дроссель.

Большинство при этом считают такой люминесцентный светильник полностью негодным и выбрасывают его, либо перемещают в кладовку на запчасти для остальных.

Сразу оговоримся, что запустить ЛБ светильник без дросселя, просто выкинув его из схемы и не поставив туда чего-нибудь другого, у вас не получится. В статье пойдет речь об альтернативных вариантах, когда этот самый дроссель можно заменить другим элементом, имеющимся у вас под рукой дома.

Что советуют делать в таких случаях самоделкины и радиолюбители? Они рекомендуют применить, так называемую бездроссельную схему включения люминесцентных ламп.

В ней используется диодный мост, конденсаторы, балластное сопротивление. Несмотря на некоторые преимущества (возможность запуска сгоревших ламп дневного света), все эти схемы для рядового пользователя темный лес. Ему гораздо проще купить новый светильник, чем паять и собирать всю эту конструкцию.

Поэтому сперва рассмотрим другой популярный способ запуска ЛБ или ЛД ламп со сгоревшим дросселем, который будет доступен каждому. Что вам для этого потребуется?

Вам понадобится старая сгоревшая энергосберегающая лампочка с обычным цоколем Е27.

Конечно, схему с ее использованием нельзя считать абсолютно бездроссельной, так как на плате энергосберегайки дроссель все таки присутствует. Просто он по габаритам гораздо меньше, так как экономка работает на частотах до нескольких десятков килогерц.

Этот минидроссель ограничивает ток через лампу и дает высоковольтный импульс для зажигания. Фактически это ЭПРА в миниатюрном варианте.

Раньше была большая рекламная компания по замене ламп накаливания на энергосберегающие. Сегодня уже их активно меняют на светодиодные.

Выкидывать в мусорку экономки не рекомендуется, впрочем как и отдельные модели светодиодных.

Поэтому некоторые сознательные и бережливые граждане, которые еще не сдали их в специальные пункты приема, хранят подобные изделия у себя на полках в шкафчиках.

Меняют их не зря. Эти лампочки в рабочем состоянии очень вредны для здоровья, как в плане пульсаций света, так и в отношении излучения опасного ультрафиолета.

Хотя ультрафиолет не всегда бывает вреден. И порой приносит нам много пользы.

При этом не забывайте, что теми же самыми негативными факторами, в равной степени обладают и линейные люминесцентные модели. Именно ими активно пугают любителей выращивать растения под светом фитоламп.

Но вернемся к нашим энергосберегайкам. Чаще всего у них перестает работать светящаяся спиральная трубка (пропадает герметичность, разбивается и т.д.).

При этом схема и внутренний блок питания остаются целыми и невредимыми. Их то и можно использовать в нашем деле.

Сперва разбираете лампочку. Для этого по линии разъема, тонкой плоской отверткой вскрываете и разделяете две половинки.

При разделении ни в коем случае не держитесь за стеклянную трубчатую колбу.

Далее вытаскиваете плату. На ней находите места, к которым подключаются проводки от «нитей накала» колбы. Они обычно идут в виде штырьков.

При разборе запомните, какая пара куда подключена. Эти штырьки могут находиться как с одной стороны платы, так и с разных сторон.

Всего у вас должно быть 4 контакта, куда вам и следует подпаять в дальнейшем провода.

Ну и естественно не забываем про питание 220В. Это те самые жилки, которые идут от цоколя.

Все что нужно сделать далее, это припаять по два проводника к каждому контакту на плате (от бывших нитей накала трубок) и вывести их к боковым штырькам лампы дневного света.

То есть, отдельно два провода справа и два провода слева. После чего, остается только подать напряжение 220В на схему энергосберегайки.

Лампочка дневного света будет прекрасно гореть и нормально работать. Причем для запуска вам даже не нужен стартер. Все подключается напрямую.

Если стартер в схеме присутствует, его придется выкинуть или зашунтировать.

Запускается такой светильник моментально, в отличие от долгих морганий и мерцаний привычных ЛБ и ЛД моделей.

Какие есть недостатки у такой схемы подключения? Во-первых, рабочий ток в энергосберегайках при равной мощности, меньше чем у линейных ламп дневного света. Чем это чревато?

А тем, что выбрав экономку равной или меньшей по мощности с ЛБ, ваша плата будет работать с перегрузкой и в один прекрасный момент бабахнет. Чтобы этого не случилось, мощности плат от экономок в идеале должны быть на 20% больше, чем у ламп дневного света.

То есть, для модели ЛДС на 36Вт, берите плату от лапочки на 40Вт и выше. Ну и так далее, в зависимости от пропорций.

Если вы переделываете светильник с одним дросселем на две лампочки, то учитывайте мощности обеих.

Почему еще нужно брать именно с запасом, а не подбирать мощность КЛЛ равную мощности ламп дневного света? Дело в том, что в безымянных и недорогих лампочках КЛЛ, реальная мощность всегда на порядок меньше заявленной.

