Цифровой ампервольтметр с гальванической развязкой каналов измерения

Цифровой ампервольтметр с гальванической развязкой каналов измерения

Применение микроконтроллера с многоканальным АЦП упрощает задачу измерения тока и напряжения для последующего вывода на индикатор лабораторного блока питания.Однако, при несомненном достоинстве таких схем – их простоте и дешевизне – есть у них и существенный недостаток – наличие общего «минуса» у каналов АЦП не позволяет проводить независимые измерения тока и напряжения, т.е. подключаться к источникам питания, не имеющим общей точки для измерения этих величин. Предлагаемый ампервольтметр позволит проводить измерения в устройствах любого схемотехнического исполнения, не требуя при этом дополнительной обмотки (источника питания) для своего подключения.

Технические характеристики ампервольтметра:
Напряжение питания, В 15…20
Потребляемый ток при Uпит=15В, не более, мА, 100
Измеряемое напряжение с разрешением в 1мВ, В 0,000…9,999
Измеряемое напряжение с разрешением в 10мВ, В 10,00…99,99
Измеряемый ток с разрешением в 1мА, А 0,000…9,999
Измеряемый ток с разрешением в 10 мА, А 0,00…99,99
Измеряемый ток с разрешением в 100 мА, А 0,0…999,9
Нелинейность измерения, МЗР ±3

Схема ампервольтметра представлена ниже.

Канал измерения напряжения состоит из элементов DA4, DA6, VT2, VT3, тока – DA1, DA5, DA7. Оба канала используют один и тот же принцип измерения – преобразование напряжения в частоту, и для гальванической развязки управляются МК DD1 через оптопары U1…U5. На стабилизаторах DA4, DA5 собраны источники стабильного тока, которым заряжаются интегрирующие конденсаторы C15, C16. После включения ампервольтметра транзисторы VT3, VT4 закрыты, и уровни напряжений на выв. 2 компараторов DA6 и DA7 получаются заведомо выше, чем уровни на выв. 3, поскольку максимальное значение последних ограничено стабилитронами VD2 и VD3. В этом случае оба компаратора шунтируют светодиоды оптопар U3, U5, их транзисторы закрыты, и на входе ICP МК DD1 присутствует высокий логический уровень. Для измерения напряжения МК DD1 на выв. 8 формирует положительный импульс длительностью около 50 мс. Транзистор оптопары U4 закрывается, а транзистор VT3 открывается, разряжая ёмкость C15. Компаратор DA6 перестаёт шунтировать светодиод U3 и на входе ICP DD1 устанавливается низкий логический уровень. По завершению импульса разряда на конденсаторе C15 начинает линейно нарастать напряжение, которое компаратор DA6 сравнивает с измеряемым напряжением на выв.3. Одновременно с этим МК запускает таймер T1 в режиме «захват». Как только напряжение на выв. 2 DA6 станет больше, чем на выв. 3, на выходе DA6 установится низкий уровень, что приведёт к закрытию транзистора оптопары U3 и установлению на выв. ICP DD1 высокого логического уровня. Нарастающий фронт на выв. ICP активирует подпрограмму прерывания по событию «захват». Подпрограмма выводит на индикатор HG1 насчитанное счетчиком Т1 значение в регистре захвата ICR1, которое пропорционально измеряемому напряжению. Элементы R4, R15, VT2 образуют делитель напряжения, который включается микроконтроллером DD1 в том случае, если измеряемое значение превышает 9,999 В.

Измерение тока происходит аналогичным образом, но уже с формирования положительного импульса для транзистора VT4. Вместо делителя напряжения добавлен усилитель постоянного тока на ОУ DA1. Усилитель необходим для работы со стандартными шунтами на 75 мВ, или шунтами, имеющими низкое сопротивление, падение напряжения на которых не превышает 100-200 мВ.

В том случае, если измеряемые значения превышают допустимый диапазон, то на индикатор вместо символа «=» выводится символ «>».

Питание и гальваническую развязку измерительных каналов обеспечивает ШИМ-контроллер DA3, включенный по схеме прямоходового преобразователя. Незначительные токи нагрузки по цепям +15V1, +15V2, -15V2 позволили отказаться от накопительных дросселей и дополнительных диодов во вторичных цепях трансформатора Т1. Частота преобразования составляет 50 кГц.

Перемычками JP1…JP3 выбирается диапазон измеряемого тока. При закороченной перемычке JP1 диапазон составляет 0,000 – 9,999 А; JP2 0,00 – 99,99 А; JP3 0,0 – 999,9 А. Иными словами, перемычки определяют положение децимальной точки в каждом диапазоне при выводе измеренного значения на индикатор.

Чертежи и фотографии печатной платы:

Управляющая программа написана на ассемблере, ниже показана настройка фьюз-битов.

После сборки ампервольтметра следует проверить цепи питания +15V1, +15V2, -15V2, уровень напряжения которых должен быть в диапазоне 14,2…15,5 В. При необходимости напряжение можно подстроить путём подбора стабилитрона VD4, или же, если его уровень меньше 14 В, – добавлением ещё одного диода последовательно с VD5.

При включении ампервольтметра на индикатор в течение примерно 2с выводятся значения корректирующих констант для тока и напряжения. Настройка контрастности индикатора HG1 осуществляется подстройкой резистора R23.

