Зарядное устройство с повышающим преобразователем

RUS1980 › Блог › Доработка зарядного для аккумулятора.

Доброго времени суток.

В этой записи расскажу как я доработал свое зарядное устройство для зарядки автомобильного аккумулятора.

В связи с появлением в продаже «дешовых» и достаточно мощных DC-DC преобразователей постоянного тока, решил доработать свое зарядное устройство. До переделки регулирование выходного тока происходило за счет изменения коэффициента трансформации трансформатора Т.е. повышения зарядного тока осуществлялось за счет повышения выходного напряжения с помощью переключателя.
Принципиально после переделки данный переключатель был заменен на понижающий DC-DC преобразователь.

Какие приемущества были достигнуты после доработки.

1. Повышена эффективность использования трансформатора. Максимальный ток, который позволяла выдать вторичная обмотка 4А. В связи с тем, что преобразователь подключен на крайние выводы (на которых напряжение составляет 32В), максимальная мощность стала составлять 4х23=92Вт.
2. Появилась возможность плавной регулировки выходного напряжения от 1,25 до 22 В.
3. Появилась возможность ограничения максимального зарядного тока.
4. Как следствие можно заряжать в том числе и литиевые аккумуляторы, задавая напряжение и максимальный ток.

Что потребовалось для переделки:

1. DC-DC понижающий преобразователь (макс. ток без доп. охлаждения 6А) Купил здесь.
Хороший обзор на данную плату здесь.
Цена на момент покупки — 220 руб. + 70 руб. доставка.

2. Универсальный тестер. Купил здесь.
Цена на момент покупки — 480 руб. в т.ч. доставка.

3. Выходной клеммник. Купил здесь.
Цена на момент покупки — 80 руб. + 65 руб. доставка.

4. Диодный мост КВРС1010 (10А). Купил в магазине радиодеталей.
Цена на момент покупки — 60 руб.

5. Конденсатор 50В, 1000 мкФ. Купил в магазине радиодеталей.
Цена на момент покупки — 25 руб.

6. Резисторы регулируемые. Купил здесь.
Цена на момент покупки — 110 руб. + 50 руб. доставка.

Бюджет переделки составил — 1160 руб.

Вот так он выглядел до доработки.

1. Отпаял все провода от трансформатора со стороны вторичной обмотки и снял переключатель.
2. Открутил диоды, которые были собраны в диодный мост. Убрал их в свзи с тем, что диоды занимали много места и не позволяли смонтировать плату преобразователя и резисторы.
3. Снял лицевую панель и врезал в нее переменные резисторы, клеммник и Тестер (монитор).
3 На алюминевой пластине, на которой ранее располагались диоды, закрепил диодный мост и плату преобразователя. В качестве втулок использовал пустой стержень от гелевой ручки. В них плотно вкручиваются винты М3.
4. Из платы выпаял переменные резисторы для регулировки тока и напряжения.
5. Далее все последовательно подключил согласно схемы.

Для контроля тока в обмотке трансформатора сохранил старый амперметр.
6. Собрал зарядное и проверил. Все заработало. Выставил напряжение 14,9 В и подключил к аккумулятору, проверил регулировку тока все ОК.

На этом заканчиваю, думаю что данная информация будет полезной.

Зарядное устройство 12в аккумулятора своими руками

Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14.5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.

Вот эти компоненты:

Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в этой статье), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.

Провода в зарядном устройстве должны быть толстые и короткие. Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.

Схема зарядного устройства для автомобильного аккумулятора

Сборка зарядного устройства

Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.

Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:

  1. Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
  2. Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).

Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.

Настройка выходного напряжения и зарядного тока

На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

Защита от переполюсовки

Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.

Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.

Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.

Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.

Как заряжать аккумулятор

Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо. Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.

Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.

Читайте также  Электронный термометр для самогонного аппарата

Поделки своими руками для автолюбителей

Универсальное ЗУ или понижающий и повышающий преобразователь сразу, схема

Сегодня я предоставлю вам схему универсального зарядного устройства, также можно её использовать и как лабораторный блок питания на базе повышающего и понищающего преобразователя.

Перед вами сейчас преобразователь напряжения, однотактный малогабаритный и довольно мощный, обычный преобразователь может либо повышать, либо понижать входное напряжение, данный же вариант умеет и повышать и понижать.

У меня есть разные регулируемые источники питания, которыми я тестирую собраны самоделки, заряжаю аккумуляторы и многое другое. Но вот недавно возникла идея создать портативный источник питания, который бы справился со всеми поставленными задачами, а в частности заряжал портативные гаджеты смартфона, ноутбуки, автомобильные АКБ и т.д.

Сразу замечу одну вещь номиналы некоторых компонентов на схеме могут отличаться от тех, что на плате например конденсаторы.

Схема нарисована с применением эталонных номиналов, а плату я делал под свои нужды опираясь в первую очередь на компактные размеры.

