Использование термисторов для ограничения бросков тока в источниках питания

О роли варисторов/терморезисторов в блоках питания

Качественные блоки питания обеспечивают долговременную надежную и безаварийную работу вычислительного оборудования и другой техники.

Так как при майнинге используются мощные импульсные источники питания, питающие дорогостоящее оборудование, то их выход из строя влечет за собой весьма неприятные последствия.

В связи с этим стоит разобраться с некоторыми особенностями их работы, которые помогут избежать поломок, вызванных непониманием процессов, происходящих внутри импульсных источников питания.

Переходные процессы в радиоэлектронной аппаратуре и вычислительной технике

При эксплуатации любых электрических приборов в момент переключения возникают нелинейные переходные процессы, которые в некоторых случаях незаметны, а иногда приводят к выходу устройства из расчетного режима работы, что сопровождается повышенной нагрузкой на его элементы и может привести их к выходу из строя.

Переходные процессы всегда возникают в момент коммутации цепей с нагрузкой, имеющей индуктивный и/или емкостной характер. В большинстве случаев они являются вредными для работы устройства, поэтому конструкторы аппаратуры обычно предпринимают меры для их сведения до минимума.

Так как любой участок цепи имеет в той или иной мере LC-параметры, то нелинейные процессы всегда происходят в любой электронике. В мощных блоках питания, использующихся для майнинга, установлены конденсаторы и катушки большой емкости/индуктивности, поэтому переходные процессы в них могут быть очень значительными.

Кратковременный всплеск переменного напряжения, значительно превышающий нормальное значение:

Во время включения в работу блока питания большой мощности в его контурах протекают импульсы тока огромной величины. Всплески напряжения, вызванные переходными процессами, могут многократно превышать номинальное напряжение, протекающее в сети.

Всплески напряжения (voltage spikes), возникающие на графике синусоидального переменного напряжения, вследствие переходных процессов (transients):

Для борьбы со всплесками напряжения в момент включения блоков питания в них устанавливаются специальные защитные элементы. Они обычно справляются со своей ролью, но иногда, при нештатных ситуациях, не справляются со своими задачами. Чтобы не допускать их возникновения (или хотя бы свести до минимума), нужно знать принципы работы, назначение и состав защитных элементов на входе импульсного блока питания.

Зачем нужны защитные цепи на входе импульсных блоков питания

В качественных импульсных блоках питания обычно устанавливаются входные цепи, которые решают ряд проблем, среди которых:

Для защиты входных цепей блока питания от всплесков напряжения и тока используются варисторы (varistors) и термисторы, а также предохранители, варисторы, а также разрядники (surge arresters).

MOV-варистор и термисторы с позитивным и негативным коэффициентом сопротивления:

Как обеспечивается защита от всплесков напряжения и тока на входе блока питания?

За защиту от всплесков напряжения на входе импульсного БП в рабочем режиме обычно отвечают варисторы и разрядники. Для защиты от бросков тока на входе применяют предохранители, а также термисторы.

Простейшая схема включения защитного варистора в блоке питания:

Схема включения защитных элементов на входе импульсного источника тока с применением варисторов и разрядников:

Как работает варистор?

Варистор — это резистор, сопротивление которого изменяется в зависимости от приложенного напряжения. В нормальных условиях оно очень большое (мегаОмы) и не оказывает особого влияния на работу электрической цепи при параллельном включении.

Вольт-амперная характеристика варистора:

При значительном повышении напряжения на варисторе сопротивление падает, это приводит к поглощению энергии всплеска и выделении ее в виде тепла.

Варисторы нужны для защиты радиоэлектронных устройств от бросков высокого напряжения за счет того, что их сопротивление резко падает с увеличением поданного на них напряжения:

Это спасает другие компоненты от выхода из строя, хотя иногда приводит к выгоранию самого варистора, спасающего своим героическим поведением более дорогие электронные элементы. Варисторы устанавливаются на входе БП перед диодным выпрямителем, так как они дополнительно выполняют фильтрующую функцию — гашение помех, возникающих при выключении диодного моста.

Варистор TVR 14471 на входе блока питания Be Quiet Dark Power Pro мощностью 1200 ватт с платиновым сертификатом:

Для чего в блоке питания применяются термисторы?

Термистор — это резистор, изменяющий свое сопротивление из-за температуры.