Следующий шаг – регулировка тока заряда интегрирующих конденсаторов C15, C16 и вычисление корректирующих констант обоих каналов. Для этого вывод резистора R9, соединённый с выв. 6 ОУ DA1, временно выпаивается из платы и соединяется со входом «+Uизм». Также соединяются вместе входы «-Uизм» и «-Iизм». От внешнего источника на вход «+Uизм» и «-Uизм» подаётся напряжение в диапазоне 9,700…9,900 В, контролируемое эталонным вольтметром. Подстраивая переменные резисторы R10 и R11, необходимо добиться идентичных показаний между эталонным вольтметром и обоими каналами ампервольметра. Далее вычисляются константы для компенсации времени переключения компараторов DA6, DA7 и оптопар U3, U5. От внешнего источника напряжение через делитель, состоящий из постоянного резистора 3 кОм и переменного (или подстроечного) 100 Ом, подаётся на вход «+Uизм». Переменным резистором устанавливается нулевое значение напряжения. Затем, плавно увеличивая напряжение переменным резистором, необходимо добиться индикации тока или напряжения, отличного от нуля. Из-за разброса параметров элементов значения могут отличаться друг от друга, и поэтому появляются на индикаторе не одновременно. Важно зафиксировать самое первое ненулевое значение для каждого канала. Получившиеся числа и есть константы, которые необходимо перевести в шестнадцатеричную форму и записать в строки 166 и 168 исходного файла AVO_WH.ASM для напряжения и тока соответственно.

После внесённых изменений исходный файл компилируется, после чего МК заново программируется. Теперь, после записи констант, необходимо завершить настройку каналов измерения – снова подать напряжение 9,700…9,900 В на вход «+Uизм» и переменными резисторами R10 и R11 добиться идентичных показаний между эталонным вольтметром и обоими каналами ампервольметра. Настройка канала вольтметра на этом завершена, остаётся отрегулировать усилитель DA1 канала измерения тока. Для этого вывод резистора R9 впаивается обратно в плату, а входы «+Iизм» и «-Iизм» закорачиваются. Подстраивая резистор R7 и контролируя напряжение внешним вольтметром на выводах 3 и 4 компаратора DA7, добиваются значения, максимально близкого к 0 В. После этого остаётся только настроить коэффициент усиления ОУ DA1, который зависит от сопротивления применяемого шунта. Допустим, имеется шунт из 6 параллельно соединённых резисторов по 0,1 Ом. При токе в 5А на нём будет падать около 83,3 мВ. Измеритель тока должен отображать 5,000А, значит устанавливается перемычка JP1. Далее рассчитывается коэффициент усиления: 5А/0,0833В=60,24. Для резистора R5=110 кОм и Ku=60 получаем сумму R2 и R3:R5/(Ku-1)=110/59=1,864 кОм. Поскольку сопротивление шунта из-за погрешности резисторов будет отличаться от расчётного, необходимо предусмотреть запас по регулировке Ku, к примеру, взять R2=1,6 кОм и R3=470 Ом.

Для трансформатора Т1 использован магнитопровод Ш 4х5, подобные трансформаторы используются в компьютерных блоках питания для управления силовыми ключами, а также для дежурного источника питания +5 В.

Однако у трансформатора дежурного источника имеется зазор, от которого необходимо избавиться – центральный стержень одной половинки короче на 0,5 мм. Убрать зазор можно с помощью наждачной бумаги, стачивая боковые стержни вровень с центральным.

Обмотки I и II имеют по 36 витков и наматываются в два провода одновременно, обмотки III, IV, V – по 40 витков, диаметр провода 0,27 мм. Все обмотки пропитываются шеллаком. Для экранирования помех на изготовленный трансформатор наматывается полоска медной фольги – 1 замкнутый виток поверх магнитопровода и каркаса.

Первоначально ампервольтметр работал с индикатором MT-16S2R, который позднее был заменён на WH0802A-NGG-CT. Никаких изменений в программу МК делать при этом не пришлось, ЖКИ заработал сразу, хотя в описании на MT-16S2R говорится, что в 4х битном режиме контроллер КБ1013ВГ6 не совместим с HD44780 и KS0066. Поскольку про несовместимость у MT-08S2A не упоминается вообще, его, скорее всего, можно применить вместо WH0802A.

Инструментальный усилитель DA1 OP27GP можно заменить на OP07, OP37, OPA27, OPA37, КР140УД17А. Конденсаторы С15, С16 должны быть только плёночные, с низким ТКЕ, от их качества зависит точность и стабильность показаний.

Ампервольтметр с гальванической развязкой

Высоковольтный цифровой амперметр на оптронах и PIC16F676

Схема, о которой пойдет речь, является модернизацией схемы, рассмотренной в ранее опубликованной статье «Амперметр на оптронах». Обновленная электрическая схема показана на рисунке 1 данной статьи.

Я уж не буду повторяться, поэтому принцип работы и характеристики схемы измерения тока с гальванической развязкой на оптронах вы, пожалуйста, прочитайте в выше указанной статье. Для более глубокого понимания принципа обработки сигнала с датчика тока R5, прочитайте так же и первоисточник. Можно прочитать здесь на сайте

«Диоды вычисляют логарифмы и экспоненты»

Питается схема от двухполярного источника напряжения величиной ±9 вольт. Можно и больше, но зачем неоправданные затраты энергии и лишняя нагрузка на микросхемы стабилизаторов. Микросхема DA1 LM7805 является стабилизатором положительного напряжения на уровне +5 вольт. Это напряжение необходимо для питания микроконтроллера PIC16F676, свухстрочного жидкокристаллического индикатора и сборки операционных усилителей микросхемы DA6, DA7, DA3 и DA4. Все эти ОУ размещены в одном корпусе микросхемы LM324. Эту микросхему можно заменить отечественным аналогом 1401УД2. От этого же напряжения +5В питается и стабилизатор AMS1117-1.2. С выхода данного стабилизатора напряжение величиной 1.2 вольта подается на резистивный, R10 и R11, регулируемый делитель. Со среднего вывода резистора R10 снимается опорное напряжение для АЦП микроконтроллера величиной 1.023В. Микросхема DA2 это стабилизатор отрицательного напряжения -5В. Конденсаторы С1, С2, С5, С7, С8, С9, С10, С11 – блокировочные конденсаторы. Конденсатор С11 при монтаже схемы необходимо размещать в непосредственной близости к выводам питания контроллера.

