Аналоги микросхем памяти на различную аппаратуру

Микросхемы.

О сновой в современных микросхемах служит тоненькая пластинка из особо чистого кремния(чип), на которой с помощью методов фотолитографии, создаются структуры, выполняющие роль транзисторов, диодов и резисторов, а также соединения между ними.

Электронные схема полученные таким образом, чаще всего, предназначаются для выполнения какой то одной, определенной функции, например — усиления сигнала(операционный усилитель), стабилизации тока (интегральный стабилизатор), а также может содержать в себе логические элементы. Однако, кроме того, существуют и многофункциональные програмируемые схемы.

После изготовления и тестирования, чип помещают в защитный корпус снабженный выводами, иногда, дополнительно добавляя мощные транзисторные структуры с теплоотводами — в микросхемах служащих мощными усилителями и стабилизаторами тока(гибридные микросхемы).

Иногда, при изготовлении электронных устройств ширпотреба — часов, калькуляторов, игрушек и.т. д применяются специально разработанные, бескорпусные микросхемы узкой специализации. Их чипы устанавливают и подключают непосредственно на монтажной плате, и для защиты заливаются слоем компаунда.

В радиолюбительской практике широко применяются следующие аналоговые микросхемы:
Оперативные усилители.
Усилители УЗЧ различной мощности.
Интегральные стабилизаторы напряжения.
Из цифровых микросхем — счетчики, логические элементы, различные триггеры, мультиплексоры и дешифраторы.
Кроме того, существуют микросхемы, объеденяющие собой класс цифровых и аналоговых. Это аналого — цифровые преобразователи(АЦП), цифро-аналоговые преобразователи(ЦАП) и таймеры.

Корпуса и выводы.

Наиболее распостраненной формой корпуса интегральной микросхемы являются корпуса типа DIL, с двумя линиями выводов.
DIL может иметь 8, 14, 16, 28, 40 выводов для сквозного монтажа, с шагом 2,5 мм.
Плоский корпус с выводами расположенными с шагом 1,5 мм используется для плоскостного(планарного) монтажа.
Также, используются корпуса SIL, вертикальной компановки, с одним рядом выводов, и QIL — квадратные, с четырьмя линиями выводов.
Иногда встречаются микросхемы в цилиндрическим корпусом и круговым расположением выводов.

Специальные микросхемы — процессоры, являющиеся основой персональных компьютеров могут иметь гораздо большее количество выводов, расположенных в 6 и более, рядов.

Маркировка отечественых интегральных схем.

Первый символ в названии — буквы К или Э.
Буква К ставится на микросхемах общего применения. Буквой Э маркируются микросхемы экспортного исполнения. Первый символ может вообще отсутствовать, это означает что микросхема — специального применения.

Второй символ в названии, определяет тип корпуса:
M — металлокерамический.
Н — миниатюрный металлокерамический.
Р — пластмассовый DIP.
А,Ф — миниатюрный пластмассовый.
Б — бескорпусной.
Е — металлополимерный DIP.

Третий символ — цифра, означающая группу по конструктивно — техническому оформлению.
1, 5, 6, 7 — полупроводниковые микросхемы.
1, 4, 8 — гибридные микросхемы.
3 — прочие (пленочные).

Далее, идет порядковый номер серии(возможно обозначение двумя цифрами).

После порядкового номера серии идет буквенный код функционального назначения:
А — формирователи, АФ — специальной формы.
Б — устройства задержки:БМ — пассивные,БП — прочие,БР — активные.
В — вычислительные устройства:ВГ — контроллеры,ВЕ — микро-ЭВМ,ВЖ — специальные вычислительные устройства, ВИ — времязадающие,ВП — прочие.
Г — генераторы сигналов:ГЛ — линейно изменяющихся,ГП — прочие (не sin; не спец. формы; не прямоуг.; не шума), ГФ — специальной формы.
Е — питание,ЕП — источники питания,ЕУ — устройства управления источниками питания.
И — цифровые устройства:ИЕ — счетчики, ИП — прочие.
К — коммутаторы и ключи:КН — напряжения,КТ — коммутаторы и ключи тока,КП — прочие.
Н — наборы элементов:НК — комбинированные, НТ — набор транзисторов.
П — преобразователи сигналов:ПА — цифроаналоговые,ПД — длительности,ПС — частоты,ПЦ — цифровые делители частотыПП — прочие.
Р — запоминающие устройства:РР — ПЗУ с перепрограммированием,РП — прочие (не ОЗУ; не ПЗУ; не ассоциативные; не на ЦМД).
У — усилители:УД — операционные,УИ — импульсные,УК — широкополосные,УЛ — считывания и воспроизведения, УН — низкой частоты,УП — прочие,УР — промежуточной частоты.
Ф,ФП — фильтры.
Х — многофункциональные устройства:ХА — аналоговые,ХК — комбинированные,ХЛ — цифровые,ХП — прочие.

