Двухканальный ионофон на интегральной микросхеме ne555

Ионофон или поющая дуга из строчника

Всем привет! В этой статье я расскажу как сделать «Поющую дугу» или «Ионофон», самый любимый и популярный музыкальный гаджет начинающих радиолюбителей. В 1959 на шестнадцатой всесоюзной выставке творчества радиолюбителей в Москве группа Ленинградских радиолюбителей Б. Каратеев, В. Прютс и Е. Плоткин впервые показали миру невиданный в те времена звуковоспроизводящий агрегат с ионофоном, в некоторых научных источниках его называют плазменным громкоговорителем. Этот гаджет демонстрировали в действии, проигрывая на нем различные мелодии. Качество звучания было превосходное за счет расширения частотного диапазона, в отличии от электродинамических громкоговорителей, этот прибор не имел механических искажений, звук воспроизводился из электрической дуги возникающей между двумя электродами. Источником электрической дуги служил блокинг генератор с повышающим напряжение трансформатором.

Список радиодеталей для сборки Ионофона или Поющей дуги:

  • Трансформатор строчной развертки ТВС-110ПЦ15 или ТВС-90ЛЦ5 и другие аналогичные от советских ламповых и транзисторных телевизоров
  • Микросхема интегрального таймера NE555 или советский аналог КР1006ВИ1
  • Резисторы R1 50R, R2 1K, P1 10K
  • Конденсаторы С110n, С2 100n, C3 330n
  • Транзисторы IRFZ44, IRF470, IRF3808 и другие аналогичные чем мощнее тем лучше
  • Радиатор от компьютера чем больше тем лучше, транзистор будет очень сильно греться

На этом рисунке представлена простая схема ионофона из строчного трансформатора.

Схема Ионофона или поющей дуги из строчника на таймере NE555

Схема состоит из генератора прямоугольных импульсов построенного на интегральном таймере NE555 c возможностью аудио модуляций. Важным элементом генератора высокого напряжения является строчный трансформатор ТВС-110ПЦ15.

На магнитопроводе трансформатора надо намотать новую первичную обмотку состоящую из двенадцати витков медного провода диаметром один миллиметр. Параллельно первичной обмотке подключается конденсатор, который увеличивает длину электрической дуги в два раза.

Все детали ионофона легко помещаются на маленькой печатной плате размером 4 на 2,5 сантиметра.

Полевой транзистор разместите на радиаторе от компьютера. На плате имеется подстроечный резистор предназначенный для регулировки частоты генератора в пределах 12-48 КГц. Звуковой сигнал от плеера или мобильного телефона подается на пятый вывод таймера NE555 через разделительный конденсатор. Что позволяет управлять длительностью выходных импульсов. Третий вывод микросхемы нагружен мощным полевым транзистором, раскачивающим высоковольтный трансформатор.

Напряжение питания генератора 12 вольт. В качестве источника питания подойдет компьютерный блок или любой другой с силой тока не менее 2 А. Не смотря на свою простоту ионофон нуждается в небольшой настройке частоты генератора, для этого при первом включении надо выставить на переменном резисторе Р1 сопротивление 3,2 кОм.

Потом зажечь дугу и вращая переменный резистор Р1 добиться максимальной длины дуги. На этом настройка поющей дуги окончена. После подключения плеера к генератору наслаждаемся кристально чистым звуком исходящим от горящей плазменной дуги.

Потом я решил придать ионофону более нормальный вид. Трансформатор и печатную плату с радиатором разместил на кусочке МДФ. Для плазмы из медной проволоки изготовил разрядник. Получился вот такой ионофон.

Немного наигравшись, мне стало интересно на какой частоте работает мой генератор высокого напряжения и я решил измерить частоту подключив осциллограф. Оказывается рабочая частота генератора 20 кГц.

Это устройство можно использовать как зажигалку. Дуга на столько горячая, что легко зажигает бумагу и до красна накаляет металлические предметы.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать ионофон или поющую дугу из строчника.