Читайте также  Отладочная плата с микроконтроллером atmega328

Основной функцией прибора является измерение тока в цепях с повышенным напряжением. Данный экземпляр предназначался для измерения тока в цепи с напряжением сто вольт. При соблюдении всех правил высоковольтного монтажа можно измерять ток в цепях и с более высоким напряжением. Но при этом потребуется подбор гасящего резистора R2 на схеме (Рисунок 1), чтобы ток, протекающий через светодиоды оптронов U1 и U2, был равен 2мА. Чтобы получить гальванически изолированный амперметр, необходимо нижний конец резистора R2 соединить не с общим проводом прибора, а с земляным проводом того узла схемы, в которой измеряется ток. На печатной плате для этого предусмотрено место для контакта.

Измерение тока в цепях с повышенным напряжением потребует применение более мощного гасящего резистора. Например: U = 300В ; необходимый ток – 0,002А. P = I•U = 0,6Вт. Это без учета падения напряжения на светодиодах оптронов.

Амперметр имеет два предела измерения тока: первый – от 0… 999мА; второй – от 1,00А до 9,99А. При этом показания тока во втором диапазоне измерения будут иметь разрешение 10мА на один младший разряд.

Настройка прибора

При условии полной работоспособности пробора сначала резистором R10 выставляем напряжение на выводе RA1, ножка 12, микроконтроллера DD1 величиной 1,023В. Затем, резистором R18 добиваемся на выводе 14 ОУ DA4 нулевых показаний контрольного вольтметра. ОУ DA4 это масштабирующий усилитель с регулируемым коэффициентом усиления. Пропускаем ток порядка 500мА через шунт, контролируя его поверенным амперметром. Вращая ось многооборотного резистора R23, добиваемся одинаковых показаний обоих амперметров. Увеличиваем ток через шунт, пока не сменится диапазон измерения. И резистором R8 опять выставляем одинаковые показания.

Вход для измерения напряжения в цепи шунта используется только в случае, когда резистор R2 непосредственно соединен с общим проводом амперметра. (Предел измерения напряжения – до ста вольт. Можно сказать, что он высоковольтный по отношению к напряжениям питания современной электроники – 1,8В; 3,3В; 5,0В.) В этом случае вход U соединяют с точкой 5 схемы. Резисторы R1 и R4 представляют собой делитель напряжения 1 к 100. Я не ставил подстроечного резистора, а просто подобрал из кучи резисторов пару с соотношением величин 1 к 100. Резистор R3 и конденсатор С7 это цепь фильтра. В связи с тем, что опорное напряжение для АЦП контроллера выбрано всего 1,023 вольта и коэффициент деления входного напряжения большой, вольтметр в этой схеме имеет большую нелинейность в области малых величин измеряемого напряжения.

Схема преобразователя ток – напряжение работает с сигналами малой величины, поэтому необходимо иметь «чистые» напряжения питания и в случае нестабильности показаний предусмотреть экранирование платы амперметра.
Внешний вид смотрим ниже.

Цифровой ампервольтметр с гальванической развязкой каналов измерения

Применение микроконтроллера с многоканальным АЦП упрощает задачу измерения тока и напряжения для последующего вывода на индикатор лабораторного блока питания.Но, при несомненном достоинстве таких схем – их простоте и дешевизне – есть у них и существенный недостаток – наличие общего «минуса» у каналов АЦП не позволяет проводить независимые измерения тока и напряжения, т.е. подключаться к источникам питания, не имеющим общей точки для измерения этих величин. Предлагаемый ампервольтметр позволит проводить измерения в устройствах любого схемотехнического исполнения, не требуя при этом дополнительной обмотки (источника питания) для своего подключения.

Технические характеристики ампервольтметра:
Напряжение питания, В 15…20
Потребляемый ток при Uпит=15В, не более, мА, 100
Измеряемое напряжение с разрешением в 1мВ, В 0,000…9,999
Измеряемое напряжение с разрешением в 10мВ, В 10,00…99,99
Измеряемый ток с разрешением в 1мА, А 0,000…9,999
Измеряемый ток с разрешением в 10 мА, А 0,00…99,99
Измеряемый ток с разрешением в 100 мА, А 0,0…999,9
Нелинейность измерения, МЗР ±3

Схема ампервольтметра представлена ниже.

Канал измерения напряжения состоит из элементов DA4, DA6, VT2, VT3, тока – DA1, DA5, DA7. Оба канала используют один и тот же принцип измерения – преобразование напряжения в частоту, и для гальванической развязки управляются МК DD1 через оптопары U1…U5. На стабилизаторах DA4, DA5 собраны источники стабильного тока, которым заряжаются интегрирующие конденсаторы C15, C16. После включения ампервольтметра транзисторы VT3, VT4 закрыты, и уровни напряжений на выв. 2 компараторов DA6 и DA7 получаются заведомо выше, чем уровни на выв. 3, поскольку максимальное значение последних ограничено стабилитронами VD2 и VD3. В этом случае оба компаратора шунтируют светодиоды оптопар U3, U5, их транзисторы закрыты, и на входе ICP МК DD1 присутствует высокий логический уровень. Для измерения напряжения МК DD1 на выв. 8 формирует положительный импульс длительностью около 50 мс. Транзистор оптопары U4 закрывается, а транзистор VT3 открывается, разряжая ёмкость C15. Компаратор DA6 перестаёт шунтировать светодиод U3 и на входе ICP DD1 устанавливается низкий логический уровень. По завершению импульса разряда на конденсаторе C15 начинает линейно нарастать напряжение, которое компаратор DA6 сравнивает с измеряемым напряжением на выв.3. Одновременно с этим МК запускает таймер T1 в режиме «захват». Как лишь напряжение на выв. 2 DA6 станет больше, чем на выв. 3, на выходе DA6 установится низкий уровень, что приведёт к закрытию транзистора оптопары U3 и установлению на выв. ICP DD1 высокого логического уровня. Нарастающий фронт на выв. ICP активирует подпрограмму прерывания по событию «захват». Подпрограмма выводит на индикатор HG1 насчитанное счетчиком Т1 значение в регистре захвата ICR1, которое пропорционально измеряемому напряжению. Элементы R4, R15, VT2 образуют делитель напряжения, который включается микроконтроллером DD1 в том случае, если измеряемое значение превышает 9,999 В.

