Измеритель емкости и esr

ESR-метр

В этой статье мы с вами будем собирать ESR-метр. В первый раз слышите слово “ESR”? А ну-ка бегом читать эту статью!

Для чего нужен ESR-метр

Итак, для чего нам вообще собирать ESR-метр? Для тех, кто поленился читать статью про ESR давайте вспомним, чем оно нам вредит. Дело в том, что сейчас почти во всей электронной аппаратуре используются импульсные блоки питания. В этих импульсных блоках питания “гуляют” высокие частоты и некоторые из этих частот проходят через электролитические конденсаторы. Если вы читали статью конденсатор в цепи постоянного и переменого тока, то наверняка помните, что высокие частоты конденсатор пропускает через себя почти без проблем. И проблем тем меньше, чем выше частота. Это, конечно, в идеале. В реальности же в каждом конденсаторе “спрятан” резистор. А какая мощность будет выделяться на резисторе?

P – это мощность, Ватт

I – сила тока, Ампер

R – сопротивление, Ом

А как вы знаете, мощность, которая рассеивается на резисторе – это и есть тепло 😉 И что тогда у нас получается? Конденсатор тупо превращается в маленькую печку)). Нагрев конденсатора – эффект очень нежелательный, так как при нагреве в лучшем случае он меняет свой номинал, а в худшем – просто раскрывается розочкой). Такие кондеры-розочки использовать уже нельзя.

Вздувшиеся электролитические конденсаторы – это большая проблема современной техники. Очень много отказов в работе электроники бывает именно по их вине. Визуально это проявляется в появлении припухлости в верхней части конденсатора. Видите небольшие прорези на шляпе этих конденсаторов? Это делается для того, чтобы такой конденсатор не разрывался от предсмертного шока и не забрызгивал всю плату электролитом, а ровнёхонько надрывал тонкую часть прорези и испускал тихий спокойных выдох. У советских конденсаторов таких прорезей не было, и поэтому если они и бахали, то делали это громко, эффектно и задорно)))

Но иногда бывает и так, что внешне такой конденсатор ничем не отличается от простых рабочих конденсаторов, а ESR очень велико. Поэтому, для проверки таких конденсаторов и был создан прибор под названием ESR-метр. У меня например ESR-метр идет в комплекте с Транзистор-метром:

Минус данного прибора в том, что им можно замерять ESR только демонтированных конденсаторов. Если замерять прямо на плате, то он выдаст полную ахинею.

Схема и сборка

В интернете очень давно гуляет схема простенького ESR-метра, а точнее – приставки к мультиметру. С помощью нее можно спокойно замерить ESR конденсатора, даже не выпаивая его из платы. Давайте же рассмотрим схемку нашей приставки. Кликните по ней, и схема откроется в новом окне и в полный рост:

Вы легко его узнаете по розовой окраске. Хотя бывают и другого цвета, но в основном розовый.

Что это за “фрукт”? МГТФ расшифровывается как Монтажный, Гибкий, Теплостойкий, в Фторопластовой изоляции. Этот провод отлично подходит для электронных поделок, так как при пайке его изоляция не плавится. Это только один из плюсов.

Обратную сторону с проводами МГТФ я показывать не буду). Там ничего интересного нет).

После сборки макетная плата выглядит вот так:

Микросхемы по привычке всегда ставлю в панельки:

При своей стоимости, панельки позволяют быстро сменить микросхему. Особенно это актуально для дорогих микроконтроллеров. Вдруг понадобится МК для других целей?)

Для подачи питания с батарейки на платку, я воспользовался стандартной клеммой от старого мультиметра:

Как быть, если у вас нет такой клеммы, а подать питание с Кроны необходимо? В таком случае, у вас наверняка есть старая батарейка Крона, так ведь? Аккуратно вскрываем корпус, снимаем клеммы батарейки, подпаиваем проводки и у нас готова клемма для подключения к новой батарейке. На крайний случай их можно также купить на Али. Выбор огромный.

Прибор выполнен в виде приставки к любому цифровому мультиметру:

Здесь есть одно “но”. Так как мы измеряем на пределе 200 милливольт постоянного напряжения (DCV), то и значения мы получим не в Омах или миллиомах, а в милливольтах, которые затем, сверяясь со значениями полученными при калибровке прибора, мы должны будем перевести в Омы.

А вот и мой самопальный щуп:

Подобные приборы не любят длинных проводов-щупов, идущих к ножкам конденсатора, и поэтому я был вынужден сделать подобие пинцета, собранное из двух половинок фольгированного текстолита.

