Аварийный блок питания 5 вольт от 1.2 вольтового аккумулятора

Аварийный блок питания 5 вольт от 1.2 вольтового аккумулятора

Для аварийного питания применяются батареи аккумуляторов или элементов питания. При длительной непрерывной эксплуатации эта батарея становится самым ненадежным узлом.

С элементами питания проще: раз в полгода выбрасывать старые батарейки и вставлять новые. Хотя это накладно и не гарантирует надежность.

Для батареи аккумуляторов нужно предусмотреть качественное автоматическое зарядное устройство с проверкой состояния и сигнализацией. Вероятность отказа батареи растет в геометрической прогрессии от количества аккумуляторов.

Можно использовать один литиевый (3,6 вольт) аккумулятор. Сделать к нему умное зарядное. По необходимости добавить преобразователь 3,6/5 вольт на МАХ-се. Получится дорогое и, может быть, качественное устройство.

Основная задача состояла в изготовлении надежного и недорогого аварийного блока питания на одном никель-кадмиевом или никель-металлогидридном аккумуляторе.

За полгода было изготовлено десяток конструкций с различными преобразователями и различными зарядными. Микросхем DC/DC, надежно работающих от 1 вольта я не нашел. Из 5-ти преобразователей различного принципа действия лишь генератор на «древнем» германиевом транзисторе удовлетворил меня по надежности и КПД. На монтажной плате я испытал все ГТ402 и ГТ403, которые нашлись в моем радиохламе. Их оказалось более десятка с разными буквами и разными коэффициентами усиления, но они все отлично работали.

Контролирующе-зарядное устройство хотел сделать попроще: на полевых транзисторах, потом на операционных усилителях, потом на компараторах. Плюс стабилитроны и оптроны и тчательная и долгая настройка. Только с применением микроконтроллера пришло удовлетворение. Пусть МК все проверяет и настраивает. Вот результат на фото.

Его технические характеристики:

  • Питание: 1,2 вольт — 1 аккумулятор (использовались: NiCd 800mAh, NiMH 170 — 2100mAh.)
  • Выходное напряжение 4,8В.
  • Включение в работу при исчезновении сетевого напряжения, не допуская просадку напряжения на выходе ниже 4,5В.
  • Работать от аккумулятора не менее 20 часов, сигналить 1 раз в 2 минуты о разряде аккумулятора ниже 1 вольта.
  • Учесть вероятность наличия в сети импульсных помех.
  • Отключение преобразователя при появлении сети.
  • Контроль за состоянием аккумулятора:
    • Отсутствует или неисправен – звуковой и световой сигнал каждые 2 минуты.
    • Напряжение ниже 1,28 вольт – зарядить.
    • Заряжать импульсным током: 80мА в течение 1 сек, пауза 25мкс, измерение напряжения. И так повторять до 1,42В. Из множества методов заряда аккумуляторов я выбрал именно такой.
    • После 10 циклов заряда (может через месяц, а может и через пару лет) – 1 принудительный разряд током 40 – 60мА до 1 В.

    Схема состоит из экономичного стабилизатора напряжения VR1, ключа включения-выключения зарядки аккумулятора VT1, ключа включения-регулировки-выключения преобразователя напряжения 0,8/5 вольт VT2, генератора на германиевом транзисторе VT3 и трансформаторе Tr1. Микроконтроллер PIC16F676 всем этим управляет и сигнализирует светодиодами о своих действиях.

    Наличие сетевого напряжения контролируется сразу после диодного моста делителем напряжения R1 – R2. Если применить другой источник питания (стабилизатор может работать от 7 до 40 вольт) нужно подобрать резисторы так, чтобы на делителе было 4,5 – 4,8 вольт. И это надо проверить ещё до установки микроконтроллера в панельку.

    HL2 свидетельствует о наличии сети и о нормальной работе стабилизатора напряжения 5v.

    О включении заряда сигнализирует белый светодиод HL4. Зарядный ток можно изменить в зависимости от применяемого аккумулятора и мощности сетевого трансформатора подбором резистора R10 и VT2.

    Печатная плата выполнена из одностороннего фольгированного стеклотекстолита. Отсек для аккумулятора отрезал от 3-хэлементного батарейного отсека.

    Самым капризным узлом, при повторении схемы, является автогенератор. Но следуя моей методике, основанной на многочисленных экспериментах с разными генераторами и разными комплектующими, у Вас настройка генератора займет десяток минут. На печатную плату сначала установить лишь те детали, которые указаны на рисунке.

    Временно подключить нагрузку (резистор 560 Ом + светодиод) и переменный резистор 5 кОм для установки и поддержания на коллекторе VT2 напряжения 0,8 вольт. При намотке трансформатора предусмотреть возможность смотать витков 5 и оставить «хвосты», чтобы можно было домотать витков по 5. Подключить аккумулятор, именно аккумулятор, а не какой-либо блок питания. Вместо диодов VD4-5 для наглядности я временно поставил светодиод. Получится вот так:

    На выходе должно быть 3-7 вольт. Если напряжение меньше 1,5В нужно поменять у одной из обмоток начало с концом. Выставить 0,8 вольт на коллекторе VT2 (проверять и регулировать при каждом изменении витков). Добавляя или отматывая по 1 витку первичной обмотки остановится в районе 5 вольт. Теперь, меняя количество витков вторичной обмотки, остановиться на 4,8 вольт. Обмотки я мотал по всему кольцу.