Измерение тока происходит аналогичным образом, но уже с формирования положительного импульса для транзистора VT4. Вместо делителя напряжения добавлен усилитель постоянного тока на ОУ DA1. Усилитель необходим для работы со стандартными шунтами на 75 мВ, или шунтами, имеющими низкое сопротивление, падение напряжения на которых не превышает 100-200 мВ.

В том случае, если измеряемые значения превышают допустимый диапазон, то на индикатор вместо символа «=» выводится символ «>».

Питание и гальваническую развязку измерительных каналов обеспечивает ШИМ-контроллер DA3, включенный по схеме прямоходового преобразователя. Незначительные токи нагрузки по цепям +15V1, +15V2, -15V2 позволили отказаться от накопительных дросселей и дополнительных диодов во вторичных цепях трансформатора Т1. Частота преобразования составляет 50 кГц.

Перемычками JP1…JP3 выбирается диапазон измеряемого тока. При закороченной перемычке JP1 диапазон составляет 0,000 – 9,999 А; JP2 0,00 – 99,99 А; JP3 0,0 – 999,9 А. Иными словами, перемычки определяют положение децимальной точки в каждом диапазоне при выводе измеренного значения на индикатор.

Чертежи и фотографии печатной платы:

Управляющая программа написана на ассемблере, ниже показана настройка фьюз-битов.

После сборки ампервольтметра следует проверить цепи питания +15V1, +15V2, -15V2, уровень напряжения которых должен быть в диапазоне 14,2…15,5 В. При необходимости напряжение можно подстроить путём подбора стабилитрона VD4, или же, если его уровень меньше 14 В, – добавлением ещё одного диода последовательно с VD5.

При включении ампервольтметра на индикатор в течение примерно 2с выводятся значения корректирующих констант для тока и напряжения. Настройка контрастности индикатора HG1 осуществляется подстройкой резистора R23.

Следующий шаг – регулировка тока заряда интегрирующих конденсаторов C15, C16 и вычисление корректирующих констант обоих каналов. Для этого вывод резистора R9, соединённый с выв. 6 ОУ DA1, временно выпаивается из платы и соединяется со входом «+Uизм». Также соединяются вместе входы «-Uизм» и «-Iизм». От внешнего источника на вход «+Uизм» и «-Uизм» подаётся напряжение в диапазоне 9,700…9,900 В, контролируемое эталонным вольтметром. Подстраивая переменные резисторы R10 и R11, необходимо добиться идентичных показаний между эталонным вольтметром и обоими каналами ампервольметра. Далее вычисляются константы для компенсации времени переключения компараторов DA6, DA7 и оптопар U3, U5. От внешнего источника напряжение через делитель, состоящий из постоянного резистора 3 кОм и переменного (или подстроечного) 100 Ом, подаётся на вход «+Uизм». Переменным резистором устанавливается нулевое значение напряжения. Затем, плавно увеличивая напряжение переменным резистором, необходимо добиться индикации тока или напряжения, отличного от нуля. Из-за разброса параметров элементов значения могут отличаться друг от друга, и поэтому появляются на индикаторе не одновременно. Важно зафиксировать самое первое ненулевое значение для каждого канала. Получившиеся числа и есть константы, которые необходимо перевести в шестнадцатеричную форму и записать в строки 166 и 168 исходного файла AVO_WH.ASM для напряжения и тока соответственно.

После внесённых изменений исходный файл компилируется, после чего МК заново программируется. Теперь, после записи констант, необходимо завершить настройку каналов измерения – снова подать напряжение 9,700…9,900 В на вход «+Uизм» и переменными резисторами R10 и R11 добиться идентичных показаний между эталонным вольтметром и обоими каналами ампервольметра. Настройка канала вольтметра на этом завершена, остаётся отрегулировать усилитель DA1 канала измерения тока. Для этого вывод резистора R9 впаивается обратно в плату, а входы «+Iизм» и «-Iизм» закорачиваются. Подстраивая резистор R7 и контролируя напряжение внешним вольтметром на выводах 3 и 4 компаратора DA7, добиваются значения, максимально близкого к 0 В. После этого остаётся лишь настроить коэффициент усиления ОУ DA1, который зависит от сопротивления применяемого шунта. Допустим, имеется шунт из 6 параллельно соединённых резисторов по 0,1 Ом. При токе в 5А на нём будет падать около 83,3 мВ. Измеритель тока должен отображать 5,000А, значит устанавливается перемычка JP1. Далее рассчитывается коэффициент усиления: 5А/0,0833В=60,24. Для резистора R5=110 кОм и Ku=60 получаем сумму R2 и R3:R5/(Ku-1)=110/59=1,864 кОм. Поскольку сопротивление шунта из-за погрешности резисторов будет отличаться от расчётного, необходимо предусмотреть запас по регулировке Ku, к примеру, взять R2=1,6 кОм и R3=470 Ом.