Далее, следует порядковый номер разработки(возможно обозначение одной цифрой.)

Последним символом может быть буква (от А до Я)означающая какие либо отличия в электрических параметрах.

Европейская система маркировки микросхем.

Состоит из трех букв, за которыми следуют три или четыре знака, обозначающих номер серии, а также тип корпуса. Первая буква обозначает класс, к которому относится интегральная схема:
S — цифровая схема, T — аналоговая, U — аналогово-цифровая.
Вторая буква — серия (H обозначает гибридные микросхемы.)
Третья буква — рабочий диапазон температур:
A — диапазон не определен.
B от 0 до +70 С
C от -55 до +125 C
D от -25 до +70 C
E от -25 до +85 C
F от — 40 до +85 C
Последняя буква определяет тип корпуса:
B — DIL
C — цилиндрический корпус.
D — DIL
F — плоский корпус.
P — DIP
Q — QIL
U — бескорпусная микросхема.

Аналоги микросхем, импортных и отечественных.

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».

Как найти аналоги зарубежных микросхем за 3 минуты?

  • Новости
  • Статьи
  • Вопрос-Ответ
  • Прайс
  • Оплата и доставка
  • Гарантии

Жизненный цикл импортных микросхем значительно меньше отечественных аналогов. «Темной» стороной обновления продуктовой линейки западных производителей, является сложность постоянного поиска аналогов микросхем. В том числе, подбор аналогов микросхем на английском языке и определения их срока годности.

Как же быстро найти аналог микросхемы импортного производства, которая была снята с производства?

В статье пойдет речь о том, как за 3 минуты найти аналог интегральных микросхем Maxim Integrated.

Как найти аналог интегральных микросхем Maxim?

Этапы поиска аналогов микросхем

3. В раскрывшемся меню ищем пункт Корпоративная политика (Corporate Policies) и кликаем на нее:

4. Внизу открывшейся страницы находим пункт Политика прекращения выпуска продукции (Product Discontinuance Policy):

5. На открывшейся странице находим раздел Список деталей, которые не рекомендуются для новых конструкций и сняты с производства (List of Parts that are Not Recommended for New Designs (NRND) and Discontinued):

6. На этой странице представлены изделия, которые не рекомендуются для новых разработок 1, которые уже сняты с производства 2. Нас интересуете 3 раздел — Все данные (загрузка электронной таблицы) (All Data (spreadsheet download)):

Кликаем на этот раздел. Таблица в Excel скачается на ваш рабочий стол или в таблицу с загрузками.

7. В таблице указаны изделия, которые уже не выпускаются и рекомендуемая производителем их замена там, где это возможно:

В столбце 1 указан статус изделия. NLA (No Longer Available) означает, что Продукт был снят с производства и не доступен для покупки
В столбце 2 представлен партийный номер, снятый с производства
В столбце 3 указана рекомендуемая замена.

Как видите, поиск и подбор аналога импортных микросхем Maxim не займет у вас более 3 минут. Единственным недостатком данного метода является отсутствие для некоторые парт. номеров микросхем.

Параметры аналогов микросхем и datasheet на снятые с производства микросхемы можно воспользовавшись нашими рекомендациями в статье 3 способа скачать datasheet микросхем импортного производства.