    Назначение остальных элементов схемы: VD2 и VD3 – диоды Шоттки из за малого падения 0,2В напряжения — делят питание по +, R12-R15 – ступени регулировки напряжения на выходе VT2, VD4-5 работают как стабилитрон 0,6+0,6=1,2 вольта.

    Защита от сетевых помех выполнена программно. Назначение портов микроконтроллера ясно со схемы.

    Транзистор VT3 ГТ402 – ГТ403 с любым индексом, с любым коэффициентом усиления. Выбор остальных деталей некритичен.

    Стабилизатор напряжения 5В можно собрать на КРЕН-ке вместо LM2575..

    Напоминаю, что микроконтроллер PIC16F676 имеет одну особенность: в последнюю ячейку памяти завод-изготовитель записывает поправочный коэффициент частоты. Потому программировать нужно в следующем порядке:

    • Вставить мк в программатор и нажать кнопку «читать»
    • По адресу 03FF прочесть и запомнить число. К примеру: 34АВ.
    • Открыть файл НЕХ программы, которую Вы хотите записать.
    • Найдите и измените значение ячейки по адресу 03FF. Там было 3FFF. Запишите 34АВ.
    • Программируйте.
    • В ICProg появляется сообщение: «Не … … … Вы настаиваете … … использовать ячейку 3FFF (34AB)? Отвечайте: « Да».
    • В WinPic ничего не спрашивает, записывает нормально.

    Два таких блока уже установлены в часы, работают нормально. Но следующий будет с изменением узла контроля выходного напряжения и узла включения заряда и …

    Кстати, этот аварийный блок питания неплохо реанимирует аккумуляторы. При наладке для ускорения процесса вставил совсем «дохлый» аккумулятор NiМН-1600 (за 2 секунды он заряжался от 0,5 до 1,42 вольт и саморазряжался до 1 вольта секунды за 3). Проверил все режимы, в том числе и принудительный разряд через 10 циклов заряда. Для проверки теплового режима оставил на ночь. Тепловой режим в порядке, а аккумулятор ещё до обеда непрерывно заряжался и набрал емкость процентов 80. При проверке следующего блока для ускоренной проверки этот аккумулятор уже не годился, пришлось взять ЦНК-0,45.

    Схема, печатка и НЕХ файл прилагаются.

    Список радиоэлементовОбозначение
    Тип
    Номинал
    Количество
    ПримечаниеМагазинМой блокнот

    МК PIC 8-битPIC16F6761
    VR1
    DC/DC импульсный конвертерLM25751
    VT1
    Биполярный транзисторКТ502А1
    VT2
    Биполярный транзисторКТ3107А1
    VT3
    Биполярный транзисторГТ403А1
    ГТ402VDS
    Диодный мостDB1571
    VD1-VD5
    Диод Шоттки1N58195
    VD6
    СтабилитронBZX55C5V11
    5.1 ВHL1-HL4
    Светодиод4
    C1, C3, C5-C7, C11
    Конденсатор100 нФ6
    C2
    Электролитический конденсатор100 мкФ 35 В1
    C4
    Электролитический конденсатор330 мкФ 16 В1
    C8
    Электролитический конденсатор10 мкФ 6.3 В1
    C9
    Электролитический конденсатор10 мкФ 16 В1
    C10
    Электролитический конденсатор330 мкФ 10 В1
    R1
    Резистор6.8 кОм1
    R2, R16
    Резистор3.3 кОм2
    R3-R5
    Резистор370 Ом3
    R6, R11
    Резистор10 кОм2
    R7
    Резистор1 кОм1
    R8
    Резистор100 кОм1
    R9, R12
    Резистор180 Ом2
    R10
    Резистор51 Ом1
    0.5 ВтR13
    Резистор390 Ом1
    R14
    Резистор680 Ом1
    R15
    Резистор1.2 кОм1
    L1
    Дроссель330 мкГн1
    buzer
    Пьезоизлучатель5 В1
    Tr1
    Трансформатор1
    Akk1
    АккумуляторAA 1.2 В1
    Ni-Mh
    КолодкаДля аккумулятора AA1
    Добавить все

    Аварийный блок питания 5 вольт от 1.2 вольтового аккумулятора

    • Усилители мощности
    • Светодиоды
    • Блоки питания
    • Начинающим
    • Радиопередатчики
    • Разное
    • Ремонт
    • Шокеры
    • Компьютер
    • Микроконтроллеры
    • Разработки
    • Обзоры и тесты
    • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
    • Усилители мощности
    • Светодиоды
    • Блоки питания
    • Начинающим
    • Радиопередатчики
    • Разное
    • Ремонт
    • Шокеры
    • Компьютер
    • Микроконтроллеры
    • Разработки
    • Обзоры и тесты
    • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
  • Три хороших блока питания на 5 вольт

    5 вольт – одно из самых широко используемых напряжений. От этого напряжения питается большинство программируемых и непрограммируемых микроконтроллеров, всевозможных индикаторов и тестеров. Кроме того 5 вольт используется для зарядки всевозможных гаджетов: телефонов, планшетов, плееров и так далее. Я уверен, что каждый радиолюбитель может придумать множество применений этому напряжению. И в связи с этим я подготовил для вас три хороших на мой взгляд варианта блоков питания со стабилизированным выходным напряжением 5 вольт.