В блоках питания обычно используют термисторы с негативным температурным коэффицентом (NTC, Negative Temperature Coefficient), включенные последовательно с нагрузкой. В холодном состоянии они имеют сопротивление 6-12 Ом, поэтому при включении блока питания происходит их разогрев. Из-за нагрева сопротивление NTC-термисторов падает до 0.5-1 Ома и они уже не оказывают существенного влияния на работу устройства.

В дорогих блоках питания после успешного старта блока питания термисторы отключаются, ток начинает проходить через проводник с нулевым сопротивлением, что обеспечивает холодное состояние термистора (постоянную готовность к повторному включению БП), а также экономит электроэнергию, которая попусту рассеивается во время работы источника питания в штатном режиме.

Благодаря тому, что термистор принимает на себя «часть удара» в момент включения, остальные компоненты не страдают.

Простейшая схема включения защитного термистора на входе блока питания:

Варисторы обеспечивают защиту высоковольтной части блока питания от всплесков напряжения, а термисторы — от большого тока.

Варистор VZ1 и термистор TR101 на схеме блока питания Chieftec APS-550S мощностью 550W:

К чему может привести экономия на варисторах и термисторах в блоке питания?

В бюджетных блоках питания производители экономят на элементной базе и не устанавливают варисторов. Для защиты таких БП стоит использовать сетевые фильтры или UPS, имеющие в своем составе варисторы. Стоимость такой защиты оправдана значительным снижением возможного ущерба, который может появится в случае сгорания источника питания, питающего дорогостоящий компьютер.

В некоторых случаях защита от всплесков напряжения/тока, обеспечивающаяся варисторами и термисторами, не срабатывает. Это может происходит в случае неисправности варистора/термистора, а также если такой элемент нагрет и производится его включение расчете на его состояние при обычной температуре. Ситуация с медленным остыванием защитных варисторов (термисторов) может возникнуть в случае слишком быстрого повторного включения работавшего блока питания.

Если термистор не успевает остыть после выключения БП, то в момент повторной подачи высокого напряжения защита, обеспечиваемая гашением энергии на его высоком сопротивлении, не обеспечивается. Это может привести к плачевным последствиям.

Нагретый варистор не поглощает энергию импульса, появляющегося в момент включения из-за заряда емкостей электролитических конденсаторов и накопления энергии в индуктивностях, что обычно приводит к пробою транзисторов в высоковольтной части БП.

Благодаря этому, импульс высокого напряжения, поступающий на защищаемое устройство, гасится на варисторе. При сильном нагреве варистора в нем могут произойти необратимые изменения, приводящие к пробою или обрыву.

Пример платы дешевого блока питания Green Vision GV-PS S400:

Как определить исправность варисторов и термисторов?

На схемах блоков питания варисторы и термисторы имеют похожие обозначения в виде резистора с корпусом, перечеркнутым «клюшкой». Варисторы обычно стоят параллельно источнику тока и маркируются обозначением VR:

Термисторы обозначаются похоже:

Термисторы обычно включаются последовательно с нагрузкой, их сопротивление значительно меньше варисторов.

Проверка исправности варистора/термистора состоит в проведении двух действий:

  • визуальный осмотр на наличие повреждений, следов прогара, взудтий и прочих безобразий;
  • проверка сопротивления омметром — исправный варистор должен иметь большое сопротивление (несколько мегаОм) в обоих направлениях при комнатной температуре, терморезистор на входе блока питания — несколько Ом. При прозвонке варистора следует обращать внимание на место его установки. Если параллельно ему включены другие электронные элементы, то проверять сопротивление нужно после выпаивания варистора с платы.

Что делать майнерам для сведения к минимуму проблем из-за переходных процессов в блоках питания?

При наладке компьютеров, в том числе использующихся для майнинга, иногда возникают ситуации, когда из-за зависания системы приходится часто принудительно выключать-включать блок питания. В этом случае стоит делать перерыв на несколько минут перед повторным включением блока питания, чтобы он успел остыть. Это одинаково важно и для дорогих блоков питания, в которых установлен полный набор защитных элементов, включая варисторы и терморезисторы. Это связано с тем, что они не успевают восстановиться в случае очень быстрого повторного включения устройства с горячими внутренними компонентами.