Внутри корпуса платка выглядит примерно вот так:

Провода, идущие к пинцету, закреплены каплей термоклея. Между щупами, идущими к мультиметру, стоит конденсатор керамика 100 нанофарад с целью снизить уровень помех. В схеме применен подстроечный резистор на 1,5 Килоома. С помощью этого резистора мы и будем калибровать наш приборчик.

Калибровка прибора

После того как все собрали, приступаем к калибровке (настройке) нашего ESR-метра пошагово:

1)Если у вас есть осциллограф, замеряем на измерительных щупах напряжение с частотой 120-180 КилоГерц. Если замеряемая частота не укладывается в этот диапазон, то меняем значение резистора R3.

2) Цепляем мультиметр и ставим его крутилку на измерение милливольт постоянного напряжения.

3) Берем резистор номиналом в 1 Ом и цепляем его к измерительным щупам. В данном случае, к нашему самопальному пинцету.

4) Добиваемся того, чтобы мультиметр показал значение в 1 милливольт, меняя значение подстроечного резистора R1

5) Теперь берем сопротивление 2 Ома, и не меняя значение R1 записываем показания мультиметра

6) Берем 3 Ома и снова записываем показания и тд. Думаю, до 8-10 Ом вам таблички хватит вполне.

Например, мы можем выставить соответствие 1 милливольт – это 1 Ом, и т. д., хотя я предпочел настроить 4,8 милливольт – 1 Ом, для того чтобы была возможность точнее измерять низкие значения сопротивления. При замыкании щупов – контактов пинцета на дисплее мультиметра значение 2,8 милливольт. Сказывается сопротивление проводов-щупов. Это у нас типа 0 Ом ;-).

Приведу для ознакомления значения измерений низкоомных резисторов: при измерении резистора 0,68 Ом значения равны 3,9 милливольт, 1 ом – 4,8 милливольт, 2 Ома – 9,3 милливольта. У меня получилась вот такая табличка, которую я потом и наклеил на свой прибор

При измерении сопротивления в 10 Ом на экране уже показание 92,5 миллиВольт. Как мы видим, зависимость не пропорциональная.

После того, как я сделал замеры, смотрю в другую табличку:

Слева – номинал конденсатора, вверху – значение напряжения, на которое рассчитан этот конденсатор. Ну и, собственно, в таблице максимальное значение ESR конденсатора, который можно использовать в ВЧ схемах.

Давайте попробуем замерить ESR у двух импортных и одного отечественного конденсатора

Как вы видите, импортные конденсаторы обладают очень маленьким ESR. Советский конденсатор показывает уже большее значение. Оно и не удивительно. Старость не в радость).

Поправки к схеме

1) Для более-менее точных измерений, желательно, чтобы питание нашего ESR-метра было всегда стабильное. Если батарейка разрядится хотя бы на 1 Вольт, то показания ESR также будут уже с погрешностью. Так что лучше постарайтесь давать питание на ESR-метр всегда стабильное. Как я уже сказал, для этого можно использовать внешний блок питания или собрать схемку на 7809 микросхеме. Например, блок питания можно собрать по этой схеме.

2) Показания, которые выдает наша самоделка, не говорят о том, что наш самопальный прибор с великой точностью замеряет ESR. Скорее всего, его можно отнести к пробникам. А что делают пробники? Отвечают в основном на два вопроса: да или нет ;-). В данном случае прибор “говорит”, можно ли использовать такой конденсатор или лучше все-таки поставить его в НЧ (НизкоЧастотную) схему.

Данный пробник может собрать любой, даже начинающий радиолюбитель, если у него вдруг возникнет потребность заняться ремонтами. А вот и видео его работы:

Измеритель емкости и esr

Это измеритель ESR (ЭПС) + измеритель ёмкости конденсаторов.

Прибор измеряет ЭПС (эквивалентное последовательное сопротивление) конденсатора и его ёмкость измеряя время зарядки постоянным током. В роли источника тока выступает управляемый стабилитрон TL431 и p-n-p транзистор.

Читайте также  Светомузыкальная установка eq pixels

Ёмкость меряет в пределах 1 — 150 000мкФ, ESR — до 10 Ом.

Вся конструкция была успешно позаимствована с сайта pro-radio, где Олег Гинц (он же GO и он же автор конструкции) выложил свою работу на общее обозрение. Эта конструкция была повторена не один десяток, а то и сотню раз, опробована и одобрена народом. При правильной сборке остаётся лишь выставить поправочные коэффициенты на ёмкость и сопротивление.