Читайте также  Проект электрики квартиры

Для трансформатора Т1 использован магнитопровод Ш 4х5, подобные трансформаторы используются в компьютерных блоках питания для управления силовыми ключами, а также для дежурного источника питания +5 В.

Но у трансформатора дежурного источника имеется зазор, от которого необходимо избавиться – центральный стержень одной половинки короче на 0,5 мм. Убрать зазор можно с помощью наждачной бумаги, стачивая боковые стержни вровень с центральным.

Обмотки I и II имеют по 36 витков и наматываются в два провода одновременно, обмотки III, IV, V – по 40 витков, диаметр провода 0,27 мм. Все обмотки пропитываются шеллаком. Для экранирования помех на изготовленный трансформатор наматывается полоска медной фольги – 1 замкнутый виток поверх магнитопровода и каркаса.

Первоначально ампервольтметр работал с индикатором MT-16S2R, который позднее был заменён на WH0802A-NGG-CT. Никаких изменений в программу МК делать при этом не пришлось, ЖКИ заработал сразу, хотя в описании на MT-16S2R говорится, что в 4х битном режиме контроллер КБ1013ВГ6 не совместим с HD44780 и KS0066. Поскольку про несовместимость у MT-08S2A не упоминается вообще, его, скорее всего, можно применить вместо WH0802A.

Инструментальный усилитель DA1 OP27GP можно заменить на OP07, OP37, OPA27, OPA37, КР140УД17А. Конденсаторы С15, С16 должны быть лишь плёночные, с низким ТКЕ, от их качества зависит точность и стабильность показаний.

Список радиоэлементовОбозначение
Тип
Номинал
Количество
ПримечаниеМагазинМой блокнот

DD1
МК AVR 8-битATtiny2313-20PU1
DA1
Операционный усилительOP271
Замена: OP07, OP37, OPA27, OPA37, КР140УД17АDA2
Линейный регуляторLM7805CT1
DA3
ШИМ контроллерUC38451
UC3845NDA4, DA5
Линейный регуляторLM317L2
DA6, DA7
КомпараторLM393-N2
HG1
ИндикаторWH0802A-NGG-CT1
U1-U6
ОптопараEL8176
VT1
MOSFET-транзисторIRFD1101
VT2-VT4
Полевой транзисторКП505А3
VD1
Стабилитрон3.3В1
VD2, VD3
Стабилитрон12В2
VD4
Стабилитрон13В1
VD5-VD9
Выпрямительный диод1N41485
C1-C3, C8, C9, C11, C12, C14, C22-C25
Конденсатор1 мкФ12
C4
Конденсатор0.22 мкФ1
C5
Электролитический конденсатор100 мкФ1
C6
Конденсатор1000 пФ1
C7, C18
Конденсатор2200 пФ2
C10, C17
Конденсатор22 пФ2
C13
Электролитический конденсатор220 мкФ1
C15, C16
Конденсатор2.2 мкФ2
C19-C21
Электролитический конденсатор330 мкФ3
R1, R9
Резистор10 кОм2
R2
Резистор1.6 кОм1
R3
Подстроечный резистор470 Ом1
R4
Резистор117 кОм1
R5
Резистор110 кОм1
R6
Резистор100 кОм1
R7
Подстроечный резистор15 кОм1
R8
Резистор7.5 кОм1
R10, R11
Подстроечный резистор100 Ом2
R12, R13
Подстроечный резистор510 Ом2
R14, R16
Резистор12 Ом2
R15
Резистор13 кОм1
R17
Резистор100 Ом1
R18-R22
Резистор2 кОм5
R23
Подстроечный резистор10 кОм1
R27-R29
Резистор620 Ом3
DR1, DR2
Резистивная сборка4.7 кОм2
Z1
Кварц8 МГц1
T1
Трансформатор1
Добавить все

Встраиваемые миниатюрные цифровые вольтметры из Китая: обзор и тонкости применения

Для контроля работы аппаратуры бывают полезны постоянно работающие приборы — вольтметры, амперметры и т.п. Постоянный контроль параметров поможет понять пользователю: всё ли в порядке с аппаратурой, или «что-то пошло не так».
В этом обзоре будут представлены два миниатюрных цифровых вольтметра: на 30 Вольт и на 100 Вольт. Они — похожи, но не одинаковы.

Вольтметры предназначены для измерения постоянного напряжения положительной полярности.

Куплены вольтметры были на Алиэкспресс у этого продавца, цена (на дату обзора) — смешная: от $0.76 за 30-вольтовый прибор и до $1.35 — за 100-вольтовый.

Конструкция цифровых вольтметров

Оба вольтметра — бескорпусные; и из-за очень малых размеров платы с электроникой сначала может показаться, что они состоят только из индикаторов:

На этом фото сразу видно различие между вольтметром на 100 В ( слева) и на 30 В (справа): вольтметр на 100 В имеет 3-проводное подключение, а вольтметр на 30 В — двухпроводное.

Почему так сделано?

Всё очень просто: в вольтметрах применяется линейный стабилизатор с максимальным входным напряжением 30 В. Поэтому «младший» вольтметр может питаться прямо от измеряемого напряжения, а «старший» при использовании для измерения напряжений свыше 30 В требует для своего питания отдельный источник.

Если же 100-вольтовый вольтметр применять для измерения напряжений до 30 В, то можно замкнуть красный и желтый провода между собой и тоже запитать от измеряемого напряжения.