Читайте также  Катушка тесла rsgtc с разрядами до 1.5 метров

При выборе блоков питания следует обращать внимание на наличие в них цепей защиты. Наличие варистора на входе источника питания обычно свидетельствует о стремлении его изготовителей обеспечить высокое качество и надежность изделия.

Если в использующемся на компьютере блоке питания не установлены входные защитные цепи, содержащие варисторы, блокировочные конденсаторы и термисторы, то стоит дополнительно установить качественный сетевой фильтр-удлинитель, содержащий хотя бы минимальный набор элементов, включающий варистор.

Фотография платы качественного сетевого фильтра с варисторами:

Варистор синего цвета на входе сетевого фильтра среднего качества:

Дешевый, якобы сетевой фильтр, на самом деле являющийся простым удлинителем/разветвителем с выключателем (не содержит варисторов и других защитных элементов):

При покупке входного фильтра следует учитывать, что большинство устройств, продаваемых в торговых сетях под таким названием на самом деле являются простыми удлинителями/разветвителями розеток, в лучшем случае содержащими узел защиты от короткого замыкания. Элементы защиты от бросков напряжения содержатся только в единицах из них.

В случае перебоев в работе компьютеров (не только тех, которые используются для майнинга), стоит дать время на остывание устройства перед его очередным включением. В противном случае еще не успевшие остыть защитные элементы не смогут выполнить свою функцию, что с большой степенью вероятности приведет к поломке.

Использование термисторов для ограничения бросков тока в источниках питания

Часто в различных источниках питания возникает задача ограничить стартовый бросок тока при включении. Причины могут быть разные – быстрый износ контактов реле или выключателей, сокращение срока службы конденсаторов фильтра итд. Такая задача недавно возникла и у меня. В компьютере я использую неплохой серверный блок питания, но за счет неудачной реализации секции дежурного режима, происходит сильный ее перегрев при отключении основного питания. Из-за этой проблемы уже 2 раза пришлось ремонтировать плату дежурного режима и менять часть электролитов, находящихся рядом с ней. Решение было простое – выключать блок питания из розетки. Но оно имело ряд минусов – при включении происходил сильный бросок тока через высоковольтный конденсатор, что могло вывести его из строя, кроме того, уже через 2 недели начала обгорать вилка питания блока. Решено было сделать ограничитель бросков тока. Параллельно с этой задачей, у меня была подобная задача и для мощных аудио усилителей. Проблемы в усилителях те же самые – обгорание контактов выключателя, бросок тока через диоды моста и электролиты фильтра. В интернете можно найти достаточно много схем ограничителей бросков тока. Но для конкретной задачи они могут иметь ряд недостатков – необходимость пересчета элементов схемы для нужного тока; для мощных потребителей – подбор силовых элементов, обеспечивающих необходимые параметры для расчетной выделяемой мощности. Кроме того, иногда нужно обеспечить минимальный стартовый ток для подключаемого устройства, из-за чего сложность такой схемы возрастает. Для решения этой задачи есть простое и надежное решение – термисторы.


Рис.1 Термистор

Термистор – это полупроводниковый резистор, сопротивление которого резко изменяется при нагреве. Для наших целей нужны термисторы с отрицательным температурным коэффициентом – NTC термисторы. При протекании тока через NTC термистор он нагревается и его сопротивление падает.


Рис.2 ТКС термистора

Нас интересуют следующие параметры термистора:

Сопротивление при 25˚С

Максимальный установившийся ток

Оба параметра есть в документации на конкретные термисторы. По первому параметру мы можем определить минимальный ток, который пройдет через сопротивление нагрузки при подключении ее через термистор. Второй параметр определяется максимальной рассеиваемой мощностью термистора и мощность нагрузки должна быть такой, что бы средний ток через термистор не превысил это значение. Для надежной работы термистора нужно брать значение этого тока меньшее на 20 процентов от параметра, указанного в документации. Казалось бы, что проще – подобрать нужный термистор и собрать устройство. Но нужно учитывать некоторые моменты:

  1. Термистор достаточно долго остывает. Если выключить устройство и сразу включить опять, то термистор будет иметь низкое сопротивление и не выполнит свою защитную функцию.
  2. Нельзя соединять термисторы параллельно для увеличения тока – из-за разброса параметров ток через них будет сильно различаться. Но вполне можно соединять нужное к-во термисторов последовательно.
  3. При работе происходит сильный нагрев термистора. Греются также элементы рядом с ним.
  4. Максимальный установившийся ток через термистор должен ограничиваться его максимальной мощностью. Этот параметр указан в документации. Но если термистор используется для ограничения коротких бросков тока (например, при первоначальном включении блока питания и зарядке конденсатора фильтра), то импульсный ток может быть больше. Тогда выбор термистора ограничен его максимальной импульсной мощностью.