    Первый вариант – самый простой.

    Этот вариант отличается минимальным количеством используемых деталей, крайней простотой сборки и невероятной ‘живучестью’ – блок почти нереально убить. Итак перейдем к схеме.

    Эта схема срисована с недорогой зарядки телефона, обладает стабилизацией выходного напряжения и способна выдавать ток до 0.5 А. На самом деле блок может выдавать и больше, но при повышении тока на выходе начинает срабатывать защита от перегрузки и выходное напряжение начинает уменьшаться. Защита от перегрузок и КЗ реализована на резисторе 10 ом в цепи эмиттера силового транзистора и маломощном транзисторе s9014. При повышении тока через первичную обмотку трансформатора на эмиттерном резисторе создается падение напряжения, достаточное для открытия s9014, который в свою очередь притягивает базу силового транзистора к минусу, тем самым закрывая его и уменьшая длительность импульсов через первичную обмотку. При изменении номинала данного резистора можно увеличить или уменьшить ток срабатывания защиты. Сильно увеличивать не стоит, так как это повлечет за собой повышение нагрева силового транзистора и увеличит вероятность выхода последнего из строя.

    Читайте также  Реле контроля напряжения

    Стабилизация выполнена на распространенном оптроне pc817 и на стабилитроне 3.9 В (при изменении номинала которого можно менять выходное напряжение). При превышении выходного напряжения, светодиод оптрона начинает светиться ярче, вызывая повышение тока через транзистор оптрона на базу s9014 и, как следствие, закрытие силового ключа. При уменьшении выходного напряжения, наоборот, транзистор оптрона начнет закрываться и s9014 не будет обрывать импульсы на базе силового ключа, тем самым увеличивая их длительность и, соответственно, увеличение выходного напряжения.

    Особое внимание стоит уделить намотке трансформатора. Это зачастую является фактором, отталкивающим новичков от импульсных блоков питания. Итак, поскольку блок однотактный, нам потребуется трансформатор с немагнитным зазором между половинками сердечника. Зазор нужен для быстрого размагничивания сердечника и для предотвращения вхождения феррита в насыщение. Расчет трансформатора в идеале надо проводить в специальных программах, но для тех, кому этого делать не хочется, скажу, что в таких маломощных блоках питания первичная обмотка состоит из 190-220 витков провода 0.08-0.1мм. Грубо говоря, чем больше сердечник, тем меньше витков. Поверх первички в том же направлении мотается базовая обмотка. Она состоит из 7 – 15 витков того же провода. И в конце уже более толстым проводом мотается вторичка. Число витков 5-7. Крайне важно мотать все обмотки в одном направлении и помнить, где начало и конец. На схеме и на плате (которую можете скачать тут ) точками указаны начала обмоток.

    По схеме тут больше добавить нечего, она довольно простая и не требует особых навыков для сборки. Все компоненты можно изменять в пределах 25%, блок прекрасно будет работать. Силовой транзистор можно ставить любой обратной проводимости, соответствующей мощности и с расчетным напряжением коллектора не менее 400 вольт. Базовый транзистор – любой маломощный NPN с такой же цоколёвкой, как и s9014.

    Данный блок мощно применять там, где не нужен высокий ток, а нужна компактность, например для питания Arduino или для зарядки устройств с аккумуляторами небольшой ёмкости. Из плюсов данного бп можно отметить компактность, наличие защиты и стабилизации и, конечно, простоту сборки. Из минусов, пожалуй, только малая выходная мощность, которую кстати можно поднять, увеличивая ёмкость входного фильтрующего конденсатора.

    Блок кстати выглядит так:

    Второй вариант – более мощный.

    Этот вариант очень похож на предыдущий, но мощнее. Блок имеет доработанную обратную связь и, следовательно, лучшую стабилизацию. Давайте взглянем на схему.

    Схема представляет собой блок дежурного питания компьютерного бп. В отличие от предыдущей схемы в этой более мощный силовой транзистор, большая ёмкость входного фильтрующего конденсатора и, самое главное, трансформатор с большей габаритной мощностью. Всё это как раз и влияет на выходную мощность. Ещё в данной схеме, в отличие от первой, сделана нормальная стабилизация на TL431 – источнике опорного напряжения.

    Принцип работы тут такой же, как и у предыдущего варианта. Через резистор 560 кОм на базу силового ключа подается начальное напряжение смещения, он приоткрывается и через первичную обмотку начинает течь ток. Нарастание тока в первичке вызывает нарастание тока во всех остальных обмотках, значит ток, возникающий в базовой обмотке, будет ещё сильнее открывать транзистор, и этот процесс продолжиться до тех пор, пока транзистор полностью не откроется. Когда он откроется, ток через первичку перестанет изменяться, а значит на вторичке перестанет течь и транзистор закроется и цикл будет повторяться.

    Про работу защиты по току и стабилизации я подробно рассказал выше и не вижу смысла повторяться, так как тут всё работает точно так же.

    Поскольку этот блок питания сделан на основе дежурки компьютерного блока, трансформатор я использовал готовый и не перематывал. Трансформатор EEL-19B. Расчетная габаритная мощность 15 – 20 Вт.