Читайте также  Компания microchip представила новое семейство 8-битных микроконтроллеров pic16(l)f161x

Заключение

Подпишитесь и получайте уведомления о наших новых статьях:

Наши проекты

Заявка на поставку импортных микросхем

Мы специализируется на поставках импортных микросхем для производства приборов связи и навигационного оборудования для авиа- и судостроения . Получить подробную информацию о поставляемых брендах и условиях сотрудничества можно тут: https://import.el-ra.ru

Кроме этого, мы выполняем полный комплекс услуг по организации проверки и испытаниям электронных компонентов импортного производства , включая входной и параметрический контроль, специальные проверки, механические и климатические испытания.

DVD- Замены, аналоги микросхем ОЗУ.

provas

stalinus

Информация Неисправность Прошивки Схемы Справочники Маркировка Корпуса Сокращения и аббревиатуры Частые вопросы Полезные ссылки

Справочная информация

Этот блок для тех, кто впервые попал на страницы нашего сайта. В форуме рассмотрены различные вопросы возникающие при ремонте бытовой и промышленной аппаратуры. Всю предоставленную информацию можно разбить на несколько пунктов:

  • Диагностика
  • Определение неисправности
  • Выбор метода ремонта
  • Поиск запчастей
  • Устранение дефекта
  • Настройка

Учитывайте, что некоторые неисправности являются не причиной, а следствием другой неисправности, либо не правильной настройки. Подробную информацию Вы найдете в соответствующих разделах.

Неисправности

Все неисправности по их проявлению можно разделить на два вида — стабильные и периодические. Наиболее часто рассматриваются следующие:

  • не включается
  • не корректно работает какой-то узел (блок)
  • периодически (иногда) что-то происходит

Если у Вас есть свой вопрос по определению дефекта, способу его устранения, либо поиску и замене запчастей, Вы должны создать свою, новую тему в соответствующем разделе.

  • О прошивках

    Большинство современной аппаратуры представляет из себя подобие программно-аппаратного комплекса. То есть, основной процессор управляет другими устройствами по программе, которая может находиться как в самом чипе процессора, так и в отдельных микросхемах памяти.

    На сайте существуют разделы с прошивками (дампами памяти) для микросхем, либо для обновления ПО через интерфейсы типа USB.

    • Прошивки ТВ (упорядоченные)
    • Запросы прошивок для ТВ
    • Прошивки для мониторов
    • Запросы разных прошивок
    • . и другие разделы

    По вопросам прошивки Вы должны выбрать раздел для вашего типа аппарата, иначе ответ и сам файл Вы не получите, а тема будет удалена.

  • Схемы аппаратуры

    Начинающие ремонтники часто ищут принципиальные схемы, схемы соединений, пользовательские и сервисные инструкции. Это могут быть как отдельные платы (блоки питания, основные платы, панели), так и полные Service Manual-ы. На сайте они размещены в специально отведенных разделах и доступны к скачиванию гостям, либо после создания аккаунта:

    • Схемы телевизоров (запросы)
    • Схемы телевизоров (хранилище)
    • Схемы мониторов (запросы)
    • Различные схемы (запросы)

    Внимательно читайте описание. Перед запросом схемы или прошивки произведите поиск по форуму, возможно она уже есть в архивах. Поиск доступен после создания аккаунта.

  • Справочники

    На сайте Вы можете скачать справочную литературу по электронным компонентам (справочники, таблицу аналогов, SMD-кодировку элементов, и тд.).

    • Справочник по транзисторам
    • ТДКС — распиновка, ремонт, прочее
    • Справочники по микросхемам
    • . и другие .

    Информация размещена в каталогах, файловых архивах, и отдельных темах, в зависимости от типов элементов.

    Marking (маркировка) — обозначение на электронных компонентах

    Современная элементная база стремится к миниатюрным размерам. Места на корпусе для нанесения маркировки не хватает. Поэтому, производители их маркируют СМД-кодами.