Схемы на все случаи жизни

Добрый день, уважаемые радиолюбители. Сегодня я хотел бы предложить Вам схему простого ионофона. Сейчас этой тематике посвящено множество сайтов, форумов и тем… Вот и я решил приложить к этому свою руку… Не судите строго, это первый мой опыт конструирования подобной техники.

Схема электрическая принципиальная показана на рисунке ниже. Итак, рассмотрим схему предложенного ионофона подробнее.

Сигнал с линейного выхода какого-либо аудиоустройства поступает через фильтр-пробку С1-R1 на вторичную обмотку (На ту, при нормальном включении трансформатора на которой выходное напряжение равно 12 вольт) трансформатора ТВК-110. Данный трансформатор выполняет 2 роли: 1 – осуществляет гальваническую развязку Вашего аудиоустройства и ионофона; 2 – усиливает входной аудио сигнал до нужного уровня.

С первичной обмотки трансформатора (Той, на которую при нормальном включении подаётся 220 вольт), усиленный сигнал, через фильтр-пробку C2-R2 и диод VD3 поступает на вход генератора сигналов, реализованного на микросхеме DD1. Частота генератора определяется цепочкой R3-R4-C3 и при указанных на схеме номиналах составляет чуть-более 30 килогерц. Вход 2 микросхемы NE555 является запускающим т.е. при отсутствии на нём напряжения на выходе оно так же будет отсутствовать. Диод VD3 выделяет положительные полуволны сигнала. Таким образом при подаче аудио сигнала генератор запускается от каждого положительного полупериода сигнала и на выходе 3 микросхемы мы получаем пачки сигнала частотой 30 килогерц, следующие с частотой входного сигнала (По факту промодулированный сигнал). Данный сигнал, через резистор R5 поступает на вход составного транзистораVT1-VT2. Его нагрузкой является первичная обмотка трансформатора Tr2. Со вторичной обмотки данного трансформатора и снимается выходное высокое напряжение. Диод VD1 защищает схему от обратного напряжения, VD2 защищает схему от бросков напряжения по питанию.

Основным достоинством схемы является её простота. Схема не требует наладки и начинает работать сразу после включения. Но у схемы есть и небольшой недостаток, она потребляет в работе значительный импульсный ток, до 10 ампер.

Все используемые детали указаны на схеме. Стоит только обратить внимание на изготовление трансформатора Tr2. Трансформатор Tr2 — это переделанный строчный трансформатор от старого лампового телевизора. Для его переделки снимаем первичную обмотку и мотаем свою. Первичная обмотка содержит 20 витков провода ПЭЛ-1.5. Вторичная обмотка (высоковольтная, залитая пластмассой) остается штатной, после чего трансформатор собирается. При сборке между половинок сердечника следует сделать зазор около 1 мм из тонкого гетинакса или стеклотекстолита. Транзисторы VT1 и VT2 следует установить на теплоотвод.

В подборках фото и видео ниже наглядно показана работа ионофона. Т.к. камера у меня не профессиональная, то голос и музыку слышно плохо, глушит треск горящей искры. При прослушивании на самом деле звук намного чище и отчётливее. На одном из видео видно что к выходному трансформатору подключён конденсатор, в конечной схеме он отсутствует т.к. особой роли на качество звучания не сыграл, хотя его присутствие несколько повышает громкость звучания отдельных композиций…

Ну вот, на этом вроде бы на сегодня всё. До новых встреч. С уважением, Андрей Савченко.

P.S. Обновление от 29.03.2020:

Итак, данная конструкция собиралась мной летом 2013-го года и являлась первым опытом в применении таймера NE555 для ШИМ-управления (и подобных целей) на её основе. Я считаю в целом данную конструкцию НЕУДАЧНОЙ т.к. в самой конструкции и описании есть фактические ошибки. Данные ошибки возникли ввиду того, что я воспользовался источником с ошибочным описанием алгоритма работы данного таймера.