Но, как обычно, есть нюанс. Если запитывать прибор от измеряемого напряжения, то оно должно быть не ниже, чем необходимо для питания стабилизатора напряжения в приборе, а это — 5 В (рекомендовано продавцом). То есть, в этом случае и измеряемое напряжение должно быть не менее 5 В (испытания показали работоспособность и при 4 В, но это не гарантируется для всего температурного диапазона; да и разброс параметров элементов на плате вольтметра никто не отменял).

Несколько слов о габаритах вольтметров.

Если говорить о размерах кратко, то габариты приборов 30.2 x 11 x 8.6 мм.

С разбивкой по деталям размеры будут такие: длина платы — 30.2 мм, ширина платы — 11 мм, длина блока индикации — 22.6 мм, ширина блока индикации — 10.4 мм, высота блока индикации (от уровня платы) — 6.2 мм, высота всего прибора (от низа платы до верха индикатора) — 8.6 мм.

Высота цифр на индикаторе — 7.1 мм (0.28 дюйма).

Посмотрим на обратную сторону вольтметров, т.е. на платы с электроникой:

Платы вольтметров — абсолютно одинаковые, и различаются только расположением двух элементов (эти места указаны стрелочками на фото).

То есть, при желании и наличии «прямых рук» можно один из них преобразовать в другой и обратно. Но экономического смысла в этом нет, лучше сразу купить, какой надо (или, при сомнениях — оба сразу).

Назначение проводов — очевидное: чёрный — земля, красный — питание (оно же — измеряемое напряжение для 30-вольтового прибора), желтый — измеряемое напряжение.

На платах вольтметров расположено очень мало деталей.

Основа вольтметров — аналого-цифровой микроконтроллер, увы, без маркировки. Впрочем, никаких претензий к его работе не возникло.

Микроконтроллер осуществляет аналого-цифровое преобразование сигнала; затем, вероятно, какую-то нехитрую вычислительную обработку (возможно, усреднение нескольких замеров); а затем отправляет результат на 3-значный светодиодный индикатор.

Питанием микроконтроллер обеспечивают стабилизаторы с маркировкой «7533-1 E1125D» и «6513 TA502H».

Оба стабилизатора выдают на выходе напряжение 3.3 В, и, скорее всего, являются клонами популярных стабилизаторов AMS1117.

Для калибровки вольтметров имеется подстроечный резистор.

Вот, собственно, и всё.

Испытания цифровых вольтметров

Сразу надо сказать о главном: в испытаниях проверялась точность настройки вольтметров в том виде, в каком они пришли из Китая. Проверять точность просто «как таковую» смысла нет, поскольку в приборах есть калибровочные подстроечники, позволяющие скорректировать настройку вольтметров, если погрешность показаний окажется высокой.

Программа испытаний такая: сначала проверяем точность 100-вольтового вольтметра, а затем — синхронность показаний вольтметров при измерениях одного и того же напряжения.

Также проверим ток потребления приборов и входное сопротивление для 100-вольтового прибора.

Проверка точности заводской настройки, напряжение — 5 Вольт:

Всё хорошо, ошибка — менее 1%.

Напряжение — 12 В:

Здесь формально ошибки совсем нет, но это означает, скорее всего, что ошибаются оба прибора. 🙂

Обратите внимание: после 10 Вольт на тестируемом вольтметре запятая перескочила на 1 знак, и теперь прибор сотые доли Вольта не показывает.

Напряжение — 30.1 В:

Аналогично, ошибки как будто нет.

Дальше надо бы проверить на напряжении 100 В, но такого блока питания у меня не нашлось. Максимум, что нашлось — напряжение — 49.4 В:

Здесь обнаружилась небольшая погрешность на 0.1 В.

Вольтметр на 100 В позволяет измерять напряжения и меньшие, чем его напряжение питания. Но точность при этом будет падать по банальной причине: из-за слишком большого «веса» ошибки на единицу младшего разряда.

Можно измерить, например, напряжение на батарейке:

Теперь проверим совпадение (или несовпадение) показаний вольтметров между собой для двух напряжений — 4 В и 30 В:

Совпадение показаний вольтметров между собой оказалось на очень хорошем уровне.

Теперь — пример практического применения одного из этих вольтметров.

Младший вольтметр (на 30 В) я пристроил к QC-триггеру, предназначенному для получения напряжения 9 и 12 Вольт от павербанков и QC-зарядок (обзор QC-триггера вместе с павербанком).

Этот триггер посылает в подключенное устройство команду на выдачу 9 или 12 В, но не проверяет её исполнение.

Теперь проверка есть:

На этой фотографии оказалась хорошо заметна ещё одна особенность вольтметра: цифра «1» на индикаторе светится ярче других цифр.

Вероятно, вольтметр питает каждый из 3-х разрядов индикатора одним и тем же током, и для подсветки обходит их поочерёдно; в результате чего чем меньше число активных сегментов в цифре, тем ярче они светятся.

Нельзя назвать это существенной проблемой, но обратить внимание на неё следует.

Теперь — о потреблении тока вольтметрами.

Вольтметр на 30 В (с красным индикатором) потребляет 11 мА, вольтметр на 100 В (с жёлтым индикатором) — заметно больше, почти 16 мА.

При питании вольтметра на 100 В от источника с напряжением 30 В нагрев стабилизатора на плате прибора был весьма ощутимым (получилось 0.4 Вт рассеиваемой мощности на стабилизаторе).

Отсюда следует рекомендация: запитывать 100-вольтовый прибор напряжением не свыше 20 В. Самый лучший вариант — напряжением 5 В, которое есть почти везде.

Причина более высокого потребления у этого вольтметра, возможно, кроется в более высоком потреблении его индикатора (всё остальное у них — одинаковое).

Читайте также  Счётчик электрической энергии

Входное сопротивление 100-вольтового прибора — 100 КОм.