Прибор собран на микроконтроллере PIC16F876A, распространённом ЖК-дисплее типа WH-1602 на базе HD44780 и рассыпухе. Контроллер можно заменить на PIC16F873 — в конце статьи есть прошивки на обе модели.

Ёмкость и ESR конденсаторов около 1000 мкф измеряет за доли секунды. Так же с большой точностью измеряет малое сопротивление. То есть можно пользоваться, когда необходимо сделать шунт для амперметра 🙂

Так же хорошо меряет ёмкость внутрисхемно. Только, если есть индуктивности — может врать. В этом случае выпаиваем элемент.

Корпус, Z-42, в качестве коннектора подключения щупов по четырёхпроводной схеме выбрал старый, добрый, надёжный USB 2.0 порт.

Старый, советский, подсохший электролитический конденсатор.

А это нерабочий конденсатор с цепи питания процессора на материнской плате.

Конденсатор предварительно разряжается, включается источник тока 10 мА, оба входа измерительного усилителя подключаются на Сх, делается задержка порядка 3.6 мкс для устранения влияния звона в проводах. Одновременно через ключи DD2.3 || DD2.4 заряжается конденсатор С1, который собственно и запоминает самое большое напряжение, которое было на Cx. Следующим шагом размыкаются ключи DD2.3 || DD2.4 и выключается источник тока. Инвертирующий вход ДУ остается подключенным к Сх, на котором после выключения тока напряжение падает на величину 10мА*ESR. Вот собственно и все — далее спокойно можно мерять напряжение на выходе ДУ — там два канала, один с КУ=330 для предела 1 Ом и КУ=33 для 10 Ом.

На форуме-источнике, где выложена печатная плата и прошивки — печатка была двухсторонняя. С одной стороны — все дорожки, с другой — сплошной слой земли и просто дырки под компоненты. У меня такого текстолита на момент сборки не было, поэтому пришлось делать землю проводами. Так или иначе, особых сложностей это не доставило и на работоспособности и точности прибора никак не отразилось.

На последней картинке — источник тока, источник отрицательного напряжения и силовой ключ.

Плата простая, настройка — ещё проще.

Первое включение — проверяем наличие +5V после 78L05 и -5V (4.7V) на выходе DA4 (ICL7660). Подбором R31 добиваемся нормальной контрастности на индикаторе.
Включение прибора при нажатой кнопке Set переводит его в режим установки корректирующих коэффициентов. Их всего три — для каналов 1 Ом, 10 Ом и для ёмкости. Изменение коэффициентов кнопками + и -, запись в EEPROM и перебор — той же кнопкой Set.
Имеется так же отладочный режим — в этом режиме на индикатор выводятся измеренные значения без обработки — для емкости — состояние таймера (примерно 15 отсчетов на 1 мкФ) и оба канала измерения ESR (1 шаг АЦП=5V/1024). Переход в отладочный режим — при нажатой кнопке «+»
И еще один момент — установка нуля. Для этого замыкаем вход, нажимаем и удерживаем кнопку «+» и с помощью R4 добиваемся минимальных показаний (но не нулевых!) одновременно по обоим каналам. Не отпуская кнопку «+», нажимаем Set — на индикатор выведется сообщение о сохранении U0 в EEPROM.
Далее измеряем образцовые сопротивления 1 Ом (или меньше), 10 Ом и емкость (которой доверяете) , определяем поправочные коэффициенты. Прибор выключаем, включаем при нажатой кнопке Set и устанавливаем к-ты соответственно результатам измерений.
Плата в три этапа, вид сверху:

Привожу небольшой список FAQ, сформировавшийся на форуме-источнике.

Q. При подключении резистора в 0,22 Ома — пишет — 1 с копейками, при подключении резистора в 2,7 Ом — пишет ESR > 12.044 Ом.

A. Отклонения могут быть, но в пределах 5-10%, а тут в 5 раз. Надо проверять аналоговую часть, виновниками могут быть в порядке убывания вероятности:

источник тока,
дифф. усилитель
ключи
Начните с источника тока. Он должен выдавать 10 (+/-0.5) мА, его проверить можно либо в динамике осциллографом, нагрузив на 10 ом — в импульсе должно быть не более 100 мВ. Если ловить иголки не хочется — проверьте в статике — уберите перемычку (нулевое сопротивление) между RC0 и R3, нижний конец R3 на землю, и включаете миллиамперметр между коллектором VT1 и землей (правда возможно будет мешать VT2 — тогда при проверке коллектор VT1 лучше отключить от схемы).

На деле решение было такое: -«Перепутал я сослепу 102 и 201 — и вместо 1 килоома забубенил 200 ом.»