Поэтому не удивляйтесь, когда подключив к старому советскому светильнику ЛБ-40, плату от китайской экономки на те же самые 40Вт, вы в итоге получите негативный результат. Это не схема не работает — это качество товаров из поднебесной не соответствует «железобетонным» советским гостам.

Если вы все таки намерены собрать более сложную конструкцию, при помощи которой запускаются даже сгоревшие линейные светильники, то давайте рассмотрим и такие случаи.

Самый простейший вариант — это диодный мост с парой конденсаторов и подключенная последовательно в цепь в качестве балласта, лампочка накаливания. Вот схема такой сборки.

Главное преимущество ее в том, что подобным образом можно запустить светильник не только без дросселя, но и перегоревшую лампу, у которой вообще нет целых спиралей на штырьковых контактах.

Для трубок мощностью 18Вт подойдут следующие компоненты:

Источник питания для лдс

Основа светильника, схема которого показана на рисунке — блокинг-генератор на транзисторе VT3. Резистор R7 ограничивает ток базы транзистора. Диод VD1 защищает устройство от подключения к источнику питания (аккумуляторной батарее) в неправильной полярности. Источниками освещения служат две соединенные последовательно лампы дневного света (ЛДС) EL1 и EL2 мощностью по 6 Вт от китайского фонаря «ROBO». Светильник проверен и с одиночными ЛДС мощностью 6 и 20 Вт. По соотношению яркости и потребляемого тока выбор был сделан в пользу двух шестиваттных. Индикатор разрядки батареи не обязателен (все входящие в него элементы можно на плату не устанавливать), но он очень полезен особенно при использовании аккумуляторной батареи сравнительно небольшой емкости (например, мотоциклетной).

Читайте также  Освещение для съёмки видео своими руками

Индикатор состоит из свето-диода HL1, транзисторов VT1, VT2, резисторов R1-R5, конденсатора С1 и представляет собой триггер Шмитта. Чтобы достичь достаточно малой ширины петли гистерезиса триггера, номиналы резисторов R1 и R3 пришлось увеличить, а резистора положительной обратной связи R5 уменьшить. Резистор R4 ограничивает ток через светодиод HL1. Конденсатор С1 — помехооодавляющий.

Пока аккумуляторная батарея заряжена в достаточной степени, транзистор VT1 открыт, так как на его базе напряжение больше порога открывания. Транзистор VT2 закрыт — его участок база-эмиттер зашунтирован открытым транзистором VT1. Светодиод HL1 погашен. По мере разрядки батареи напряжение на базе транзистора VT1 снижается, транзистор VT1 начнет закрываться. За счет положительной обратной связи процесс протекает лавинообразно. В результате транзистор VT1 закрывается полностью, VT2 открывается, светодиод HL1 зажигается. В дежурном режиме индикатор потребляет не более 1 мА, а после срабатывания — приблизительно 5 мА.

В устройстве использованы постоянные резисторы МЛТ указанной на схеме мощности. Подстроечный резистор R2 — многооборотный СП5-3. Конденсатор С2 — К73-9, в качестве С1 подойдет любой малогабаритный. Транзисторы VT1, VT2 — серий КТ315, КТ3102 с любыми буквенными индексами. Диод VD1 должен быть рассчитан на ток, не меньший потребляемого светильником от батареи, а он, в свою очередь, зависит от мощности установленных ЛДС. При одной шестиваттной лампе здесь можно применить диод из серии КД226. Светодиод HL1 — любого цвета свечения, но лучше красного, наиболее подходящего для сигнализации о ситуации, требующей вмешательства. Из нескольких транзисторов серий КТ815, КТ817, КТ819, опробованных в качестве VT3, указанный на схеме КТ819Г обеспечил надежное включение ЛДС. Кроме того, у него достаточно большой запас по предельным току и напряжению. Последний особенно необходим при случайном отключении нагрузки от работающего генератора. Например, транзистор КТ815Б с максимальным напряжением коллектор- эмиттер 25 В исправно работал, пока не оборвался один из проводов, соединяющих ЛДС с обмоткой III трансформатора Т1. Транзистор был немедленно пробит.

Магнитопровод трансформатора Т1 — Б22 из феррита 2000НМ1. Обмотки I (9 витков провода ПЭВ-2 0,45) и И (10 витков провода ПЭВ-2 0,3) начинают наматывать одновременно двумя проводами виток к витку. После девятого конец обмотки I закрепляют в прорези каркаса, затем доматывают последний виток обмотки II. Каркас с готовыми обмотками I и II тщательно пропитывают парафином и оборачивают тонкой бумагой в два слоя, проглаживая каждый жалом разогретого паяльника. В результате бумага впитывает излишки парафина и плотно прилегает к проводам обмоток, фиксируя их и обеспечивая необходимую изоляцию. Дапее наматывают высоковольтную обмотку III. Для одной ЛДС она должна содержать 180, для двух, соединенных последовательно, — 240. 250 витков провода ПЭВ-2 0,16. Витки укладывают внавал, стараясь распределить их как можно равномернее. Нужно следить, чтобы те из них, которые находятся в начале и в конце обмотки, не касались друг друга. Например, очень нежелательно помещать оба вывода обмотки III в одну и ту же прорезь каркаса. Катушку еще раз пропитывают парафином и вставляют в магнитопровод, который собирают с зазором 0,2 мм между «чашками», используя для этого прокладку из бумаги или тонкой пластмассы. Трансформатор Т1 крепят к плате винтом из немагнитного материала, пропущенным через центральное отверстие магнитопровода. Такой способ, в отличие от сборки на клею, обеспечивает надежную фиксацию трансформатора на плате, а при необходимости — быстрый демонтаж.