Именно мой источник питания обеспечивает на выходе ток до 3 ампер, но схема способна обеспечить выходной ток до 5 ампер, так что она универсальна, всё зависит от ёмкости конденсаторов, дросселя, полевого ключа и диодного выпрямителя.

Несколько слов о схеме — это однотактный преобразователь на базе шим контроллера UC3843, питать данную схему можно как от аккумулятора, так и от выпрямителя.

Чтобы микросхема работала спокойно от моего мощного аккумулятора, мне пришлось на плату добавить линейный стабилизатор 7812 на 12 вольт для питания микросхемы шим, на схеме этот стабилизатор не указан, его можно ставить по желанию.

При сборке стоит обратить внимание на перемычки, которые имеются на плате, при том 2 из них силовые, следовательно они должны иметь примерный диаметр в 1 и более миллиметров.

Трансформатор, точнее это дроссель, намотан на жёлто-белом колечке из порошкового железа, такие применяются в качестве сердечника выходного фильтра в компьютерных блоках питания.

Размеры использованного мною сердечника сейчас перед вами

Дроссель содержит две равноценные обмотки, обе намотаны проводом 1 и 2 миллиметра, советую диаметр чутка побольше, полтора — два миллиметра, количество витков 10, обе обмотки намотаны разом, естественно в одинаковом направлении.

Перед установкой дросселя, перемычки желательно заклеить скотчем, работа схемы зависит от правильной установки дросселя, нужно соблюдать начала обмоток или просто установить дроссель, так как это показано на рисунке…

Силовой транзистор — любой низковольтный n-канальный полевой транзистор с током от 30 ампер, в моем случае использован транзисторы IRFZ44 (как всегда).

Выходной выпрямитель —это сдвоенный диод в корпусе TO220, очень желательно взять диоды-шотки у последних минимальное падение напряжения на переходе, а следовательно и потери.

Такие диоды можно найти в тех же компьютерных блоках питания, они стоят в качестве выходного выпрямителя, в таком корпусе два диода, которые в нашей схеме подключены параллельно для увеличения общего тока и еще большего снижения падения напряжения на переходе.

Преобразователь естественно стабилизирован, обратная связь и все такое. Выходное напряжение задается резистором R3, его можно заменить на обычный переменник для удобства регулировки.

Кстати наш преобразователь снабжен защитой от коротких замыканий. В качестве датчика тока резистор R10-это низкоомный шунт,

чем больше его сопротивление, тем меньше ток срабатывания защиты и наоборот.

Если защита не нужна, то этот узел можно исключить. Ещё из защиты имеется предохранитель на 10 ампер.

Использованные в схеме конденсаторы очень и очень желательно взять с низким внутренним сопротивлением.

Силовые элементы, транзистор и выпрямитель, лепятся к алюминиевой пластинки, при том не забываем изолировать подложки указанных элементов от радиатора, используя пластиковые втулки и теплопроводящие изолирующие прокладки. Термопаста также не помешает.

Благодаря шим-управлению, данный преобразователь обладает очень высоким КПД, ток холостого хода в зависимости от питающего напряжения может составить от 20 до 40 миллиампер.

Теперь давайте сделаем некоторые тесты первым делом проверим диапазон выходных напряжений подавая на вход скажем 12 вольт, при этом максимальное выходное напряжение составило около 25 вольт можно и больше поднять, но я не рискну, так как конденсаторы у меня всего то на 25 вольт и при дальнейшем увеличении выходного напряжения они могут красиво бахнуть

Минимальное напряжение составляет около 5 вольт — это значит, что спокойно можно и смартфоны заряжать.

Стабилизация отрабатывает прекрасно, при изменениях входного напряжения на где-то 10 вольт, выходное держится строго в пределах заданной величины, что не может не радовать.

Введите электронную почту и получайте письма с новыми поделками.

Несмотря на компактные размеры этот малыш обеспечивает на выходе ток около 3-х ампер, почти без просадки выходного напряжения, но как сказал ранее со схемы можно снять токи в 5 и более ампер.

Вдобавок ко всему скажу, что силовые дорожки печатной платы в обязательном порядке нужно усилить припоем, по ним будут протекать немалые токи.

Автономный источник питания с возможностью выставить любое штатное и нештатное напряжение на выходе я думаю будет актуальным для многих радиолюбителей, а также и для автолюбителей.