Q. Возможна ли замена TL082 на TL072?

A. К ОУ особых требований нет кроме полевиков на входе, с TL072 должно работать.

Q. Зачем на вашей печатке сделаны два входных разъёма: один подключен к диодам-транзисторам, а другой — к DD2?

A. Чтобы скомпенсировать падение напряжения на проводах, тестируемый элемент лучше подключать по 4-х проводной схеме, поэтому и разъем 4-х контактный, а провода объединяются вместе уже на крокодилах.

Q. На холостом ходу отрицательное напряжение -4 Вольта и сильно зависит от типа конденсатора между 2 и 4 выводами ICL 7660. С обычным электролитом всего -2 В было.

A. После замены на танталовый, выдранный с 286 материнки стало -4 В.

Q. Индикатор WH-1602 не работает или греется контроллер индикатора.

A. Неверно указана цоколевка индикатора WINSTAR WH-1602 в плане разводки питания, перепутаны 1 и 2 выводы! На alldatasheet 1602L, который совпадает с цоколевкой, указанной Winstar и на схеме. Мне же попался 1602D — вот он имеет «спутанные» 1 и 2 выводы.

Надпись Cx —- выводится в следующих случаях:

При измерении емкости срабатывает тайм-аут, т.е. за отведенное время измерения прибор не дождался переключения обоих компараторов. Это происходит при измерении резисторов, закороченных щупах, либо когда измеряемая емкость >150000 мкФ и т.п.
Когда напряжение, измеренное на выходе DA2.2 превысит 0x300 (это показания АЦП в 16-ричном коде), процедура измерения емкости не выполняется и на индикатор также выводится Cx —-.
При разомкнутых щупах (или R>10 Ом) так и должно быть.

Знак «>» в строке ESR появляется при превышении напряжения на выходе DA2.2 0x300 (в единицах АЦП)

Подводя итог: травим плату, без ошибок паяем элементы, прошиваем контроллер — и прибор работает.

Спустя пару лет решил сделать прибор автономным. По мотивам зарядного устройства для смартфонов был сделан step-up преобразователь на 7 В выходного напряжения. Можно было бы сразу на 5 В, но так как плата закреплена в корпусе на клей — отдирать не стал, да и падение напряжения на КРЕН7805 в два Вольта — небольшая потеря 🙂

Мой новый конструктор выглядел так:

Маленькая платка преобразователя была «обута» в термоусадку, произведена распайка всех проводов, разъём для кроны нам больше не понадобится. Просто дырка в корпусе смотрится не очень, поэтому мы его оставим, но провода откусим. Внутри корпуса не осталось места для аккумулятора, поэтому я приклеил батарею на тыльную сторону прибора и приделал ему ножки, чтобы в рабочем состоянии он не лежал на аккумуляторе.

На лицевой стороне вырезал отверстия для кнопки питания и светодиода индикации успешной зарядки. Индикацию заряда аккумулятора не делал.

Потом решил, что раз пошла такая пьянка неплохо было бы видать экран в темноте, на случай ремонта при свечах, если отключат свет, а работать хочется 🙂

Но это уже после того, как появился более понтовый RLC-2. Подробнее об этом приборе в этой статье.

Уже не одну сотню приборов эта маленькая штучка помогла восстановить за считанные минуты. Делайте, не пожалеете. Или заказывайте у меня:)

Наша группа Вконтакте, где можно задать вопрос, на который всегда будет дан ответ!

My-chip.info — Дневник начинающего телемастера

Учимся ремонтировать кинескопные, LED и ЖК телевизоры вместе.

Электролитический конденсатор. Параметр ESR и его измерение.

02.12.2015 Lega95 2 Комментариев

Привет друзья. Сегодня расскажу о приборе, который очень сильно помогает мне в ремонте, экономит деньги и время. Это ESR метер китайского происхождения Mega328. Купил его на алиекспресс у этого продавца . Какие именно достоинства этого прибора?

Во первых, им очень удобно проверять электролитические конденсаторы. Для этой цели я его и покупал. У каждого конденсатора есть два параметра, которые отвечают за его работу. Первый параметр это емкость. Это те самые микрофарады которые и обозначается на корпусе конденсатора. Емкость легко измерять любым мультиметром который поддерживает эту функцию.