Энергия заряженного конденсатора определяется формулой:

E = (C*Vpeak²)/2

где E – энергия в джоулях, C – емкость конденсатора фильтра, Vpeak – максимальное напряжение, до которого зарядится конденсатор фильтра (для наших сетей можно взять значение 250В*√2 = 353В).

Если в документации указана максимальная импульсная мощность, то исходя из этого параметра можно подобрать термистор. Но, как правило, этот параметр не указан. Тогда максимальную емкость, которую безопасно можно зарядить термистором, можно прикинуть по уже рассчитанным таблицам для термисторов стандартных серий.

Я взял таблицу с параметрами термисторов NTC фирмы Joyin. В таблице указаны:

Rном — номинальное сопротивление термистора при температуре 25°С

Iмакс — максимальный ток через термистор (максимальный установившийся ток)

Смакс — максимальная емкость в тестовой схеме, которую разряжают на термистор без его повреждения (тестовое напряжение 350v)

Как проводится тестовое испытание, можно посмотреть тут на седьмой странице.

Несколько слов о параметре Смакс – в документации показано, что в тестовой схеме конденсатор разряжается через термистор и ограничительный резистор, на котором выделяется дополнительная энергия. Поэтому максимальная безопасная емкость, которую сможет зарядить термистор без такого сопротивления, будет меньше. Я поискал информацию в зарубежных тематических форумах и посмотрел типовые схемы с ограничителями в виде термисторов, на которые приведены данные. Исходя из этой информации, можно взять коэффициент для Смакс в реальной схеме 0.65, на который умножить данные из таблицы.

Терморезисторы

Обозначение на схеме, разновидности, применение

В электронике всегда приходится что-то измерять или оценивать. Например, температуру. С этой задачей успешно справляются терморезисторы – электронные компоненты на основе полупроводников, сопротивление которых изменяется в зависимости от температуры.

Здесь я не буду расписывать теорию физических процессов, которые происходят в терморезисторах, а перейду ближе к практике – познакомлю читателя с обозначением терморезистора на схеме, его внешним видом, некоторыми разновидностями и их особенностями.

На принципиальных схемах терморезистор обозначается вот так.

В зависимости от сферы применения и типа терморезистора обозначение его на схеме может быть с небольшими отличиями. Но вы всегда его определите по характерной надписи t или .

Основная характеристика терморезистора – это его ТКС. ТКС – это температурный коэффициент сопротивления. Он показывает, на какую величину изменяется сопротивление терморезистора при изменении температуры на 1°С (1 градус Цельсия) или 1 градус по Кельвину.

У терморезисторов несколько важных параметров. Приводить я их не буду, это отдельный рассказ.

На фото показан терморезистор ММТ-4В (4,7 кОм). Если подключить его к мультиметру и нагреть, например, термофеном или жалом паяльника, то можно убедиться в том, что с ростом температуры его сопротивление падает.

Терморезисторы есть практически везде. Порой удивляешься тому, что раньше их не замечал, не обращал внимания. Давайте взглянем на плату от зарядного устройства ИКАР-506 и попробуем найти их.

Вот первый терморезистор. Так как он в корпусе SMD и имеет малые размеры, то запаян на небольшую плату и установлен на алюминиевый радиатор – контролирует температуру ключевых транзисторов.

Второй. Это так называемый NTC-термистор (JNR10S080L). О таких я ещё расскажу. Служит он для ограничения пускового тока. Забавно. Вроде терморезистор, а служит в качестве защитного элемента.

Почему то если заходит речь о терморезисторах, то обычно думают, что они служат для измерения и контроля температуры. Оказывается, они нашли применение и как устройства защиты.

Читайте также  Обзор тепловизора flir one 2

Также терморезисторы устанавливаются в автомобильные усилители. Вот терморезистор в усилителе Supra SBD-A4240. Здесь он задействован в цепи защиты усилителя от перегрева.