Говорить же о входном сопротивлении 30-вольтового прибора нет смысла, поскольку вход там объединён с питанием.

Диапазон подстройки точности вольтметров с помощью подстроечного резистора на плате составляет около 8%.

Итоги, выводы, тонкости применения

Сначала — о тонкостях применения при измерении отрицательных напряжений.

Если напряжение не превосходит 30 В, то всё делается элементарно: земля вольтметра подключается к минусу питания, а плюс вольтметра — на землю питания. И всё сразу работает!

Если же измеряемое напряжение превосходит 30 В, то всё становится намного сложнее.

Использовать в этом случае возможно только 100-вольтовый прибор; причём для его питания потребуется отдельный изолированный источник (в буржуйской терминологии — плавающий или даже летающий).

Это — серьёзное усложнение схемы, из-за чего есть смысл задуматься о других приборах для подобных измерений.

Теоретически можно вместо изолированного источника питания загасить лишнее напряжение резистором или стабилитроном; но такое решение — не красивое и ограничивает диапазон рабочих напряжений.

Теперь — о достоинствах протестированных вольтметров.

  • низкая цена;
  • хорошая точность измерения;
  • возможность питания измеряемым напряжением;
  • малые габариты и вес.

Достоинства — очень существенные, но и недостатки тоже есть:

  • отсутствие регулировки яркости (в темноте свечение индикатора ощущается слишком ярким, а при ярком свете — тускловатым);
  • наличие строб-эффекта (при движении глаз или самих вольтметров);
  • не измеряют переменное напряжение;
  • сложности с измерением отрицательных напряжений свыше 30 В.

Купить протестированные вольтметры можно здесь, причём имеется широкий выбор цветов свечения индикаторов (помимо протестированных с желтым и красным цветом).

Вольтметр на микроконтроллере AVR на 6 каналов измерения напряжения

Дистанционный вольтметр на микроконтроллере AVR — устройство, позволяющее удалённо измерять уровень переменных напряжений от нескольких источников (в данном исполнении — 6 каналов) и отображать полученные данные на шести дисплеях, каждый из которых это трёхразрядный семисегментный индикатор. Цифровой вольтметр на AVR обеспечивает постоянный контроль энергоснабжения оборудования, которое расположено на некотором расстоянии от рабочего места оператора. Сейчас устройство используется для измерения напряжения трех фаз на входе и на выходе промышленного нормализатора напряжения – трехфазного стабилизатора. Место оператора удалено от стабилизатора на расстояние около 800м.

Конструкция цифрового вольтметра представляет собой два модуля:

  • модуль измерения и передачи, расположенного непосредственно в месте измерения;
  • модуль приёма и отображения, установлен на рабочем месте оператора.

Соединение частей вольтметра выполнено обычной телефонной парой (лапшой). Для повышения устойчивости канала связи к радиопомехам может быть использована витая пара. Линия связи имеет гальваническую развязку от других элементов устройства, которые находятся под высоким напряжением, данные по каналу связи передаются токовым сигналом, величиной до 30мА.

  • Диапазон измеряемых напряжений: 100 – 330В переменного тока;
  • Частота измеряемых напряжений: 50Гц;
  • Частота измерений: 0,5 сек. (частота обновления измеряемых значений по 6 каналам);
  • Напряжение оперативного питания модуля приёма и отображения: 7 — 25В постоянного тока;
  • Уровень гальванической развязки модулей: 5,0кВ;
  • Погрешность измерения напряжения: ±1,5%.

Принципиальная схема модуля измерения и передачи:

В схеме цифрового вольтметра преобразование аналогового сигнала в цифровой производится с помощью АЦП, на базе микроконтроллера AVR — ATmega8. Измерение действующего значения напряжения реализовано на алгоритме определения пика синусоидального сигнала с последующим умножением его на амплитудный коэффициент синусоиды.

Оперативное питание модуля измерения и передачи цифрового вольтметра обеспечивается бестрансформаторным блоком питания от одного из каналов измеряемого напряжения, в данной схеме от первого канала. Уровень напряжения в канале должен быть не менее 90В – минимальный уровень напряжения, при котором сохраняется работоспособность модуля.

Индикация работы линии связи между модулями устройства обеспечивается светодиодом HL1, расположенным в модуле измерения.

Принципиальная схема модуля приёма и индикации цифрового вольтметра:

Оперативное питание модуля приёма и отображения обеспечивается внешним источником 7-25В постоянного тока. При нормальном функционировании вольтметра на AVR индикаторы отображают значения измеряемых напряжений. При нарушении канала связи или неисправности модуля измерения и передачи, то есть при отсутствии поступления данных от измерительного модуля в течении более 2-х периодов обновления данных (около 1,4 сек.) на индикаторах отображается — “Err”. При восстановлении связи индикация восстанавливается автоматически. Падение уровня напряжения на любом из каналов, за исключением первого, ниже 100В, вызывает отображение на соответствующем индикаторе прочерков “—”, а на остальных индикаторах выводятся измеряемые значения напряжений, соответственно.

Вольтметр на микроконтроллере AVR может производить измерения уровня не только переменного, но и постоянного тока. В случае необходимости измерения напряжение постоянного тока по всем или только нескольким каналам, достаточно внести незначительные изменения в микропрограмму контроллера модуля измерения и передачи и вероятно изменить номиналы резисторов R5-R10 и R11-R16, на которых выполнены делители напряжения.

Микропрограммы контроллеров, макеты печатных плат в формате LAY (SprintLayout), и фотографии готового устройства можно скачать ниже.