Читайте также  Кодовый замок для гаража

Сначала я думал, что это единственный параметр который мне нужно знать в конденсаторе, чтобы определить его исправность, но не тут то было. Ремонтируя один монитор, я никак не мог довести до ума источник питания. Блок выдавал заниженные напряжения, как ни крути. Проверяя конденсаторы, я мерил их емкость, которая была в пределах нормы. В один момент, плюнув на все это дело, я выпаял все конденсаторы, и заменил их на новые, после чего монитор запустился. Моему удивлению не было предела. Я решил найти причину, и поочередно начал впаивать старые конденсаторы, пока не нашел один 470 мкф на 50в, впаивая который, монитор переставал работать. Тестер показывал что конденсатор исправен, но на практике оказалось, что это не так. После этого я начал изучать все о конденсаторах, и открыл для себя такой параметр как ESR.

ESR — Equivalent Series Resistance – параметр конденсатора, который показывает активные потери в цепи переменного тока. Это можно представить как подключенный последовательно конденсатору резистор. Чем меньше ом потери тока, тем лучшего качества конденсатор. Скажу сразу, параметр ESR очень актуален для электролитических конденсаторов емкостью свыше 4,7 мкф. У нового электролитического конденсатора 1мкф ESR может быть и 5 Ом. Для конденсаторов меньшего номинала это не столь важно, по крайней мере в моей практике это так.

Теперь по сути. У электролитического конденсатора емкостью больше 4,7 мкф ESR должен быть меньше 1 Ом . Если этот параметр выше, то я меняю конденсатор на новый.

На картинке ниже, показан пример измерения конденсатора номиналов 1000мкф на 10в.

Это сильно подсаженный конденсатор, где ESR уже 17 Ом. Очень часто бывает так, что емкость еще 950 мкф, а ESR уже 10 Ом. Такой конденсатор однозначно под замену.

Еще один пример севшего конденсатора. Это конденсатор 220 мкф на 35в. Номинал его стал 111 мкф, а ESR поднялся до 1,3 Ом.

ESR 220 мкф на 35в

Или такой же 220мкф на 35в из статьи Ремонт кадровой развертки на примере телевизора AIWA TV-215KE, где ESR уже 15 Ом.

Вот пример исправного конденсатора, который уже был в работе, но номинал его еще позволяет поработать. Это 100мкф на 63в.

Как видите, его ESR до 1 Ом, да и номинал стал меньше менее чем на 3 мкф, так что такие конденсаторы я оставляю в работе. Приведу пример идеального конденсатора. Это 1500мкф на 10в.

Здесь ESR вообще ноль Ом, а номинал больше заявленного.

Отойду немного от конденсаторов, и расскажу больше о приборе MEGA 328. Он может проверять не только конденсаторы, а и многое другое. Им легко проверять транзисторы, резисторы, стабилитроны, мосфеты и много другое. Очень удобно проверять полевые транзисторы, так как прибор покажет его тип, расположение ножек стока, истока и затвора.

Пример проверки полевого транзистора:

Прибор показывает тип транзистора, порог открытия и расположение ножек. Очень удобно, особенно для новичка.

Вот пример проверки обычного N-P-N транзистора.

Полный перечень возможностей данного тестера:

Проверка: Конденсаторов, Диодов, Двойных диодов, MOS, Транзисторов, SCR, Регуляторов, Светодиодные трубки, СОЭ, Сопротивление, регулируемые потенциометры и др.
Сопротивление: от 0.1 Ом до максимум 50 мОм
Конденсатор: от 25pF до 100,000 мкФ
Индукторы: от 0.01 mH до 20 H
Измерения биполярного транзистора текущий коэффициент усиления и база-эмиттер пороговое напряжение.
Может одновременно измерять два резисторы . Отображается на правой десятичным значением 4. Сопротивление символ на обе стороны показывает контактный номер.

Очень важно. Перед измерением ESR, конденсатор необходимо разрядить .

Тестер обычно поставляется в виде платы, с разъемом под крону. Свой прибор, я установил в распределительную коробку, вырезал окошко под дисплей, кнопку, и панель для проверки. Приклеил термоклеем, и так он у меня и работает по сей день. Вот фото:

Не сильно красиво, но за красотой я особо и не гнался :).

Виде обзор работы ESR метра


Рекомендую покупать на алиекспресс напрямую, так как это намного дешевле, тем более с нашими ценами. Вот ссылка на продавца, где покупал я. Прибор пришел в Украину за 18 дней.

Рекомендую посмотреть обзор моего нового ESR метра на аккумуляторе по этой ссылке

Перечень всех моих инструментов для ремонта можете зайти здесь:

Измеритель ESR+LCF v3.