Вот ещё пример. Это литий-ионный аккумулятор DCB-145 от шуруповёрта DeWalt. Вернее, его «потроха». Для контроля температуры аккумуляторных ячеек применён измерительный терморезистор.

Его почти не видно. Он залит силиконовым герметиком. Когда аккумулятор собран, то этот терморезистор плотно прилегает к одной из Li-ion ячеек аккумулятора.

Прямой и косвенный нагрев.

По способу нагрева терморезисторы делят на две группы:

Прямой нагрев. Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).

Косвенный нагрев. Это когда терморезистор нагревается рядом расположенным нагревательным элементом. При этом он сам и нагревательный элемент электрически не связаны друг с другом. В таком случае, сопротивление терморезистора определяется функцией тока, протекающего через нагревательный элемент, а не через терморезистор. Терморезисторы с косвенным нагревом являются комбинированными приборами.

NTC-термисторы и позисторы.

По зависимости изменения сопротивления от температуры терморезисторы делят на два типа:

PTC-термисторы (они же позисторы).

Давайте разберёмся, какая между ними разница.

NTC-термисторы.

Своё название NTC-термисторы получили от сокращения NTC – Negative Temperature Coefficient, или «Отрицательный Коэффициент Сопротивления». Особенность данных термисторов в том, что при нагреве их сопротивление уменьшается. Кстати, вот так обозначается NTC-термистор на схеме.


Обозначение термистора на схеме

Как видим, стрелки на обозначении разнонаправлены, что указывает на основное свойство NTC-термистора: температура увеличивается (стрелка вверх), сопротивление падает (стрелка вниз). И наоборот.

На практике встретить NTC-термистор можно в любом импульсном блоке питания. Например, такой термистор можно обнаружить в блоке питания компьютера. Мы уже видели NTC-термистор на плате ИКАР’а, только там он был серо-зелёного цвета.

На этом фото NTC-термистор фирмы EPCOS. Применяется для ограничения пускового тока.

Для NTC-термисторов, как правило, указывается его сопротивление при 25°С (для данного термистора это 8 Ом) и максимальный рабочий ток. Обычно это несколько ампер.

Данный NTC-термистор устанавливается последовательно, на входе сетевого напряжения 220V. Взгляните на схему.

Так как он включен последовательно с нагрузкой, то весь потребляемый ток протекает через него. NTC-термистор ограничивает пусковой ток, который возникает из-за заряда электролитических конденсаторов (на схеме С1). Бросок зарядного тока может привести к пробою диодов в выпрямителе (диодный мост на VD1 — VD4).

При каждом включении блока питания конденсатор начинает заряжаться, а через NTC-термистор начинает протекать ток. Сопротивление NTC-термистора при этом велико, так как он ещё не успел нагреться. Протекая через NTC-термистор, ток разогревает его. После этого сопротивление термистора уменьшается, и он практически не препятствует протеканию тока, потребляемого прибором. Таким образом, за счёт NTC-термистора удаётся обеспечить «плавный запуск» электроприбора и уберечь от пробоя диоды выпрямителя.

Понятно, что пока импульсный блок питания включен, NTC-термистор находится в «подогретом» состоянии.

Если в схеме происходит выход из строя каких-либо элементов, то, обычно резко возрастает и потребляемый ток. При этом нередки случаи, когда NTC-термистор служит своего рода дополнительным предохранителем и также выходят из строя из-за превышения максимального рабочего тока.

Далее на фото наглядный пример – сгоревший NTC-термистор 5D-11, который был установлен в зарядном устройстве ИКАР-506. Он ограничивал пусковой ток при включении.

Выход из строя ключевых транзисторов в блоке питания зарядного устройства привел к превышению максимального рабочего тока этого термистора (max 4A) и он сгорел.

Позисторы. PTC-термисторы.

Термисторы, сопротивление которых при нагреве растёт, называют позисторами. Они же PTC-термисторы (PTC — Positive Temperature Coefficient, «Положительный Коэффициент Сопротивления»).

Стоит отметить, что позисторы получили менее широкое распространение, чем NTC-термисторы.

Условное обозначение позистора на схеме.

Позисторы легко обнаружить на плате любого цветного CRT-телевизора (с кинескопом). Там он установлен в цепи размагничивания. В природе встречаются как двухвыводные позисторы, так и трёхвыводные.

На фото представитель двухвыводного позистора, который применяется в цепи размагничивания кинескопа.