    Package (корпус) — вид корпуса электронного компонента

    При создании запросов в определении точного названия (партномера) компонента, необходимо указывать не только его маркировку, но и тип корпуса. Наиболее распостранены:

    • DIP (Dual In Package) – корпус с двухрядным расположением контактов для монтажа в отверстия
    • SOT-89 — пластковый корпус для поверхностного монтажа
    • SOT-23 — миниатюрный пластиковый корпус для поверхностного монтажа
    • TO-220 — тип корпуса для монтажа (пайки) в отверстия
    • SOP (SOIC, SO) — миниатюрные корпуса для поверхностного монтажа (SMD)
    • TSOP (Thin Small Outline Package) – тонкий корпус с уменьшенным расстоянием между выводами
    • BGA (Ball Grid Array) — корпус для монтажа выводов на шарики из припоя

  • Краткие сокращения

    При подаче информации, на форуме принято использование сокращений и аббревиатур, например:

    Сокращение Краткое описание
    LED Light Emitting Diode — Светодиод (Светоизлучающий диод)
    MOSFET Metal Oxide Semiconductor Field Effect Transistor — Полевой транзистор с МОП структурой затвора
    EEPROM Electrically Erasable Programmable Read-Only Memory — Электрически стираемая память
    eMMC embedded Multimedia Memory Card — Встроенная мультимедийная карта памяти
    LCD Liquid Crystal Display — Жидкокристаллический дисплей (экран)
    SCL Serial Clock — Шина интерфейса I2C для передачи тактового сигнала
    SDA Serial Data — Шина интерфейса I2C для обмена данными
    ICSP In-Circuit Serial Programming – Протокол для внутрисхемного последовательного программирования
    IIC, I2C Inter-Integrated Circuit — Двухпроводный интерфейс обмена данными между микросхемами
    PCB Printed Circuit Board — Печатная плата
    PWM Pulse Width Modulation — Широтно-импульсная модуляция
    SPI Serial Peripheral Interface Protocol — Протокол последовательного периферийного интерфейса
    USB Universal Serial Bus — Универсальная последовательная шина
    DMA Direct Memory Access — Модуль для считывания и записи RAM без задействования процессора
    AC Alternating Current — Переменный ток
    DC Direct Current — Постоянный ток
    FM Frequency Modulation — Частотная модуляция (ЧМ)
    AFC Automatic Frequency Control — Автоматическое управление частотой

    Частые вопросы

    После регистрации аккаунта на сайте Вы сможете опубликовать свой вопрос или отвечать в существующих темах. Участие абсолютно бесплатное.

    Кто отвечает в форуме на вопросы ?

    Ответ в тему DVD- Замены, аналоги микросхем ОЗУ. как и все другие советы публикуются всем сообществом. Большинство участников это профессиональные мастера по ремонту и специалисты в области электроники.

    Как найти нужную информацию по форуму ?

    Возможность поиска по всему сайту и файловому архиву появится после регистрации. В верхнем правом углу будет отображаться форма поиска по сайту.

    По каким еще маркам можно спросить ?

    По любым. Наиболее частые ответы по популярным брэндам — LG, Samsung, Philips, Toshiba, Sony, Panasonic, Xiaomi, Sharp, JVC, DEXP, TCL, Hisense, и многие другие в том числе китайские модели.

    Какие еще файлы я смогу здесь скачать ?

    При активном участии в форуме Вам будут доступны дополнительные файлы и разделы, которые не отображаются гостям — схемы, прошивки, справочники, методы и секреты ремонта, типовые неисправности, сервисная информация.

    Полезные ссылки

    Здесь просто полезные ссылки для мастеров. Ссылки периодически обновляемые, в зависимости от востребованности тем.

    МИКРОСХЕМЫ ПАМЯТИ

    Всем привет! Сегодняшняя статья полностью посвящена микросхемам памяти. В связи с огромными по распространению и по темпам развития разных цифровых устройств и гаджетов, этот тип микросхем получил огромную распространенность во всем мире. Практически в каждом цифровом электронном гаджете, будь то ноутбук, планшет, видеокамера, их всех связывает память. Не будем сильно углубляться во все эти термины и крутые словечки, просто поговорим про два основных типа памяти, это ОЗУ и ПЗУ.

    Эти оба вида микросхем памяти используются в электронике всегда вместе, ПЗУ (постоянное запоминающее устройство) место для энергонезависимого хранения данных, по другому EEPROM. ОЗУ (оперативное запоминающее устройство) — почти тоже самое, только данные хранятся там до момента отключения питания, после повторного отключения питания — на микросхемах ОЗУ теряется вся информация, в то время как на микросхемах ПЗУ информация может храниться очень долго, и при отключении питания информация не удаляется.