Давно не секрет, что половина отказов в современной бытовой технике связана с электролитическими конденсаторами.
Вздувшиеся конденсаторы видно сразу, но есть и такие, которые выглядят вполне нормально. Все неисправные конденсаторы имеют потерю ёмкости и увеличенное значение ESR, или только увеличенное значение ESR(ёмкость нормальная или выше нормы).
Вычислить их — не так просто, приходится выпаивать их, если параллельно подключено несколько конденсаторов, или параллельно к измеряемому конденсатору подключены какие либо шунтирующие элементы, проверять и исправные запаивать обратно. Многие конденсаторы приклеены к плате, находятся в труднодоступных местах и демонтаж/монтаж их, занимает много времени. Ещё при нагревании, неисправный конденсатор может на время восстанавливать работоспособность.
Поэтому радиомеханики, да и не только они, мечтают иметь прибор для проверки исправности электролитических конденсаторов, внутри-схемно, не выпаивая их.
Хочу огорчить, на все 100% — это не возможно. Не возможно правильно измерять ёмкость и ESR, но проверить исправность электролитического конденсатора без выпаивания, во многих случаях возможно по увеличенному значению ESR.
Неисправные конденсаторы с увеличенным ESR и нормальной ёмкостью встречаются часто, а с нормальным ESR и с потерей ёмкости нет.
Уменьшение ёмкости от номинальной на 20% — не считается дефектом, это нормально даже для новых конденсаторов, поэтому для начальной дефектации электролитического конденсатора достаточно измерить ESR. Показания ёмкости при внутрисхемных измерениях, только для информации и в зависимости от шунтирующих элементов схемы, могут быть значительно завышенными или не измеряться.

Ориентировочная таблица допустимых значений ESR, приведена ниже:

Было разработано несколько версий измерителя ESR.
Измеритель ESR+LCF v3 (третья версия), разрабатывался с учётом максимальных возможностей при внутрисхемных измерениях. Кроме основного измерения ESR (на дисплее Rx>x.xxx), имеется дополнительная функция для внутрисхемного вычисления ESR, названная анализатором — «aESR» (на дисплее a x.xx).
Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR.
При измерении исправного конденсатора “aESR” и “ESR” близки по значению. На дисплее дополнительно выводится значение “aESR”.
Эта функция не имеет прототипа, поэтому на момент подготовки основной документации, был очень не большой опыт в её использовании.

На данный момент, есть множество положительных отзывов от разных людей с рекомендациями по её использованию.
Данный режим не даёт сто процентного результата, но при знании схемотехники и накопленном опыте — эффективность данного режима велика.
Результат внутрисхемного измерения, зависит от шунтирующего влияния элементов схемы.
Полупроводниковые элементы (транзисторы, диоды) не оказывают влияния на результат измерения.
Наибольшее влияние оказывают низкоомные резисторы, индуктивности, а так же другие конденсаторы, подключенные к цепям измеряемого конденсатора.
В местах, где шунтирующее влияние на проверяемый конденсатор не велико, неисправный конденсатор хорошо измеряется в обычном режиме «ESR», а в местах, где шунтирующее влияние велико, неисправный конденсатор (не выпаивая) можно вычислить только с помощью «анализатора — aESR».

Следует помнить, что при внутрисхемных измерениях исправных электролитических конденсаторов, показания «aESR» в большинстве случаев немного выше показаний «ESR». Это нормально, так как многочисленные соединения с измеряемым конденсатором, вносят погрешность.

Наиболее сложными местами для измерения, являются схемы с одновременным шунтированием множеством элементов разных видов.

На схеме выше, неисправный конденсатор С2+1ом, шунтируется C1+L1+C3+R2.

При измерении такого конденсатора, значение ESR в норме, а анализатор показывает ”0,18” – это превышение нормы.

К сожалению, не всегда удаётся внутри-схемно определить исправность электролитического конденсатора.
Например: в материнских платах по питанию процессора не получится, там слишком велико шунтирование. Радиомеханик, как правило, ремонтирует однотипную аппаратуру, и со временем у него накапливается опыт, и он уже точно знает в каком месте и как диагностируются электролитические конденсаторы.

И так, что же может мой измеритель.