    Как и в предыдущей схеме номиналы компонентов можно отклонять в пределах 25%, так как в разных компьютерных бп эта схема прекрасно работает с разными компонентами. Этот экземпляр, благодаря выходному току в 2 А можно использовать как зарядку для телефонов и планшетов или для прочих потребителей, требующих большой ток. Из плюсов данной конструкции можно отметить простоту добычи радиодеталей, ведь наверняка у каждого есть нерабочий блок питания от старого компа или телевизора, а там элементарной базы хватит на 3 – 4 таких бп. Так же плюсом можно считать немалый выходной ток и неплохую стабилизацию. Из минусов справедливо можно отметить размер платы (она довольно высокая из-за трансформатора) и возможность свиста при холостом ходу. Свист может появиться из-за неисправности какого-либо элемента, либо просто из-за слишком низкой частоты преобразования на холостом ходу. Под нагрузкой частота увеличивается.

    Блок выглядит вот так:

    Третий вариант – самый мощный.

    Этот вариант для тех, кому нужна огромная мощность и прекрасная стабилизация. Если вам не жалко пожертвовать компактностью, этот блок специально для вас. Итак, смотрим схему.

    В отличие от предыдущих двух вариантов, в этом применяется специализированный ШИМ – контроллер UC3843, который, в отличие от транзисторов, как ни как умеет менять ширину импульсов и специально сделан для применения в однотактных блоках питания. Также у UCшки частота не меняется в зависимости от нагрузки и её можно четко рассчитать в специализированных калькуляторах.

    Итак принцип работы. Начальное питание поступает через резистор 300 кОм на 7 ножку микросхемы, она запускается и начинает генерировать импульсы, которые выходят с 6 ножки и идут на полевик. Частота этих самых импульсов зависит от элементов Rt и Ct. С указанными компонентами частота на выходе 78,876 кГц. Вот кстати устройство микросхемы:

    На этой микросхеме очень удобно реализовывать защиту по току, у неё для этого есть специальный вывод – current sense. При напряжении больше 1 вольта на этой ножке сработает защита и контроллер снизит длительность импульсов. Стабилизация здесь сделана при помощи встроенного усилителя ошибки current sense comparator. Поскольку на 2 выводе у нас 0 вольт, усилитель error amp. Всегда выдает логическую единицу и она идёт на вход усилителя current sense comparator, формируя тем самым опорное напряжение 1 вольт на его инвертирующем входе. При превышении напряжения на выходе блока питания, фототранзистор оптрона открывается и шунтирует 1 вывод микросхемы на минус. При этом снижается напряжение на инвертирующем входе current sense comparator, а так как на его не инвертирующем в момент открытия транзистора нарастает напряжение, то в какой то момент оно превысит напряжение на инвертирующем входе (при КЗ случается то же самое) и current sense comparator выдаст логическую единицу, что в свою очередь приведет к уменьшению длительности импульсов и, в конечном итоге, к снижению напряжения на выходе блока питания. Стабилизация в данном блоке питания очень хорошая, чтоб вы понимали, насколько она хорошая, при подключении резистора 1 Ом на выход, напряжение падает всего на 0.06 вольта, при этом на нём рассеивается 25 Вт тепла и он сгорает через пару секунд. Вообще этот блок может выдавать и 30 Вт и 35, так как в роле ключа здесь применён полевой транзистор. На схеме указан 4n60, но я поставил irf840, так как у меня их много. Микросхема может выдавать на управление полевиком ток до 1 А, что дает возможность без дополнительного драйвера управлять довольно мощными полевыми ключами.

    Трансформатор для этого блока был взять от сгоревшей 100-ваттной энергосберегающей лампы. Первичка состоит из 120 витков проводом 0.3 мм, обмотка самозапитки – 20 витков тем же проводом и силовая выходная обмотка – 5 витков двумя проводами 1 мм. По выходу стоит полноценный фильтр помех, позволяющий применять этот бп там, где помехи никак не нужны.

    Применять бп можно в очень мощных зарядниках для гаджетов. Он спокойно может заряжать 6 и даже 7 устройств одновременно, при этом обеспечивая стабильное 5 В на выходе.

    Выглядит это всё примерно так:

    А вот их относительные размеры:

    Ну и на этом всё. Если остались какие-либо интересующие вас моменты, о которых я не сказал, задавайте их мне на почту Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

    MaximMS › Блог › Зарядное устройство для аккумуляторов из блока питания ПК

    Лежит у меня пяток бесперспективных ATX блоков питания компа. Бесперспективных потому что старые, разъемы не 24, а просто 20 pin, надо перепаивать, а перепаивать нет смысла потому что внутри голимый китай и чтобы привести блок к более менее надежному варианту нужно вложение денег равных по стоимости самого нового блока…
    Так как с электроникой я не то что на «ты», а — «эй иди сюда давай» :))) решил превратить пару блочков в зарядное устройство для аккумуляторов
    Писать в подробностях особо смысла нет — идея не нова, мануал по переделке здесь radiokot.ru/circuit/power/charger/27/
    Еще драйвовчанин сделал почти то что и я www.drive2.ru/l/5525057/
    Штатную защиту блока по КЗ я все таки оставил :))) Оставил также выход +5Вольт

    Немного теории
    Ближе к концу осени у автомобилистов нередко возникает вопрос качественной зарядки аккумулятора. Как же это делать для достижения наилучшего результата?
    Свинцовые аккумуляторные батареи заряжаются от источника «выпрямленного» (постоянного) тока. Для этого годится любое устройство, позволяющее регулировать ток или напряжение зарядки, при условии что оно обеспечивает увеличение зарядного напряжения до 16,0-16,5 вольт. В противном случае зарядить современную 12-вольтовую батарею полностью, до 100 процентов ее емкости не удастся.