Вот такая получилась полезная поделка, печатку для сборки данного преобразователя прилагаю:

  • Плата в формате .lay : скачать…

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Как собрать своими руками модуль зарядного устройства и повышающего преобразователя для литиевых аккумуляторов

В этом материале мы собираемся показать, как создать модуль зарядного устройства и повышающего преобразователя для литиевых батарей, комбинируя микросхему зарядного устройства литий-ионного аккумулятора TP4056 и повышающий преобразователь FP6291 для одноэлементной литиевой батареи. Такой батарейный модуль будет очень полезен при питании наших электронных проектов от литиевых батарей. Модуль может безопасно заряжать литиевую батарею и повышать ее выходное напряжение до регулируемого 5 В, которое может использоваться для питания большинства наших плат разработки, таких как Arduino, NodeMcu и т. д. Зарядный ток нашего модуля будет установлен на 1 А, и выходной ток также будет установлен на 1 А при 5 В, однако его также можно легко изменить, чтобы обеспечить до 2,5 А, если это требуется для нагрузки и поддерживается батареей.

Итак, перейдем сразу к делу, то есть к принципиальной схеме, представленной на следующем изображении.

Принципиальная электрическая схема для зарядного и усилительного модуля литиевого аккумулятора 18650 представляет все необходимые компоненты и соединения. Эта схема состоит из двух основных частей: одна представляет собой схему зарядки аккумулятора, а вторая представляет собой часть повышающего преобразователя DC/DC. Вспомогательная часть используется для повышения напряжения батареи с 3,7 В до 4,5 В-6 В. В этой схеме мы использовали гнездовой разъем USB типа A на стороне усилителя и 5-контактный разъем Micro USB 2.0 на стороне зарядного устройства.

Читайте также  Компания microchip расширила семейство 8-битных pic® микроконтроллеров серии pic16f178x

Схема зарядного устройства аккумулятора разработана вокруг специального зарядного устройства для литий-ионного аккумулятора TP4056. TP4056 – это комплектное линейное зарядное устройство постоянного тока / постоянного напряжения для одноэлементных литий-ионных аккумуляторов. Корпус SOP и малое количество внешних компонентов делают TP4056 идеально подходящим для портативных приложений. Эта микросхема осуществляет зарядку аккумулятора, обрабатывая входное питание 5 В постоянного тока, полученное через разъем Micro USB. Связанные с ним светодиоды показывают состояние зарядки.

Схема повышающего преобразователя постоянного тока разработана с использованием интегрального повышающего преобразователя FP6291. Эта повышающая микросхема DC/DC с частотой коммутации 1 МГц может использоваться в приложении, например, для получения стабильного напряжения 5 В от батареи 3 В. Схема повышающего преобразователя получает входное питание через клеммы аккумулятора (+ и -), которое обрабатывается микросхемой FP6291, чтобы обеспечить стабильное питание 5 В постоянного тока через стандартный разъем USB на своем выходе.

Теперь, когда мы понимаем, как работают схемы, мы можем приступить к созданию печатной платы для нашего проекта. Вы можете спроектировать печатную плату, используя любое программное обеспечение на наш выбор. Наша печатная плата выглядит как показано на следующем изображении (gerber-файлы).

После создания печатной платы и сборки всех компонентов и припайки красного и черного провода к контактам B+ и B- подключите батарею 18650. Собранный модуль вместе с литиевой батареей показан далее.

Зеленый и желтый светодиоды на плате показывают состояние зарядки модуля. Зеленый светодиод будет светиться, когда батарея заряжается, и желтый светодиод будет светиться, когда зарядка завершена, или модуль ожидает батареи. Порт microUSB можно использовать для зарядки аккумулятора, если зарядное устройство не подключено, тогда ни зеленый светодиод, ни желтый светодиод не будут светиться. Мы можем использовать любое зарядное устройство 5 В с этим модулем, просто убедитесь, что выходной ток зарядного устройства составляет 1 А или более. На следующем изображении показан модуль зарядки нашей литиевой батареи, обратите внимание на зеленый светодиод.

Выходной USB-порт рассчитан на 5 В и 1 А. Напряжение батареи 18650 увеличено до 5 В для питания электронных устройств. На следующем изображении показано, как использовать модуль для питания платы Arduino nano.

Обратите внимание, что максимальный выходной ток модуля может быть настроен до 2,5 А теоретически, но практически сложно получить более 1,5 А, даже когда резистор установлен на 2,5А. Это может быть из-за батареи или самой микросхемы повышающего преобразования. Однако, если ток нагрузки меньше 1 А, этой недорогой схемы будет вполне достаточно.

Преобразователь и зарядное устройство в одном флаконе

Устройство представляет из себя реверсивный преобразователь 12v аккумулятора в переменное напряжение 220v 50гц, включающийся автоматически по пропадании напряжения сети. При появлении напряжения в сети устройство автоматически переходит в режим заряда аккумулятора. Устройство защищено от переполюсовки аккумулятора в любом режиме работы и в любой фазе работы.

Применён один реверсивный силовой трансформатор. Обратные диоды силовых ключей двухтактного преобразователя являются двуполупериодным выпрямителем зарядного устройства. Ключ регулятора напряжения и тока зарядного устройства является одновременно защитным разъединителем при переполюсовке аккумулятора.