Измеритель ESR+LCF v3 — измеряет

ESR электролитических конденсаторов 0 — 50 Ом
Ёмкость электролитических конденсаторов 0,1 — 60 000 мкФ
Ёмкость неэлектролитических конденсаторов 1 пФ — 2,0 мкФ
Индуктивность 0,1 мкГн — 1,0 Гн
Частоту до 50 мГц
Напряжение питания батарея 7 — 9 вольт
Ток потребления 10 — 30 мА
Читайте также  Ветряк своими руками за 150$

Дополнительные функции:

— В режиме ESR можно измерять постоянные сопротивления 0.001 – 100Ом, измерение сопротивления цепей, имеющих индуктивность или ёмкость, невозможно (т.к. измерение производится в импульсном режиме и измеряемое сопротивление шунтируется). Для корректного измерения таких сопротивлений необходимо нажать кнопку «+» (при этом измерение производится при постоянном токе 10мА). В этом режиме диапазон измеряемых сопротивлений равен 0.001 – 20Ом.
— В режиме ESR при нажатой кнопке «L/C_F/P» включается функция внутрисхемного анализатора ( подробное описание см. далее).
— В режиме частотомера при нажатой кнопке «Lx/Cx_Px» включается функция «счетчик импульсов» (непрерывный счёт импульсов поступающих на вход “Fx“). Обнуление счетчика производится кнопкой «+».
— Индикация разряда батареи.
— Автоматическое отключение — около 4х минут (в режиме ESR-2мин.). По истечении времени простоя, загорается надпись «StBy» и в течении 10 сек, можно нажать любую кнопку и продолжится работа в том же режиме.

В современной технике электролитические конденсаторы часто шунтируются индуктивностью менее 1 мкГн и керамическими конденсаторами. В обычном режиме здесь, измеритель не способен выявить неисправный электролитический конденсатор без выпаивания. Для этих целей, добавлена функция внутрисхемного анализатора.
Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR(Rx) = aESR(a). На дисплее дополнительно выводится значение aESR (a). Наиболее эффективна данная функция при измерении ёмкостей выше 300мкФ. Для включения этой функции необходимо нажать кнопку «L/C_F/P».

Принципиальная схема.

«Сердцем измерителя является микроконтроллер PIC16F886-I/SS. В этом измерителе также, без изменения прошивки, могут работать и микроконтроллеры PIC16F876, PIC16F877.

Конструкция и детали.

ЖК — индикатор на основе контроллера HD44780, 2 строки по 16 знаков.
Контроллер – PIC16F886-I/SS.
Транзисторы BC807 — любые P-N-P, близкие по параметрам.
ОУ TL082 – любой этой серии (TL082CP, AC и др.). Возможно применение ОУ MC34072. Применение других ОУ (с другим быстродействием) не рекомендуется.
Полевой транзистор P45N02 – 06N03, P3055LD и др., подходит практически любой из материнской платы компьютера.
Дроссель L101 – 100мкГн +-5%. Можно изготовить самому или применить готовый. Диаметр провода намотки должен быть не менее 0.2мм.
С101 — 430–650пФ с низким ТКЕ, К31-11-2-Г — можно найти в КОС отечественных телевизоров 4-5 поколения ( КВП контура ).
С102, С104 4–10мкФ SMD — можно найти в любой старой компьютерной материнской плате Пентиум-3 возле процессора, а также в боксовом процессоре Пентиум-2.
BF998 — можно найти в СКВ, телевизоров и видеомагнитофонов ГРЮНДИК.
SW1 (размер7*7mm)- обратите внимание на распиновку, встречаются двух типов. Разводка печатной платы соответствует рис 2.

Печатная плата выполнена из одностороннего стеклотекстолита.

Одновременно печатная плата служит основанием для корпуса. По периметру платы припаяны полоски стеклотекстолита шириной 21мм.

Крышки сделаны из чёрной пластмассы.

Сверху расположены кнопки управления, а спереди три гнезда типа «ТЮЛЬПАН», для съёмного щупа. Для режима “R/ESR” – гнездо более высокого качества.

Конструкция щупа:

В качестве щупа, использован металлический штекер типа « тюльпан». К центральному выводу припаяна игла.

Из доступного материала для изготовления иглы можно использовать латунный стержень, диаметром 3мм. Через некоторое время, игла окисляется и для восстановления надёжного контакта, достаточно протереть кончик, мелкой наждачной бумагой.

Ниже в архиве есть все необходимые файлы и материалы для сборки и настройки данного измерителя.

Удачи всем и всего наилучшего!

Архив Измеритель ESR+LCF v3.

ESR-тестер конденсаторов

Конденсаторы — одни из наиболее часто используемых радиодеталей, наряду с резисторами, поэтому в ходе радиолюбительской деятельности довольно часто приходится проверять их пригодность к работе. Это может быть актуально при использовании не новых элементов, а выпаянных со старых плат — к сожалению, радиодетали в магазинах с каждым годом не дешевеют, отчасти по этому многие не брезгуют использовать для создания самодельных устройств выпаянные б.у. К тому же в последнее время сильно упало качество продаваемых радиодеталей — производители стараются экономить на материалах, а недобросовестные и вовсе продают подделки, поэтому в особо ответственных случаях приходится контролировать качество и только что купленных элементов. В частности, это относится к конденсаторам, ведь если с резисторами всё довольно просто — они либо соответствуют номинальному сопротивлению, либо нет, то с конденсаторами сложнее — помимо ёмкости, которая, кстати, может иметь весьма большой допуск, конденсаторы характеризуются таким параметром как ESR, или внутреннее сопротивление.