Читайте также  Зачем нужны жучки?

Во-первых, для данной конструкции справедлива рекомендация, данная для выходного каскада высоковольтного генератора на NE555.

Во-вторых, при подобной реализации управления пачек сигнала на выходе в реальности нет, но проконтролировать на тот момент я этого не смог т.к. у меня отсутствовал осциллограф.

При работе подобная схема работает в реальности следующим образом: при подаче на вход запуска (вход 2) импульса низкого уровня (т.е. при приходе отрицательной полуволны входного сигнала) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешней RC-цепочкой. Такая ситуация будет происходить при условии, если длительность входного импульса меньше времени заряда конденсатора RC-цепи. Если же входной импульс по длительности все-таки длиннее, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень т.е. не придёт положительная полуволна сигнала.

Таким образом, в реальности, на выходе формируются отдельные выходные импульсы при превышении/понижении порога встроенного компаратора сигнала. Ни пачек импульсов, ни ШИМ-модуляции в такт амплитуде входного сигнала нет. Фактически это достаточно грубый пик-детектор (и если уж быть совсем точным даже не пик-детектор, а детектор перехода через пороговый уровень встроенного компаратора сигнала). Отсюда такой посредственный результат. При построении ионофона на таймере NE555 модуляцию необходимо осуществлять, например, по 5-му выводу. Модернизированный вариант со всеми необходимыми доработками описан в статье Вторая жизнь ионофона на NE555.

Ионофон или поющая дуга из строчного трансформатора

Приветствую, радиолюбители-самоделкины, а также все любители красивых высоковольтных разрядов!

Неотъемлемой частью любого кинескопного телевизора или монитора является высоковольтный трансформатор, служащий в схеме телевизора для создания высокого анодного напряжения для кинескопа. Строчные трансформаторы бывают двух видов — ТДКС и ТВС. Первые расшифровываются как трансформаторы диодно-конденсаторные строчные, они имеют в своём составе встроенный умножитель, а потому имеют на выходе большее напряжение, чем ТВС. ТВС же, в свою очередь, расшифровывается как трансформатор высоковольтный строчный, конструктивно он представляет собой ферритовый сердечник, на котором расположена высоковольтная обмотка, а также одна или несколько первичных. Напряжение на выходе такого трансформатора переменное, в отличие от ТДКС, который автоматически выпрямляет высокое напряжение на выходе за счёт встроенного умножителя. И те и другие трансформаторы представляют довольно большой интерес для всех любителей пускать высоковольтные дуги. Однако рано или поздно обычное пускание плазменных дуг надоедает, и хочется какого-то разнообразия. Здесь самое время вспомнить про ионофон — устройство, которое модулирует плазменную дугу аудиосигналом. Таким образом, с помощью ионофона можно воспроизводить, например, музыку с помощью. самой плазменной дуги. В некоторых литературных источниках такие устройства называются плазменными громкоговорителями. Конечно, громкость такого «громкоговорителя» будет совсем небольшой, но зато, в отличие от воспроизведения музыки на привычных динамиков, здесь нет никаких искажений, вызванных механическим перемещением диффузора — ионофон вообще не содержит каких-либо подвижных элементов. Одним словом, такое устройство стоит собрать как минимум для того, чтобы убедится, что это действительно работает. Наглядная схема для сборки представлена ниже.