Список файлов

Архив с материалами

Микропрограммы контроллеров, макеты плат и фотографии готового устройства

ICL7107CPL (КР572ПВ2): цифровой вольтметр и амперметр для лабораторного блока питания

От Датагора:
Да простят меня адепты модной микроконтроллерной схемотехники!
Сейчас, когда микроконтроллеры ставят куда надо и не надо; когда в массовое сознание продвигается Идея, что микроконтроллер нужен даже в выключателе света в туалете; когда все чего-то «прошивают», часто не понимая, что делают, я с удовольствием представляю статью Александра Минченко о применении отличной специализированной микросхемы ICL7107CPL.

Микросхема ICL7107CPLZ (Intersil, USA. Отечественный аналог КР572ПВ2А) — интегрирующий АЦП с выходом на светодиодные семисегментные индикаторы, 3.5 десятичных разряда. Содержит семисегментные декодеры, драйвер дисплея, сравнивающий элемент и счетчик.

Это чип применим для построения цифровых измерительных приборов, термометров, вольтметров, амперметров и т.п. — смотри даташит.
Обвязка минимальная, результаты отличные. Достаточно сказать, что большинство цифровых мультиметров построены на базе чипов ICL710х. А яркая LED-индикация обеспечит Вам неповторимый внешний вид.

Содержание / Contents

  • 1 Итак, вольтметр. Вариант забугорный, «Т-образный»
  • 2 Вариант мой, «Сэндвич»
  • 3 Сборка
  • 4 Амперметр
  • 5 Питание
  • 6 Настройка
  • 7 Детали
  • 8 Файлы
  • 9 Дополнение от Датагора: конверторы отрицательного напряжения питания
    • 9.1 Вариант 1 на NE555
    • 9.2 Вариант 2 на CD4049

↑ Итак, вольтметр. Вариант забугорный, «Т-образный»



↑ Вариант мой, «Сэндвич»

При сборке второго варианта платы в ход пошли ножки резисторов и конденсаторов, а также шестигранные стойки из плотного капрона с внутренней сквозной резьбой М3 и небольшой кусок плёнки-самоклейки Oracal матово-белого цвета.
На фото показана очерёдность сборки конструкции. В зависимости от количества диодов в схеме (2-3шт.) можно скорректировать яркость свечения индикаторов. Я установил 3шт. в вольтметре и 2шт. в амперметре (т.к. красный индикатор оказался значительно ярче зеленого).

Кто будет изготавливать платы без ЛУТ-технологии, может столкнутся с проблемой рисования лаком большого количества прямоугольных площадок с одинаковыми зазорами. Я печатал рисунок, затем приклеивал его к текстолиту с стороны меди и при помощи металлической линейки канцелярским ножом делал прорези. Между прорезями, после снятия бумаги и зачистки, лак очень хорошо заливается, не вытекая за границы.

↑ Сборка


затем на плату индикации:

Дальше впаиваем перемычки на плату индикации, отгибая каждую на расстоянии 4 мм от края на угол примерно 30-35 градусов. Я загибал одновременно все перемычки при помощи небольших тисков.

После этого складываем платы пайкой друг к другу, скрепляем на болтики с втулками. Лишние по длине перемычки аккуратно обрезаем маленькими бокорезами. После чего нужно пинцетом прижать каждую обрезанную перемычку к плате для дальнейшей припайки.


После установки микросхемы, индикаторов и оклейки их матовой самоклейкой получаем это:

Передохнули , поехали дальше – амперметр.

↑ Амперметр




В оригинале статьи, на схеме, были ещё два предела измерения — 2А и 10А

↑ Питание

Конвертор позволит питать схему от однополярного источника питания. Варианты конверторов для получения отрицательного напряжения из положительного см. ниже.

У меня же питание осуществляется от стабилизированного двуполярного источника питания 5В (7805, 7905), конструктивно выполненного на отдельной плате.

↑ Настройка

Настройка сводится к калибровке показаний напряжения и тока по показаниям образцового (поверенного) прибора, при помощи вращения движка построечного сопротивления. Учитывая, что в схеме установлен многооборотное сопротивление, калибровка показаний очень легка.

↑ Детали

Все резисторы 0,125-0,25Вт, конденсаторы — керамика на 50В, подстроечное сопротивление многооборотное.
Вместо панельки под микросхему и индикаторы использовал 40 pin цанговую линейку (резал пополам), можно применить и панельку, тогда необходимо внутри вырезать перемычки, диоды типа 1N4148, 1N4007. Индикаторы любые 7-и сегментные, зелёного и красного свечения с общим анодом. Я применил индикаторы с высотой знака 13 мм.

↑ Файлы

Даташит на ICL7107
▼ icl7107cpl.7z 521,93 Kb ⇣ 436

В архиве все варианты печаток в LAY и схема в sPlan.
С исправлениями от 30/10/2011
▼ shemy-i-platy.7z 39,94 Kb ⇣ 649
Кто соберёт на SMD-плате — если потребуется, откорректируйте её под размеры площадок и вместе с фото отправьте Игорю (Datagor) или мне для добавления в статью вашего варианта.

ВНИМАНИЕ, друзья. У кого есть свои проверенные варианты печаток — присылайте вкупе со схемами пожалуйста!
#23-10-2011 Варианты схем и печаток от FOLKSDOICH (исправлено)
▼ folksdoich-7107-ui-v.2.7z 52,75 Kb ⇣ 632

↑ Дополнение от Датагора: конверторы отрицательного напряжения питания

Предлагаю два варианта конверторов для получения отрицательного напряжения питания схемы.
Оба варианта на широко распространенных чипах, без применения редких специализированных чипов типа MAX1044 или ICL7660.

↑ Вариант 1 на NE555

↑ Вариант 2 на CD4049

Камрад, рассмотри датагорские рекомендации

Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.