Основой схемы является логическая отечественная микросхема К561ЛН2, представляющая собой 6 логических элементов «НЕ», относится она к семейству КМОП логики. Помимо самой микросхемы присутствует немного обвязки в виде резисторов и конденсаторов. В левый части схемы показано подключение стрелочной головки, там же видны пара диодов — обратите внимание, что диоды должны быть германиевыми, подойдут широко распространённые Д9 с любым буквенным индексом. Сама стрелочная головка может быть рассчитана на ток полного отклонения в 100-500 мкА, таким образом, подойдут практически любые — автор решил использовать компактную головку от старого магнитофона. Наличие проградуированной шкалы на головке не обязательно — при желании в любом случае можно поместить туда свою, распечатанную на принтере в нужном масштабе. Прибор относится к пробникам и назвать его именно измерительным прибором неоправданно, поэтому градуировать шкалу в единицах измерения также не имеет особого смысла, достаточно лишь наглядно видеть угол отклонения стрелки при измерении того или иного конденсатора. Обратите внимание, что стрелочная головка имеет полярность — если стрелка пытается отклонится не в ту сторону, следует поменять местами контакты подключения головки.

На схеме виден подстроечный резистор R1 сопротивлением 1,5 кОм, он необходим для установки значения, при котором стрелка будет полностью отклонятся по шкале. Прибор представляет собой, по сути, измеритель сопротивления в диапазоне от десятых ома до десятка Ом — можно установить настройку так, что стрелка будет отклоняться полностью при 10 Ом ESR, а можно настроить так, что полное отклонение будет уже при 1 Оме — это зависит от того, какая нужна точность и какие конденсаторы будут тестироваться. В качестве эталонов для калибровки пробника можно использовать обычные резисторы со значениями 1-10 Ом. Подстроечный резистор для настройки желательно вывести в удобное место снаружи корпуса, как автор и сделал.

Измеряемый конденсатор на схеме помечен как Сх, к микросхеме он подключается не напрямую, а через конденсатор — это важное условие. Чтобы не наматывать трансформатор самому, автор взял готовый из неисправной лампочки-энергосберегайки, однако можно намотать и самому на ферритовом кольце. Первичная обмотка будет содержать 150 витков проводом 0,1 мм, вторичная 8 витков проводом 0,5 мм, количество витков в обмотках нужно подбирать для достижения наилучшего результата работы схемы в зависимости от марки используемого феррита.

Элементы в обвязке микросхемы можно припаять навесным монтажом прямо на её выводах, а можно и вытравить специально печатную плату, как сделал автор, рисунок печатной платы представлен на картинке выше. Элементы в подключении стрелочной головки, конденсатор и пара диодов, распаиваются прямо на выводах головки. В качестве основы для всей конструкции выступает большой пластиковый пинцет — на одном его конце крепится стрелочная головка, а на двух кончиках пинцета закреплены медные пластинки, с помощью которых очень удобно подключить пробник к измеряемому конденсатору.

Обратите внимание, что данная схема чувствительна к напряжению питания — при его изменении или пульсациях может сбиваться калибровка пробника. Поэтому питать прибор следует стабилизированным источником напряжения, например, от литий-ионного аккумулятора с подключенным импульсным повышающим преобразователем на 5В, в этом случае не стоит жалеть ёмкости по питанию на входе схемы, не помешает также в разрыв одного из питающих проводов установить индуктивность для лучшего подавления пульсаций. Питание от аккумулятора обеспечивает пробнику мобильность — его можно взять с собой куда угодно.

Все электронные части схемы размешаются в диэлектрическом цилиндре, на обратной стороне крепится переменный резистор настройки. Ниже представлены фотографии работы пробника: на картинке ниже щупы замкнуты, стрелка в минимальном положении.

Подключен резистор 0,1 Ом. Как можно увидеть, стрелка заметно сдвинулась.

Подключен резистор 1 Ом.

Таким образом, получился крайне полезный для радиолюбителя прибор, который может стать незаменимым помощником при использовании б.у. конденсаторов. Ниже на картинке показан процесс сортировки, автор протестировал имеющиеся в наличии конденсаторы и отсеял те, у которых превышен ESR.