В левой части схемы можно увидеть два разъёма, красный — плюс питания, чёрный — минус питания, напряжение должно составлять 12В. Схема в процессе работы будет потреблять довольно значительный ток, вплоть до 1-2А, а потому нужно выбрать источник питания с запасом по мощности, например, на 30-50Вт. На схеме также можно увидеть единственную микросхему — таймер NE555, которая служит для генерации прямоугольных импульсов заданной частоты. Эти микросхемы продаются в любом магазине радиодеталей и стоят в районе 10-30 рублей. В верхней левой части схемы можно увидеть радиатор, на котором закреплён мощный полевой транзистор — это важный элемент схемы, ведь именно он будет непосредственно управлять работой строчного трансформатора. Здесь можно использовать любые полевые транзисторы с током как минимум 5-7А и напряжением 100В, например, прекрасно подойдут IRF740, IRF630, IRFZ44, IRF3808 и другие аналогичные. Выводы транзистора обозначены как » G, D, S» что означает затвор, сток, исток соответственно. При подключении транзистора важно соблюдать цоколёвку, иначе схема не заработает. Транзистор нарисован на схеме на радиаторе не с проста — в процессе работы он будет довольно значительно разогреваться, а потому его необходимо разместить на радиаторе при первом же включении схемы. Радиатор не должен быть слишком маленьким, иначе он не справится с отводом тепла. В процессе работы допускается нагрев транзистора до 40-50°C, это безопасно. Между 7 и 8 выводами микросхемы можно увидеть подключенный подстроечный резистор, он нужен для настройки ионофона на максимальную эффективность, то есть максимальную длину высоковольтной дуги. Здесь можно применить любой подстроечный резистор или потенциометр сопротивлением 10 кОм, при этом одна из крайних его ножек соединяется со средней. Также на схеме можно увидеть два резистора, на 50 Ом и 1 кОм, от последнего зависит частота работы схемы, а потому важно соблюдать номинал. Резистор 50 Ом может варьироваться в пределах 10-100 Ом. Оранжевые конденсаторы на схеме — любые керамические или плёночные. При этом конденсатор, обозначенный как 103 имеет ёмкость 10 нФ, а 104 — 100 нФ, важно не перепутать. В правой нижней части схемы показан вход для аудиосигнала, то есть музыки. К схеме для воспроизведения можно подключать плеер, компьютер или телефон, при этом громкость будет регулироваться с самого источника звука, в целях упрощения схемы ионофон не содержит собственного регулятора громкости.

Самая интересная часть конструкции — строчный трансформатор. Для этой схемы не подойдут трансформаторы ТДКС, так как их умножитель не позволит воспроизводить звук. Подойдут только ТВС, например ТВС-110ПЦ15 или другие подобные. Отличить по внешнему виду ТДКС и ТВС не составляет труда. Перед установкой ТВС на схему его нужно подготовить — удалить штатные первичные обмотки, их может быть несколько. Должен остаться лишь голый ферритовый сердечник на месте первичной обмотки, а вот высоковольтную вторичную наоборот нужно постараться не повредить. После этой процедуры на место родной первичной обмотки наматываем свою — она должна содержать 10-15 витков медного провода диаметров около 1 мм. Можно использовать как провод в изоляции, так и медный эмалированный провод. Важной намотать катушку аккуратно, чтобы витки не расходились в стороны, а плотно прилегали к сердечнику — это обеспечит максимальную эффективность. При необходимости обмотку можно зафиксировать термоклеем. К двум выводам новой самодельной обмотки подключается плёночный конденсатор на напряжение как минимум 100В, подойдут конденсаторы типа К73-17, ёмкость должна быть равна 330 нФ. Вместе с конденсатором обмотка подключается к схеме. Один вывод — к плюсу питания, второй — к стоку транзистора. Со штатной высоковольтной обмотки трансформатора снимается дуга, для зажигания и поддержания дуги нужно сделать разрядник — два электрода из толстой проволоки, расположенные на расстоянии 5-10 мм друг от друга. В процессе горения дуги эти два электрода будут сильно нагреваться, поэтому они должны быть тщательно очищены от лака или изоляции.