Внутри корпуса между выводами-пружинами установлено рабочее тело позистора. По сути это и есть сам позистор. Внешне выглядит как таблетка с напылением контактного слоя по бокам.

Как я уже говорил, позисторы используются для размагничивания кинескопа, а точнее его маски. Из-за магнитного поля Земли или влияния внешних магнитов маска намагничивается, и цветное изображение на экране кинескопа искажается, появляются пятна.

Наверное, каждый помнит характерный звук «бдзынь», когда включается телевизор — это и есть тот момент, когда работает петля размагничивания.

Кроме двухвыводных позисторов широко применяются трёхвыводные позисторы. Вот такие.

Далее на фото трёхвыводный позистор СТ-15-3.

Отличие их от двухвыводных заключается в том, что они состоят из двух позисторов-«таблеток», которые установлены в одном корпусе. На вид эти «таблетки» абсолютно одинаковые. Но это не так. Кроме того, что одна таблетка чуть меньше другой, так ещё и сопротивление их в холодном состоянии (при комнатной температуре) разное. У одной таблетки сопротивление около 1,3

3,6 кОм, а у другой всего лишь 18

Трёхвыводные позисторы также применяются в цепи размагничивания кинескопа, как и двухвыводные, но только схема их включения немного иная. Если вдруг позистор выходит из строя, а такое бывает довольно часто, то на экране телевизора появляются пятна с неестественным отображением цвета.

Более детально о применении позисторов в цепи размагничивания кинескопов я уже рассказывал здесь.

Так же, как и NTC-термисторы, позисторы используются в качестве устройств защиты. Одна из разновидностей позистора — это самовосстанавливающийся предохранитель.

SMD-терморезисторы.

С активным внедрением SMT-монтажа, производители стали выпускать миниатюрные терморезисторы, адаптированные и под него. Размеры их корпуса, как правило, соответствуют стандартным типоразмерам (0402, 0603, 0805, 1206), которые имеют чип резисторы и конденсаторы. Маркировка на них не наносится, что затрудняет их идентификацию. По внешнему виду SMD-терморезисторы очень похожи на керамические SMD-конденсаторы.

Встроенные терморезисторы.

В электронике активно применяются и встроенные терморезисторы. Если у вас паяльная станция с контролем температуры жала, то в нагревательный элемент встроен тонкоплёночный терморезистор. Также терморезисторы встраиваются и в фен термовоздушных паяльных станций, но там он является отдельным элементом.

Стоит отметить, что в электронике наряду с терморезисторами активно применяются термопредохранители и термореле (например, типа KSD), которые также легко обнаружить в электронных приборах.

Теперь, когда мы познакомились с терморезисторами, пора узнать об их параметрах.

Для чего нужен термистор, терморезистор в блоке питания компьютера

Для начала определимся с таким типом радиодеталей, как термисторы (или, как их еще называют – терморезисторы).

Они представляют собой полупроводниковый элемент, у которого меняется сопротивление в зависимости от температуры.

Эта зависимость может быть:

  1. Прямой (чем больше температура, тем выше сопротивление) – это тип PTC (от англ. Positive Temperature Coefficient, то есть позитивный/положительный температурный коэффициент). Альтернативное название «позисторы».
  2. Обратной (сопротивление увеличивается при уменьшении температуры и наоборот) – это тип NTC (от англ. Negative Temperature Coefficient, то есть негативный/отрицательный температурный коэффициент).

Терморезисторы часто разделят по диапазонам рабочих температур:

  • Низкотемпературные (ниже 170 К);
  • Среднетемпературные (170-510 К);
  • Высокотемпературные (свыше 510 К).

Обозначение термистора указано на рисунке ниже.

Рис. 1. Обозначение термистора

Термисторы в блоках питания

Практически все импульсные блоки питания и выпрямители с конденсаторными фильтрами имеют один существенный недостаток. При включении питания конденсатор фильтра находится в разряженном состоянии и на его зарядку требуется время. Как раз в течение этого промежутка времени происходит бросок тока, который может превышать рабочие параметры в несколько раз (в некоторых случаях даже в десятки раз).

Рис. 2. Скачок тока

А значит, он губителен для многих элементов цепи как внутри блока питания, так и для подключаемых схем.