    Читайте также  Детектор загрязнения окружающего воздуха

    Для зарядки положительный вывод зарядного устройства соединяется с клеммой (+) аккумулятора, а отрицательный вывод — с клеммой (-).

    Существуют два режима зарядки: режим неизменности тока и режим неизменности напряжения. По своему влиянию на продолжительность жизни аккумулятора эти режимы равнозначны.

    Зарядка в режиме неизменности тока.
    Аккумулятор заряжается при токе, сила которого составляет одну десятую часть от номинальной емкости при двадцатичасовом разряде. То есть, для аккумулятора, имеющего емкость 60 А/ч (ампер в час), нужен зарядный ток 6А. Недостаток этого режима зарядки состоит в необходимости неоднократного (через каждые 1-2 часа) контроля величины тока и его регулирования, а также сильное выделение газов в конце процесса.

    Для того чтобы снизить газовыделение и обеспечить более полную заряженность аккумулятора полезно применять постепенное уменьшение силы тока по мере повышения напряжения заряда. При достижении напряжением значения 14,4 вольт ток заряда нужно уменьшить наполовину до 3 ампер (для аккумулятора, емкостью 60 А/ч) и продолжать зарядку, пока не начнется газовыделение.

    В современных аккумуляторах, не снабженных отверстиями для доливки воды, после увеличения напряжения зарядки до 15 вольт полезно еще раз уменьшить зарядный ток наполовину — до 1,5 ампер (для аккумулятора, емкостью 60 А/ч).

    Полностью заряженным аккумулятор можно считать, если напряжение и ток зарядки остаются неизменными 1-2 часа.

    У так называемых необслуживаемых аккумуляторов состояние полной заряженности наступает при значении напряжения, равном 16,3-16,4 вольт (разница зависит от качества электролита и состава сплавов, из которых сделаны решетки).

    Зарядка в режиме неизменности напряжения.
    При использовании этого метода уровень заряженности аккумулятора в конце процесса зависит от величины напряжения зарядки, выдаваемого зарядным устройством. Так после непрерывной 24-часовой зарядки при значении напряжения 14,4 вольт 12-вольтовый аккумулятор будет заряжен до 75-85% от своей емкости, при значении напряжения 15 вольт — до 85-90%, а при 16 вольтах — до 95-97%. Полностью за 20-24 час. аккумулятор заряжается при подаче на него напряжения 16,3-16,4 вольт.

    В зависимости от емкости и внутреннего сопротивления аккумулятора в момент начала зарядки сила проходящего через него тока может превышать 50 ампер. Поэтому во избежание выхода его из строя в зарядных устройствах предусмотрено ограничение максимального тока до 20-25 ампер.

    В процессе зарядки напряжение на клеммах аккумулятора постепенно достигает значения напряжения зарядного устройства, а сила тока заряда уменьшается почти до нуля (при условии что величина напряжения зарядки меньше напряжения, при котором начинается выделение газов). Таким образом зарядку можно производить без постоянного внимания человека. Показателем окончания зарядки здесь считается увеличение напряжения на клеммах аккумулятора до 14,3-14,5 вольт. В это время обычно включается зеленый световой сигнал, показывающий момент достижения требуемого напряжения и окончания процесса зарядки.

    На практике для нормальной зарядки (до 90-95% емкости) необслуживаемых аккумуляторов современными зарядными устройствами с максимальным напряжением 14,4-14,5 вольт обычно требуется время более 24 часов.

    Зарядка аккумулятора на автомашине.
    На автомашине аккумулятор подзаряжается в режиме неизменного напряжения во время работы двигателя. По договоренности с изготовителями аккумуляторов автопроизводители устанавливают в генераторах напряжение зарядки 13,8-14,4 вольта — меньшее, чем напряжение, при котором происходит интенсивное газовыделение.

    При понижении температуры воздуха возрастает внутреннее сопротивление аккумулятора, из-за чего эффективность его зарядки в режиме неизменности напряжения уменьшается. По этой причине аккумулятор на автомашине полностью возможно зарядить не всегда, а в зимнее время при напряжении на клеммах 13,9-14,4 вольта и включенных фонарях дальнего света заряженность АКБ не превышает 70-75%. В связи с этим зимой в условиях низких температур, небольших расстояний пробега автомобиля и частых пусках холодного двигателя полезно хотя бы раз в месяц заряжать аккумулятор в помещении с применением зарядного устройства.
    Справочная информация