    Читайте также  Антенна для диапазона 160м с низкой высотой подвеса

    Первый вид микросхем (EEPROM, ПЗУ)

    Твердотельный накопитель данных, используется для постоянного хранения данных, с возможностью многократной перезаписи информации, многократного считывания и долговременного её хранения, как с питанием, так и без. В быту — ПЗУ используется во всевозможных накопителях, флеш-картах, в SSD жестких дисках, даже в наших любимых микроконтроллерах как область хранения «прошивки». Микроконтроллеры — это по сути ПЗУ и микропроцессор, исполняющий команды файла прошивки, всё это в одном корпусе, на одном кристалле. Если бы вместо ПЗУ использовали ОЗУ, вам бы после каждого выключения пришлось бы прошивать и загружать данные (а это одно и тоже), и если наоборот — ПЗУ вместо ОЗУ, пользования такой памятью будь её хоть 32 Гб хватило бы её вам минут на 5, не более, своего рода ОЗУ это буфер обмена, между устройством отдающим информацию и устройством принимающим её.

    Второй вид микросхем памяти

    (ОЗУ, он же RAM) — твердотельный накопитель данных, ОЗУ — оперативная память, куда загружаются временно файлы для работы ОС(всегда служебные процессы активны и занимают часть ОЗУ) и то с чем работает ОС, будь то игра, видео, Ваша любимая песня или ещё что-то, по такому принципу работает и DVD плеер, загружая информацию с оптического диска в ОЗУ и потом бесшумно её считывает процессор, не замечали как когда-то DVD плеер стоит бесшумно, а картинка со звуком спокойно себе воспроизводится? — такой подход используется для того что-бы не возникало ошибок при считывании, данные считываются, и сравнивается контрольная сумма. По такому принципу работает и HDD диск компьютера и другие устройства, которые считывают данные с оптических дисков и т. п.

    Рассмотрим это подробнее, на примере планшета

    1. Контроллер питания, с его назначением всё понятно, питать всё это чудо.
    2. Процессор. Связывает всё воедино, выполняет все системные функции, управляется интерфейсом ПО, пользователь же управляет операционной системой, ОС уже процессором. В компьютерах и ноутбуках связующую роль между «железом» и ПО выполняет микросхема BIOS (базовая система ввода-вывода данных. (Мой ник не с проста выбирался! =))
    3. Микросхема постоянной памяти, ПЗУ разделенная на две части системно, в одной части находится служебная информация, и операционная система. А в другой её части находиться память доступна непосредственно пользователю.
    4. Микросхемы RAM, всё понятно, оперативная память, «хватает» файлы на «лету», требования от этой памяти — высокая скорость обмена данными и максимально быстрая их перезапись. Вот и по этому «оперативная» — должна работать оперативненько))).

    Как видим, ничего нет на самом деле сложного, сложное только их изготовление, хотя последнее время на рынке памяти очень большая конкуренция. Несомненным гигантом в её производстве является три корпорации, южнокорейская корпорация SAMSUNG и Hynix(Hyundai Electronics), и Американская Kingston. Но так же их выпускают и другие корпорации, к примеру Intel, MEDIATEK, Quanta и многие другие, даже встречаются иногда «но нэйм» микросхемы, и кто их сделал — останется загадкой.

    Накопитель — это по сути ячейка с огромным количеством транзисторов, в которых сохраняется значение «1» или «0», двоичная система если по простому, есть на транзисторе заряд — это «1», нет заряда — «0» в инверсии получится наоборот.

    Далее разговор только о ПЗУ, флэш и прочем EEPROM

    Если микросхема типа MMC/SD — то это самая обычная «флешка» SD интерфейса и она уже включает в себя контроллер и память, по сути просто флешка, которая имеет разный корпус. в интернете есть пример удачной замены микросхемы Hynix H26M52002CKR на обычную microSD карточку на мобильном телефоне Nokia 808.

    Мне стало очень интересно всё это, и в тот же миг был спаян вот такой незамысловатый переходничек-кардридер.

    Подключается к любому совместимому компьютеру.

    Как же подсоединять всё это дело? Во-первых нужно узнать распиновку кардридера:

    Распиновку интересующих карт памяти и картридеров можно посмотреть в интернете. А вот где посмотреть распиновку BGA и TSOP микросхем?