Читайте также  Измеритель ёмкости аккумуляторов (li-ion/nimh/nicd/pb)

Для ограничения бросков тока существует множество различных решений, но все они имеют те или иные преимущества и недостатки.

Наиболее простым способом борьбы с такими импульсами тока является включение в цепь среднетемпературного NTC-терморезистора (с обратной зависимостью).

Принцип защиты цепи с NTC-терморезисторами

В состоянии покоя (при выключенном питании) терморезистор имеет температуру окружающей среды и обладает высоким сопротивлением.

В момент включения импульс тока гасится высоким сопротивлением «холодного» NTC-термистора. В процессе дальнейшего воздействия тока терморезистор нагревается и выходит в рабочий режим, в котором у него низкое сопротивление, а значит, на работу всей схемы питания он не будет оказывать практически никакого влияния.

Недостатки такой защиты

У такой защиты от бросков тока есть очевидные минусы:

  1. Если питание будет включаться/выключаться несколько раз подряд, то терморезистор не успеет остыть и не сможет выполнить своей защитной функции.
  2. Многие воспринимают термисторы в качестве обычных сопротивлений и потому в погоне за повышенной проходимостью тока выполняют их параллельное соединение. Такого допускать нельзя. Прогрев может быть неравномерным, вследствие чего можно получить все тот же скачок тока в цепи питания или даже выход из строя самих терморезисторов.
  3. В процессе работы термисторы сильно греются, следует проявлять особую осторожность при их расположении внутри закрытых корпусов.
  4. Одна из самых больших проблем – правильный подбор элемента по заданным параметрам. Оптимальным решением будет включение термистора в состав блока питания, с которым он совместим по характеристикам, а не вынос его во внешний блок (чтобы он не использовался с несовместимыми приборами).

В заданных условиях нам требуется знать следующие характеристики цепи:

  1. Номинальное сопротивление термистора (можно взять из графика в даташите или из таблиц, если таковые имеются) – при температуре 25°С.
  2. Установившийся ток (это максимальное значение тока в момент «броска»).
  3. Максимальная емкость конденсатора фильтра блока питания при пиковом напряжении.

В качестве пикового напряжения мы принимаем значение 350 В (это возможные 250В умноженные на корень из 2).

Теперь рассчитаем ток.

Например, мощность БП составляет около 400 Вт, в составе фильтра работает конденсатор 450 мкФ.

Тогда сила тока будет считаться так:

I = 400 Вт / 220 В = 1,82 А.

С учетом запаса в 20% получаем 1,82 · 1,2 = 2,16 А. Это и есть наше максимальное значение.

Сопротивление термистора считается исходя из того тока, который мы планируем ограничить.

Пусть это будет 2 А.

R = (220 В · √2) / 2 А = 156 Ом

Теперь остается подобрать термистор, который при температуре 25 град. имеет сопротивление 156 Ом (можно взять несколько последовательно соединенных, тогда их сопротивление складывается), может выдержать 1,82 А (в момент импульса) и совместим с конденсатором в 450 мкФ.

Схема внешней защиты БП компьютера

Специально для тех случаев, когда необходимо простое, действенное и стандартное решение проблем с бросками тока при питании ПК.

Сама схема выглядит так.

Рис. 3. Схема внешней защиты БП компьютера

Она рассчитана на подключение блока питания мощностью около 800 Вт.

Конечный вид узла в собранном виде может быть таким.

Рис. 4. Конечный вид узла в собранном виде

А в собранном виде таким.

Рис. 5. Конечный результат

Мнения читателей
  • Maksim Lapchenko / 23.06.2019 — 20:22

Добрый день. Возможна ли покупку подобного устройства?

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Термисторы Выбор и Применение

Термисторы Выбор и Применение

http://forum. *****/index. php? showtopic=8801&hl=

Вопрос о NTC — термисторах, которые применяют для защиты от пусковых токов (двигатели, трансформаторы, БП и т. п.)
Штука очень полезная и простая, казалось бы, но как-то не встретил доходчивой информации.

В общей теории всё понятно: холодный термистор имеет относительно большое сопротивление (например, 33 Ом), когда через термистор начинает проходить ток, термистор нагревается и его сопротивление сильно уменьшается, доходя в рабочем режиме до десятых и даже сотых долей Ома.

Этим и обеспечивается плавный запуск устройства, которое питается через такой термистор и его последующая нормальная работа после запуска (термистор становится «прозрачным»).