    Теперь по порядку:
    В руководстве устанавливают выходное напряжение 14,5 Вольт — выше начинает кипеть электролит!
    Однако в процессе обкатки-тестирования были замечены аккумуляторы, которые начинают бодренько заряжаться, но по мере приближения к отметке 14,5 Вольт (точка кипения) ток заряда резко падает и надо очень долго ждать (около 7-8 часов) пока он зарядится полностью. Попадались и такие которые вообще в принципе заряжались еле еле и 14,5 вольт поданных на него было явно недостаточно.
    К слову сказать советское зарядное устройство для 12 и 24-вольтовых аккумуляторов выдает на холостую 21 вольт в режиме 12 вольтового аккумулятора и 40 вольт для 24 вольтового
    Поэтому я решил пойти немного по другому пути — заморачиваться с ограничением по току не стал, а вместо ограничения поставил предохранитель на 8 Ампер на выходе, этот же предохранитель выполняет и функции защиты от переполюсовки
    Вместо ограничения тока сделал регулировку выходного напряжения
    Блок позволяет выдавать напряжения от 9 до 18 вольт (на самом деле от 5 до 24, но т.к. я не стал дергать защиту, получился указанный диапазон) чего более чем достаточно

    radiokot.ru/circuit/power/charger/27/09.gif
    У TL494 за выходное напряжение отвечают резисторы которые подключены к первой ноге, чем меньше сопротивление между общим проводом — тем больше выходное напряжение (в общем реализован на 1 ноге делитель на резисторах)
    1. Подбором 3 обведенных зеленым добился выходного напряжения около 17 вольт
    2. вместо R42 идущего с канала +12 поставил переменник 6,8 килоом последовательно с резистором 13 килоом
    Таким образом получил диапазон регулировки выходного напряжения от 10,5 до 17 Вольт

    Перепаял выходные конденсаторы
    — в канале +12 с номинала 16 В на 25 В
    — в канал +5 вместо 10-вольтовых поставил поставил 16 вольтовые из канала +12

    вентилятор прицепил в канал +5, так он будет вертеться гораздо тише, да и 17 Вольт на выходе ему не совсем понравятся

    Заказал у китайцев цифровой вольтметр-амперметр ru.aliexpress.com/item/DC…er-Gauge/32314616109.html
    ток до 10А, напряжение до 100В, в общем то то что надо
    Отдельно по подключению этого вольтметра амперметра
    -два мелких провода, это питание (от 4,5 до 30 вольт)
    -три потолще это токовый датчик амперметра (синий) и вход вольтметра (красный)
    черные минусовые провода объединены

    — Таким образом имеем зарядник с регулировкой выходного напряжения от 10,5 до 17 вольт
    — Если надо оставить на ночь «без присмотра», выставляем напряжение на холостом ходу 14,3-14,5 вольт и подключаем к аккумулятору
    На мой взгляд имеем более гибкое устройство при абсолютном минимуме возни
    Ну и как это все работает

    Паяем «умный» автомобильный БП на 5v с USB-зарядкой и автоматическим включением/выключением

    Я человек ленивый и люблю комфорт, поэтому люблю всяческого рода автоматизацию. В машине у меня есть видеорегистратор, иногда использую навигатор, часто нужно зарядить телефон или планшет себе или семье/знакомым. Как результат указанных потребностей — вся машина окутана проводами и зарядками, при этом всегда надо думать, что выдернуть из тройника прикуривателя и не потеряла ли контакт в прикуривателе очередная зарядка. Конечно, потихоньку в машине образовался клубок проводов и зарядок, а это мало того, что не эстетично, так еще и может привлечь наркоманов.

    В один прекрасный момент это всё достало и было принято решение сделать что-то универсальное.

    Задача:
    • Выходное напряжение 5.1V
    • Ток не менее 3A (телефон, 0.6А, видеорегистратор — 0.3А, iPad — 2A)
    • Автоматическое включение БП при запуске двигателя
    • Ручное включение БП
    • Автоматическое отключение БП через 15-30 минут после выключения двигателя (с возможностью продлить это время). Чтобы можно было оставить регистратор в машине без необходимости каждый раз его выключать/включать.
    • Автоматическое отключение БП при сильном разряде аккумулятора
    • Ручное выключение БП
    • Свистелки и перделкиСветовая и звуковая сигнализация
    • Достаточное количество USB-разъемов (хотя бы 4 шт.) в легкодоступном месте но без извращения над салоном
    • Нормальный (как родной зарядкой) заряд устройств Samsung и Apple
    • Без занимания прикуривателя.
    Решение:

    Решение вполне очевидное. Микроконтроллер для автоматизации и какой-нибудь преобразователь напряжения, но у преобразователя должна быть возможность включения/выключения работы логическими уровнями.

    С размещением в машине было немного сложнее, сначала хотел вставить USB в подстаканник, но потом откинул эту идею, т.к. не эстетично плюс стакан будет не поставить да и очередные мотки проводов не радовали. Потом я обратил внимание на подлокотник и ящичек находящий в нём. Это было то, что нужно! Сам ящичек вытаскивается — значит можно легко обслуживать, в самом подлокотнике много места — значит спокойно влезет электроника. USB разъемы легко врезать в боковину ящичка и не нужные провода зарядок можно не вытаскивая из разъемов прятать в ящик.

    Помимо USB разъемов для зарядок, требовалось питание для видеорегистратора. Для этого был протянут провод от подлокотника до зеркала заднего вида, на зеркале был наклеен еще один USB-разъем и выведен разъем для видеорегистратора.

    Если с размещением разъемов, всё было довольно понятно, то с электроникой возникли небольшие проблемы.

    Сначала была LM2596.

    KIS-3R33S — чудо китайских «конверсионных» технологий.

    Вообщем за какие-то пять копеек кучка модулей была приобретена и работа закипела.

    Подготовка БП.