Читайте также  Охлаждающая подставка для ноутбука

Всю схему можно собрать навесным монтажом, тем более, что на схеме в начале статьи наглядно показаны все соединения. При сборке схемы таким способом желательно соединять все компоненты как можно более компактно, не используя длинные отрезки проводов — это обеспечит стабильный запуск и работы схемы. Но также можно и изготовить плату, например, методом ЛУТ. Файл печатной платы для открытия в программе Sprint-Layout выложен в конце статьи.

Полевой транзистор можно установить на плату, не забыв прикрутить к нему радиатор, либо вывести с платы на проводах, как показано на фото выше. Также к плате подключается питание 12В двумя проводами и сам трансформатор — ещё два провода. Плёночный конденсатор можно расположить непосредственно около трансформатора, на выводах первичной обмотки. При размещении всех элементов конструкции важно следить за тем, чтобы высоковольтная обмотка трансформатора была подальше отнесена от остальных частей схемы — ведь попадание высоковольтной дуги, например, на микросхему непременно приведёт к выходу её из строя.

Несмотря на то, что высоковольтная обмотка ТВС не обладает достаточной мощностью, чтобы причинить вред человеку, пальцы совать в дугу категорически нельзя — это приведёт к моментальному ожогу, ведь температура плазменной дуги примерно равна температуре пламени. Желательно при касании высоковольтных проводов вторичной обмотки пользоваться пассатижами с диэлектрической ручкой. На картинке ниже можно увидеть собранный разрядник — он представляет собой изогнутую буквой «П» медную проволоку с разрывом по середине. Вся конструкция размещается на небольшой деревянной подставке.

Несколько слов о первом включении и настройке. При первом включении нужно контролировать нагрев полевого транзистора — если он нагревается быстро и слишком сильно даже на радиаторе, значит, где-то в схеме есть ошибка. Узнать о работоспособности схемы можно по характерному шелесту высокого напряжения, который будет исходить от трансформатора. При сближении высоковольтных выводов вторичной обмотки загорится дуга, которую можно будет «растянуть» на некоторое расстояние. Подключать источник аудиосигнала желательно только после того, как схема будет налажена. Также при это нужно следить за тем, чтобы выводы вторичной обмотки были подальше отнесены от аудиокабеля, ведь попадание высокого напряжения гарантированно выведет из строя любой телефон, компьютер или плеер. Единственная наладка схемы заключается в подстройке частоты работы — вращением подстроечного резистора нужно добиться максимальной длины дуги, производить эту настройку нужно лишь один раз после сборки схемы.

На картинке выше показаны импульсы, которые генерирует микросхема NE555, в данному случае они имеют частоту около 20 кГц. Если получится так, что частота будет лежать в слышимом диапазоне (меньше 20 кГц), то возможен лёгкий свист, исходящий от трансформатора — это нормально.

Собрав такую конструкцию можно запросто удивить друзей — ведь им будет очень трудно поверить, что звук воспроизводит всего лишь горящая плазменная дуга. Кроме того, данную конструкцию можно использовать как весьма антуражную зажигалку, ведь температуры дуги достаточно, чтобы поджечь бумагу или другие материалы. Удачной сборки!

Двухканальный ионофон на интегральной микросхеме ne555

Нашел в нэте простенькую схему АРУ, после него в принципе можно не делать уже усилитель. Амплитуда достаточная на уровне 6В сигнал колеблется на +-1.5В. От 4.5 до 7.5.
Для начала так можно попробовать, если не хватит, тогда усь городить

На входе синус 0.5В 1кГц:

При 0.01В на входе с генератора картина на выходе нисколько не меняется (всмысле форма и амплитуда).

Слепил ген на 555, резисторы так подобраны чтобы в начальный момент скважность была 50%. Номинал С5 можно увеличить, потому что таким вариантом все это работает на 150кГц, для строчника многовато

Лепим на 5 ногу напрямую АРУ

Есть модуляция! Правда она слабоватая, но стоит сначала так проверить, если путем все петь будет то ништяк, если очень тихо, тогда усь делать.