Преобразователей с автоматическим устройством переключения, собранных по данной схеме работает с десяток. Схема опубликована в РЛ-7 2000(опечатка-выводы 13 и 15 счётчика ИЕ8 нужно поменять местами) Полностью UGP испытано лишь на макете.

Приглашаю к дискуссии по спорным вопросам в форум этого сайта:

1.Выходы КМОП счётчика ИЕ8 непосредственно включены на входные ёмкости затворов мощных полевых транзисторов.

2.Будет ли работоспособна схема ограничения тока и напряжения заряда при любых возможных режимах.

3.Сохраняется ли защита от возможной переполюсовки аккумулятора в любых возможных случаях.

Добавить комментарий

На элементах DD1.2,DD1.3 собран задающий генератор частотой 500гц. Делитель DD2 формирует две импульсные последовательности частотой 50гц с фазами, сдвинутыми на 180 градусов для управления силовыми ключами двухтактного преобразователя VT4,VT5. Чтобы избежать сквозных токов переключения между выключением одного ключа и включением другого существует мёртвая зона в 10% длительности периода. При подаче высокого уровня логическая «1» на DD2/15 (вход ,блокировки преобразователя) счётчик сбрасывается в исходное состояние, запирая оба выходных ключа. Конденсатор С7 заряжается через R12 до напряжения питания и подаёт единицу на вход блокировки через VD14. При нормальной работе преобразователя на выходе DD2/1 каждые 20мс появляется единица которая через R16 открывает транзистор VT6 разряжая С7, не давая тем самым сработать блокировке. При появлении напряжения в сети 220в открывается транзистор оптопары DD3 и блокирует преобразователь +12в через R18 и VD16 на DD2/13. Срабатывает реле Р1, подключая к сети 220в нагрузку и выходную высоковольтную обмотку силового трансформатора преобразователя, который превращается в понижающий силовой трансформатор зарядного устройства. Обратные диоды закрытых ключей VT4 и VT5 работают как выпрямительные для зарядного устройства. Зарядный ток вызывает падение напряжения на датчике тока R*(в качестве R* используется подводящий плюсовой провод аккумулятора) которым открывается транзистор VT2, подающий единицу на DD1.1/1,2. На DD1.1/3 появляется ноль, ключ VT1 отключает аккумулятор от зарядной цепи на время разряда С3. Порог срабатывания VT2 , а, следовательно, и зарядный ток выставляется потенциометром R7. Когда напряжение на аккумуляторе превысит 14в, откроется стабилитрон VD5 и током через R9 откроет VT3 и отключит аккумулятор. Потенциометром R9 выставляется напряжение на заряженном аккумуляторе (14.5-15в), которое в дальнейшем можно контролировать по свечению VD4. Ключ VT1 будет открываться только при правильном подключении аккумулятора к устройству, как в режиме заряда ,так и в режиме работы преобразователя. С целью защиты аккумулятора от глубокого разряда R21 подбирается таким образом ,чтобы при Uпит. схемы 10в транзистор VT7 уже закрылся, светодиод VD18 погас и через R22, R23, VD19 пошла единица на вход блокировки. С8 предотвращает блокировку в случае кратковременного понижения питания. VD18 является визуальным индикатором разряженности аккумулятора, при 10вольтах светодиод гаснет, при 15вольтах светит в полную силу. Для защиты выходных транзисторов от Uакк.> 15вольт током через VD21 и R25 открывается VT18 и через R24 и VD20 подаёт единицу на вход блокировки. Эта блокировка нужна для предотвращения выхода из строя силовых транзисторов. Максимальное допустимое напряжение исток-сток КП723А=60в. Во время работы преобразователя при закрытии ключей на стоках присутствуют всплески более 3Uпит. Мощность устройства ограничена мощностью силового трансформатора и максимальным допустимым током выходных транзисторов. Для силовых транзисторов нужно иметь двойной запас по току и тройной по напряжению. С использованием КП723А можно построить устройство мощностью 300ватт. Если напряжение в сети отличается от нормы , желательно сделать отводы от обмоток, как показано на рисунке. Должны соблюдаться соотношения W1/W3=14

15 , (W1+W2) / W3=23 Резистор R27-0,5вт. Все остальные мощностью 0,25вт. Силовые цепи на схеме выделены жирными линиями должны быть по возможности короче и соответствующего сечения. Реле Р1 — РЭН-34 на 27в. Выключатель ПУСК / СТОП позволяет выключать преобразователь, когда в случае отсутствия напряжения в сети резервное питание не требуется. Плюс питания через выключатель, R18 и VD16 на вход блокировок. При размыкании контактов выключателя происходит запуск преобразователя так-же, как после пропадания напряжения в сети.