    По умолчанию модуль KIS-3R33S настрое на 3.3V, поэтому надо модуль немного адаптировать. Есть разные варианты переделки этого модуля (например), но я решил обойтись минимальными переделками. Вооружившись даташитом и схемой KIS-3R33S я составил такой список переделок:

    1. Вскрываем модуль
    2. Удаляем резистор и стабилитрон отмеченные красным. (некоторые удаляют конденсатор, отмеченный жёлтым — я не стал)
    3. Припаиваем (прямо внутри, чтобы потом корпус можно было закрыть) «выводный» резистор (0,125 ваттный) R между минусом и входом ADJ модуля. Резистор фиолетовый. Резистор номиналом от 9.1ком до 10 ком, в зависимости от резистора будет и разное напряжение (от 5.28V до 5.15V соответственно). Этот резистор включается последовательно с уже установленным резистором на 3.3ком (т.е. общее сопротивление резисторов будет 3.3+9.1=12.4) и параллельно резистору R1, за счёт чего их общее сопротивление падает и напряжение на выходе микросхемы растёт.
    4. Собираем модуль обратно
    5. На вход и выход модуля подпаиваем электролитические конденсаторы примерно указанных ёмкостей. Напряжение конденсаторов меньше брать нельзя, а больше можно.
    Читайте также  Символьный жки на базе контроллера hd44780

    Я не хотел, чтобы преобразователь работал на полную нагрузку, поэтому решил использовать 2 преобразователя, на одном будет 2 USB + USB и питание видеорегистратора, а на втором только 2 USB.

    В принципе, уже всё работает и может заряжать, если не нужна автоматика, то можно закончить читать 🙂

    Микроконтроллер.

    «Правильные» зарядки.

    Для Samsung-устройств тоже существует «своя схема» зарядки, но даже с закороченными средними контактами, мой телефон SGS2 кушал 600mA, что считаю вполне достаточным для заряда.

    Конструкция и размещение в машине.

    Схематично всё выглядит так:

    Плату я делал под имеющуюся коробочку, делал ЛУТом.


    4 USB хорошо разместились в ящике, рядом был выведен светодиод и проделана дырочка (1мм), чтобы лучше слышать биппер.

    И обратная сторона «медали». В алюминиевой коробочке находится плата управления и 2 преобразователя. Коробочка приклеивается скотчем к днищу ящика, который вставляется в подлокотник.

    А в машине всё выглядит культурно (кнопку ещё нормально не приделал :).

    На зеркале чуть хуже.

    Питание брал от прикуривателя, размещенного в подлокотнике. Все подключения на разъемах, чтобы можно было всю систему легко вытащить и унести домой на апгрейд.

    Сейчас понимаю, что можно было всё сделать красивее, взяв провода потоньше. Наверно весной переделаю.

    Архив со схемой, исходник программы, прошивка, поделки платы можно скачать в ZIP.

    ПС. Уже две недели собирался написать этот пост и только появившиеся аналогичная статья мотивировала начать 🙂

    Импульсный блок питания на два напряжения 5 и 12 вольт 1,2А для электронных самоделок

    • Цена: 5,34 USD (брал за 4,81 USD)
    • Перейти в магазин

    Привет Муськовчане! Как я обещал в обзоре милливольтметра, хочу рассказать Вам об импульсном блоке питания, с двумя изолированными (друг от друга) напряжениями 5В и 12В. Потребность в таком блоке питания возникает часто, а учитывая небольшие размеры платы, подобный источник питания легко встроить (найти место) в корпус Вашего электронного устройства, самоделки… Давайте протестируем этот ИИП, что бы определится с его «проф. пригодностью».))) Кому интересно — добро пожаловать под Кат… Внимание много фото.

    Почему я выбрал такой источник питания?
    1. Изолированные друг от друга каналы — часто это очень важно, к примеру, дать питания 12В на плату управления какого-либо силового устройства, а от 5В «запитать» цифровой индикатор (ампервольметр). Если будет гальваническая связь между каналами 5В и 12В, это может привести к неправильной работе, в лучшем случае и большому «бабаху» в худшем…
    2. На фото ИИП я увидел, хотя бы какое-то подобие входного фильтра (синфазный дроссель в том числе), для блоков питания нижнего ценового диапазона это редкость, а мне не хочется «гадить» помехами в сеть, т.к в эту же сеть у меня включен осциллограф, который начинает показывать «чужие» помехи при измерении.
    3. Небольшой размер — часто бывает, что в ходе сборки появляются дополнительные блоки, которые требуют свое питание, благодаря небольшим размерам найти место для этого ИИП будет не сложно.
    Скрин заказа выкладываю под спойлером:

    Давайте рассмотрим детали ИИП подробнее. Я буду фонариком выделять те части которые описываю, ибо по другому прочитать маркировку деталей сложно…
    1. Высоковольтная часть ИИП
    Рассмотрим входной каскад и фильтр. См фото:

    Как мы видим на фото, что есть предохранитель, термистор (5D9) и синфазный дроссель. Понятно, что фильтр не полный, не хватает как минимум Х конденсатора, без него возможны помехи в питающую сеть. Попробуем его после тестов впаять куда-нибудь. За дросселем идет электролитический конденсатор на 22мкФ 400В. По «феншую» количество микроФарад на входе равняется количеству Вт выдаваемых блоком питания. Соответственно ИИП рассчитан на 22W. Давайте суммируем заявленную мощность 2-х каналов. 5В 1.2А и 12В 1.2А итого 6W+ 14.4W= 20.4W Таким образом емкости входного конденсатора достаточно.
    2. Микросхема -драйвер, широко известная TOP223Y, соответственно это обратноходовый импульсный источник питания.