По-поводу нагрева, если такая моща устраивает, то пробуй конденсатор на сток исток подбирать, получится режим работы е класса, что очень упростит переключение транзистора и потери на нем.

Если идти дальше, то учитывая что у тебя строчник и на выходе ты почти замыкаешь вторичку (без диодов и т.д) придется не сладко. Однотакт сюда не годится. В твоем случае получается прямоходовый преобразователь. Для его коректной работы нужен диод во вторичке и фазировка обмоток верная (можешь почитать в нэте), если этого не будет то будет греться сильно (особо в эти системы однотактов не вникал, но вполне вероятно что нагрев связан с насыщением магнитопровода)

Нужен двухтактный режим, чтобы магнитный поток «пропихивать» по сердечнику в обе стороны.
Самое простое можно сделать так:

Двухтактный режим, силовые ключи по очереди открываются. 555 только один сигнал генерирует, нужно 2 управляющих один из сигналов должен быть в противофазе. Для этого надо инвертор, если лепить логику, то нужно будет еще доп. питане 5В и лишняя микросхема. Инвертор на трназисторе собран, там же нацарапал осциллограмму с обоих получившихся выходов.
В качестве силовой пушпул стоит, т.е. 2 н канальных трнзистора по очереди открываются и через свои обмотки пускают ток. И получается что магнитный поток в сердечнике будет в обе стороны гоняться. Конечно всеравно не православно через трансформатор ШИМ пихать, но это лучше однотакта)

Забыл, схема АРУ которую симулировал

И файлы из симулятора так на всякий случай. Программа LTspice

+20 (В), чтобы меньше искажений было на выходе при таком КУ.

Тут еще одна проблема появится. Если повысим питание, то придется и уровень постоянки на выходе сместить на уровень 5 (В). Как это сделать, я думаю, ты знаешь.

С1 электролит обязательно. С4 — 1 (мкФ) мало, надо от 4.7 (мкФ). Так чувствительность АРУ будет ниже и резких скачков в музыке не будет.

BFG5000, на счет АРУ спорить не буду ибо в них почти не шарю, тупо взял первую схему и сделал все одной схемой готовой почти вместе с 555 и силовой.

По поводу силовой с тобой сильно не согласен

Не встречал еще ни одного силового ключа без диода. На счет диода ты прав, в фетах стоят медленные диоды и при больших частотах они не успевают открываться и закрывать в итоге на них много тепла выделяется, Такую систему применяют в случае если нагрузки под киловатты и частоты под сотни килогерц. сли интересно можешь найти в даташите предельную частоту для диода, точнее не частоту а время открытия и восстановления диода.

Здесь во первых мощность от силы сотня ватт будет+ частоты пара десятков кГц, с этим даже обычный выпрямительный диод справится не сильно напрягаясь, а в фете уж и подавно.

Есть еще игбт (бтиз) таку них внутри уже ультрафаст стоит и диодами вообще не нужно обвязывать.

Тут тоже не совсем согласен. Для открытия ключа на затворе как правило надо не менее 4В точнее в даташите пишут. 555 питается от 12В, если у нее выход на биполярах, там будет падение но не большое, с 3 ноги в худшем случае будет вольт 10В амплитудой сигнал.
Этого хватит чтобы ключ открыть.
Ту комплу которую ты нарисовал она может только ток усилить, чтобы повысить напряжение обычно комплу на фетах делают (н и п канальных с легким затвором до 100пф).

Читайте также  Cветодиодный фонарь из... калькулятора

По поводу усиления тока, в этом нет необходимости у 555 выход 200мА.
Если применить несложную арифметику то можно посчитать ток который будет идти через затвор с выхода 555. Частоту можно килогерц 60-70, емкость затвора написана в даташите, обычно менее 4нФ.
Ток который будет идти будет 0.02А.
Смысл комплы?