А на практике не понятно вот что:

1) Как выбирать термисторы? У него есть начальный сопрот и допустимый ток.

2) В рабочем состоянии термистор ВСЕГДА должен быть ГОРЯЧИМ? Ведь иначе у термистора сохранится начальное большое сопротивление — он будет работать в схеме как простой резистор.

3) Насколько горячим должен быть термистор, какая температура у него в установившемся режиме?
Есть ли в связи с этим какие-то особенности его монтажа, разводки на ПП, чтобы ничего вокруг не поплавилось и не погорело?

4) Если при работе устройства примененный термистор совершенно не нагревается, значит он выбран неверно и его защитная функция при пуске не исполняется?

5) Как проверить приборно, что термистор отрабатывает или не отрабатывает на пуске?

Эскизы прикрепленных изображений

Уменьшено до 22%

320 x 100 (6,74 килобайт)

Всё очень просто: термистор выбирают под номинальный рабочий ток, тогда он и будет греться до нужной температуры. При монтаже вокруг термистора должно быть пространство для охлаждения, нельзя монтировать впритык к другим деталям.

Цитата(Datagor @ 15.2.2013, 19:45)

4) Если при работе устройства примененный термистор совершенно не нагревается, значит он выбран неверно и его защитная функция при пуске не исполняется?

Да .
Рабочая температура должна быть около 65 град.

Цитата(Datagor @ 15.2.2013, 19:45)

5) Как проверить приборно, что термистор отрабатывает или не отрабатывает на пуске?

Это не требуется, если выбрано правильно стартовое сопротивление. Оно само по себе является гарантом того, что термистор выполнит свою функцию. Стартовое сопротивление термистора подбирается под конкретные ёмкости, номинал которых добросовестный производитель указывает в даташитах, типа этого:

Номинал тестовых ёмкостей для полумоста соответственно можно смело умножить на два.

Для теримистора в даташите даётся набор параметров:
— R25(Ω) — сопротивление при 25˚С
— Максимальный установившийся ток (А)
— Остаточное сопротивление (при максимальном токе) (Ω)
— Коэффициент теплового рассеивания (mW/ ˚C)
— Постоянная времени нагрева
— Также указывают максимальную допустимую ёмкость конденсатора, ток которого этим термистором ограничивают, для разных напряжений питания сети
Самые толковые указания по расчету термисторов мне попались в этой аппликухе ntc. pdf ( 92,14 килобайт ), правда, в основном они предназначены для случая, когда конденсатор подключен на высокой стороне сразу после термистора. Для конденсаторов после транса надо как-то пересчитать ёмкость наверно.

Максимальный установившийся ток термистора должен быть немногим больше, чем максимальный средний ток для устройства, тогда термистор в установившемся режиме будет работать близко к максимальной температуре и при минимальном сопротивлении.
Минимально допустимое сопротивление термистора при 25˚С определяется исходя из допустимого пикового тока для потребителя и напряжения в розетке по формуле с первой страницы аппликухи
(√2*VE*1.1)/(Rc+R25)≤Imax
где
VE — напряжение в розетке
Rc — собственное сопротивление входа без термистора

Из подходящих по этим параметрам термисторов выбераем тот, у которого постоянная времени меньше.

Добавлено после раздумий:
RСна всякий случай я бы принял равным нулю. Ну его нафиг.

В документе NTC термисторы для ограничения предельного тока _inf_50_db_icl_09_ICL__B57235__S235.pdf ( 312,11 килобайт ) очень интересен пункт примечаний, который в переводе выглядит так:

Внимание
Саморазогрев термистора во время работы зависит от нагрузки и применного коэффициента рассеяния.
При загрузке с максимально допустимый ток / мощность и указанный коэффициент рассеяния является базовыми и взят за основу, температура NTC термистора может достигать до 250° C.
Теплота во время работы также будет рассеиваться через выводы. Таким образом, контактным площадкам, тоже может стать довольно жарко при максимальной нагрузке.
При монтаже NTC термисторов вы должны убедиться, что имеется достаточное расстояние между термистором и всеми деталями, которые являются чувствительными к теплу или являются горючеми.

Проверяется термистор мультимером на омах — при подогреве его зажигалкой в течение 3 — 5 сек, его сопротивление уменьшается в 3- 4 раза.