Светильник собирают на деревянном (фанерном) основании размерами 280x75x6 мм. В верхней части основания параллельно друг другу располагают две ЛДС, в нижней — печатную плату, накрытую кожухом из алюминиевого листа. В кожухе предусматривают отверстия для светодиода HL1 и соединительных проводов, в том числе двух многожильных с зажимами «крокодил» для подключения к аккумуляторной батарее. Транзистор VT3 крепят к кожуху, используя последний в качестве теплоотвода. ЛДС устанавливают на два приклеенных к основанию деревянных бруска сечением 15×10 мм. Один из них располагают у верхней кромки основания, другой — ниже, на расстоянии, равном длине ЛДС без выводов (215 мм). Под выводами ламп на брусках устанавливают контакты из жести. Контакт на верхнем бруске служит одновременно перемычкой между двумя ЛДС, а к двум на нижнем подключают выводы обмотки III трансформатора Т1. ЛДС крепят четырьмя ввинченными между их выводами шурупами. В контактах необходимо заранее просверлить отверстия под шурупы, а под головки последних обязательно подложить шайбы. Такой способ крепления обеспечивает надежное соединение ЛДС с трансформатором и позволяет заменять лампы, не прибегая к паяльнику. Для лучшей светоотдачи основание под лампами оклеивают светоотражающей пленкой или фольгой.

Перед первым включением светильника обязательно проверяют качество соединения ЛДС с обмоткой III трансформатора Т1. Плохой контакт может привести к пробою не только транзистора VT3, но и трансформатора. Если после подачи напряжения питания отсутствует даже слабое свечение ЛДС, следует поменять местами выводы одной из обмоток I или II трансформатора Т1. Затем подбирают резистор R6, добиваясь требуемой яркости света и учитывая, что вместе с ней растет ток, потребляемый от аккумуляторной батареи. Обычно достаточной яркости удается достичь при токе 600. 650 мА. Если яркость необходимо регулировать плавно, резистор R6 можно заменить двумя, соединенными последовательно, — постоянным 680 Ом и переменным 3,3 кОм. При регулировке потребляемый ток будет изменяться приблизительно от 0,2 до 1,4 А.
Чтобы настроить индикатор разрядки батареи, последнюю временно заменяют регулируемым источником постоянного напряжения с максимальным его значением не менее 12В. Если источник маломощный, следует предварительно выключить блокинг-генератор, отпаяв от контактной площадки один из выводов обмотки I трансформатора Т1. Вращая движок подстроечного резистора R2, добиваются, чтобы светодиод HL1 зажигался при уменьшении напряжения источника с 12 до 10,8. 11 В. Порог срабатывания индикатора выбирают несколько большим минимального напряжения, до которого можно разряжать аккумуляторную батарею (10,5 В), с тем, чтобы после зажигания светодиода светильник не требовалось выключать немедленно. Подобный светильник с одной ЛДС мощностью 6. 10 Вт можно установить и в салоне автомобиля вместо стандартного плафона с лампами накаливания. В этом случае необходимость в индикаторе разряда аккумуляторной батареи отпадает, но питать генератор следует через помехоподавляющий фильтр.

Источник питания для лдс

Схема включения люминесцентных ламп гораздо сложнее, нежели у ламп накаливания.
Их зажигание требует присутствия особых пусковых приборов, а от качества исполнения этих приборов зависит срок эксплуатации лампы.

Чтоб понять, как работают системы запуска, нужно до этого ознакомиться с устройством самого осветительного устройства.

Люминесцентная лампа представляет из себя газоразрядный источник света, световой поток которого формируется в главном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора.

При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора. При всем этом происходит преобразование частот невидимого уф-излучения (185 и 253,7 нм) в излучение видимого света.
Ети лампы обладают низким потреблением электроэнергии и пользуются большой популярностью, особенно в производственных помещениях.

Схемы

При подключении люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).

Схема подключения с применением электромагнитный балласта или ЭмПРА (дросель и стартер)



Принцип работы: при подключении электропитания в стартере появляется разряд и
замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы.
Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно для повторного замыкания электродов стартера.
Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.

Основные недостатки

  • В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
  • Долгий пуск не менее 1 до 3 секунд (зависимость от износа лампы)
  • Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
  • Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем детали станков, вращающихся синхронно с частотой сети- кажутся неподвижными.
  • Звук от гудения пластинок дросселя, растущий со временем.

Схема включения с двумя лампами но одним дросселем. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.
Следует заметить что в последовательной схеме включения двох ламп применяются стартеры на 127 Вольт, они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт

Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.

Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства

А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.