Эту штуку ставят только в полумосты и мосты и то не всегда. И ставят на частоты от 100кГц и выше. Т.к. из за особенностей управляющего трансформатора (как правило GDT) и самих ключей они могут оказаться враз открытыми возникает сквозной ток и ключи взрываются от тока.
Здесь эта штука нифиг не нужна, если хотите ставьте. Враз ключи не откроются т.к они управляются напрямую с генератора. Единственное надо поставить резистор пару ом.
Передний фронт сигнала с 555 достаточно вертикален и это эквивалентно сотням килогерц если разложит в ряд фурье сигнал. В этот момент основнаея нагрузка идет на 555, резистор спасет от этого. Хотя я даже и резисторы не ставил никогда на 555.

Как собрать дома «поющую дугу» или по научному ионофон

В данном руководстве вы узнаете, как своими руками собрать одно очень увлекательное приспособление. Ионофон, или как ее в народе называют «поющая дуга». Несмотря на то что, многим данное название ни о чем не скажет, все же подобные игрушки невероятно популярны в среде начинающих радиолюбителей.
Мы все уже давно привыкшие, что звук с различных устройств воспроизводится благодаря стандартным динамикам. Но ионофон способен воспроизвести этот, же самый сигнал, за счет специального ионизированного потока.

В действительности в устройстве молодой радиолюбитель не увидит ничего сложного, ведь вся схема сделана из:

  • Генератора. Он представлен микросхемой NE555;
  • Силовой части, которая является мощным N-канальным полевым транзистором IRFZ44;
  • Высоковольтного трансформатора состоящего из строчной развертки старого советского телевизора Tr1

Разберем подробнее данную конструкцию. Микросхема NE555 является генератором прямоугольных импульсов с возможностью модуляции аудио. С помощью строчного резистора, который находится на плате, можно настраивать частоту в пределах от шести до 48-ми кГц.
Сам звуковой сигнал должен подаваться с помощью разделительного конденсатора на пятый вывод схемы. За счет этого можно контролировать продолжительностью импульсов. А полевой транзистор, нагружает выход микросхемы 555 и раскачивает мощный высоковольтный трансформатор. Он должен располагаться сверху на радиаторе. Для этой конструкции можно использовать полевики с силой тока от 20-ти ампер и с расчетным напряжением, превышающим 40 вольт. Но лучше воспользоваться транзисторами на 100V.

Что касается строчного трансформатора, то в нашем варианте используется ТВС110ПЦ15

Для начала свободная часть сердечника обматывается 12-ть раз заизолированным проводом в 1мм. Размер проводов в диаметре должен быть от 0,5-ти до двух мм.

Далее необходимо найти выход прочной обмотки с высоковольтного трансформатора. В большинстве случаев это бывает обмотка с наивысшим сопротивлением. Для того, чтобы ее отыскать можно воспользоваться мультиметром. Либо изучить данную схему:


Если у вас строчный трансформатор такой же, как тот, что на рисунке один из выводов высоковольтной обмотки расположен на катушке, второй снизу. Найти его достаточно просто, так как к нему подсоединен изолированный провод.

Следующим шагом подсоединяем два заизолированных провода к контактам обмотки. Каждый из них должен быть не менее 15-20 см в длину.


Далее необходимо собрать плату и подключить трансформатор.

Для энергопитания можно использовать блок на 5V и 2А. Для наиболее оптимальной работы устройства необходим источник энергии с напряжением 10-12V и с силой тока от 2А.

Сигнал может подаваться любым воспроизводящим звук устройством (например телефоном). Причем используется стандартный разъём на 3,5мм как для обыкновенных колонок или наушников.

Все, любуемся результатом.

Дуга способна не только звучать, но и менять свою форму при низких частотах.

В конце хотелось бы заострить внимание на том, что при любых экспериментах не стоит забывать о простейших правилах техники безопасности.

ПРИКРЕПЛЕННЫЕ ФАЙЛЫ – СКАЧАТЬ