    Зная какая стоит микросхема драйвер, мы можем нарисовать схему импульсного источника питания. Упрощенная схема такая (из даташит), только у нас не один, а два независимых канала на выходе:

    Что меня удивило, что микросхема стоит на радиаторе через изолирующую прокладку. Зачем это сделали китайцы вообще не понятно, т.к. сам радиатор не имеет электрического контакта со схемой. Понятно, что с прокладкой охлаждение будет хуже. И по хорошему эту прокладку нужно убрать, и посадить микросхему на термопасту. Давайте также проверим соответствие мощности микросхемы-драйвера, мощности самого блока питания. См таблицу из даташит:

    Как видим, при универсальном питании наша микросхема дает мощность до 30W, что соответствует мощности ИИП. Тут все нормально.
    3. На фото мы видим клампер первичной обмотки импульсного трансформатора и элементы «самопитания» микросхемы драйвера

    Клампер выполнен по классической схеме RCD и особенностей не имеет. Диод D2, электролит С3 и резистор R2 это элементы «самопитания» микросхемы TOP.
    4. Элементы обратной связи, трансформатор и два Y конденсатора мы видим на следующем фото

    Опять же это классика обратноходовых ИИП. В качестве управляемого стабилитрона использована микросхема TL431, гальваническая развязка осуществляется оптотроном 817 серии. За импульсным трансформатором мы видим два Y конденсатора, которые существенно снижают помехи и соединяют «горячую» и «холодные» земли…
    5. Выходной каскад представлен диодами на каждый канал, затем выпрямительные конденсаторы и LC фильтры, которые снижает уровень выходных помех. Китайцы не поставили снаббры на диоды и керамику на ножки электролитических конденсаторов, которые могут заметно удлинить «жизнь» электролитов. Но не сложно поставить эти керамические конденсаторы самостоятельно…


    Поглядим так же обратную сторону платы источника питания:

    Мы видим диодный мост на входе и видим что китайцы сделали технологическую прорезь под импульсным трансформатором, однако толку он нее мало, т.к под Y конденсаторами есть место, где дорожки «горячей» и «холодной» части проходят довольно близко друг от друга.

    В общем, исполнение данного ИИП я могу оценить на Три с плюсом (3+) по Советской пятибалльной школьной системе)))
    Поставим плату ИИП на латунные втулки и подпаяем входные провода. Даем напряжение осветительной сети. На плате ИИП загорелся красный светодиод сигнализирующий, что на выходе есть напряжение.

    Тут мы видим первые странности. Обратите внимания на выходные контакты. Зачем то там китайцы поставили 3 плюса (+), видать что бы запутать пользователя и дезориентировать))))
    Зачем это сделано непонятно, тем более что плюсы нарисованы у катода, а не анода… Потому проверяйте полярность мультиметром. Если смотреть на выходные контакты Минус слева, а Плюс справа.

    Проверяем напряжение на выходах без нагрузки. Напряжение в норме (соответствует)


    Ниже на осциллограмме вы можете увидеть помехи на стабилизированном 5В выходе ИИП без нагрузки на выходе. Как мне кажется помехи в пределах допустимого.

    Теперь даем нагрузку 1А на выход 5В См фото…

    На осциллографе уже не такая идиллия:

    Однако напряжение просело совсем немного всего на 7мВ… Одноамперную нагрузку ИИП держит нормально…
    Странность №2 На фото видно, что выпрямительные диоды стоящие после импульсного трансформатора в каналах 5В и 12В разные (хотя 1А способны выдержать оба диода)… Потому у меня возникло подозрение, что ток в 12 вольтовом канале вряд ли будет как заявлен в описании на сайте Banggood…

    Догадка мгновенно подтвердилась, когда я начал испытания 12 вольтового канала. См фотографию: (подозрения не подтвердились, что бы не было просадки в 12В канале, нужно нагрузить 5В стабилизированный канал)

    Уже при токе чуть выше 300мА просадка напряжения на выходе составило более 1 вольта. Чего уж там говорить про заявленный 1 Ампер… Пульсации тоже явно выше заявленных на сайте Banggood… Проблема, как я думаю, в импульсном трансформаторе, судя по его размеру, 20Вт снять с него довольно сложно… Но менять и перематывать трансформатор, ради того, что бы добиться заявленных продавцом значений, я не буду…
    Более серьезно протестировать этот блок питания смогу, после того как мне приедет купленная электронная нагрузка…

    Но она еще в дороге…

    Выводы: Данный ИИП подходит для нетребовательных к чистоте питания, низкотоковых потребителей, таких как различные панельные ампервольметры, зарядные устройства и другие самоделки.

    Да я был не прав, прошу прощения у Banggood… Если нагрузить стабилизированный 5 вольтовый канал (благодаря подсказке Aloha_), то просадка в 12В канале не наблюдается… См фото…


    Данный Импульсный блок питания по току соответствует приведенным на сайте параметрам.

    UPD: Допилинг, доставил конденсатор на вход, пусть не формата Х, но рассчитанный на 630В, емкость небольшая, ну хоть для самоуспокоения, что на входе что-то есть…

    Так же впаял 4 керамических смд конденсатора 100n на ножки электролитов, думаю, что лишними не будут…

    После того как приедет нагрузка, еще раз протестирую этот ИИП и добавлю обзор.