    Всё там же, в интернете, точнее в даташите, скачанном под определенную микросхему, в даташите, кстати, есть все, начиная от напряжения питания, и до типа микросхем.

    Внимательно смотрите на тип вашей микросхемы — если MMC/SD и вообще SD совместный, то всё должно получиться, а вот если просто NAND память — то нужно городить контроллер, такой как на USB флешках и на SD/microSD(SDHC) уже стоит.

    Кстати, готовый контроллер можно использовать всё из тех же USB флешек.

    Удачи всем в интересных опытах, будьте внимательны и не сожгите что-нибудь! О результатах прошу писать Вас на конференцию. Автор материала — BIOS.

    Форум по обсуждению материала МИКРОСХЕМЫ ПАМЯТИ

    Схема устройства цветодинамического сопровождения музыки, выполненного на базе драйвера LED индикатора LM3914.

    Как работает литий-ионный аккумулятор и чем он отличается по физико-химическим свойствам от других типов. Занимательная теория.

    Самодельный активный предварительный усилитель с НЧ-ВЧ регулировками на ОУ TL072, для УМЗЧ.

    Взгляд изнутри: Flash-память и RAM

    Предисловие

    Новый Год – приятный, светлый праздник, в который мы все подводим итоги год ушедшего, смотрим с надеждой в будущее и дарим подарки. В этой связи мне хотелось бы поблагодарить всех хабра-жителей за поддержку, помощь и интерес, проявленный к моим статьям (1, 2, 3, 4). Если бы Вы когда-то не поддержали первую, не было и последующих (уже 5 статей)! Спасибо! И, конечно же, я хочу сделать подарок в виде научно-популярно-познавательной статьи о том, как можно весело, интересно и с пользой (как личной, так и общественной) применять довольно суровое на первый взгляд аналитическое оборудование. Сегодня под Новый Год на праздничном операционном столе лежат: USB-Flash накопитель от A-Data и модуль SO-DIMM SDRAM от Samsung.

    Теоретическая часть

    Постараюсь быть предельно краток, чтобы все мы успели приготовить салат оливье с запасом к праздничному столу, поэтому часть материала будет в виде ссылок: захотите – почитаете на досуге…

    Какая память бывает?

    На настоящий момент есть множество вариантов хранения информации, какие-то из них требуют постоянной подпитки электричеством (RAM), какие-то навсегда «вшиты» в управляющие микросхемы окружающей нас техники (ROM), а какие-то сочетают в себе качества и тех, и других (Hybrid). К последним, в частности, и принадлежит flash. Вроде бы и энергонезависимая память, но законы физики отменить сложно, и периодически на флешках перезаписывать информацию всё-таки приходится.

    Тут можно подробнее ознакомиться с ниже приведённой схемой и сравнением характеристик различных типов «твердотельной памяти». Или тут – жаль, что я был ещё ребёнком в 2003 году, в таком проекте не дали поучаствовать…


    Современные типы «твердотельной памяти». Источник

    Единственное, что, пожалуй, может объединять все эти типы памяти – более-менее одинаковый принцип работы. Есть некоторая двумерная или трёхмерная матрица, которая заполняется 0 и 1 примерно таким образом и из которой мы впоследствии можем эти значения либо считать, либо заменить, т.е. всё это прямой аналог предшественника – памяти на ферритовых кольцах.

    Читайте также  Самодельный алюминиевый 3-х осевой фрезерный станок с чпу
    Что такое flash-память и какой она бывает (NOR и NAND)?

    Начнём с flash-памяти. Когда-то давно на небезызвестном ixbt была опубликована довольно подробная статья о том, что представляет собой Flash, и какие 2 основных сорта данного вида памяти бывают. В частности, есть NOR (логическое не-или) и NAND (логическое не-и) Flash-память (тут тоже всё очень подробно описано), которые несколько отличаются по своей организации (например, NOR – двумерная, NAND может быть и трехмерной), но имеют один общий элемент – транзистор с плавающим затвором.


    Схематическое представление транзистора с плавающим затвором. Источник

    Итак, как же это чудо инженерной мысли работает? Вместе с некоторыми физическими формулами это описано тут. Если вкратце, то между управляющим затвором и каналом, по которому ток течёт от истока к стоку, мы помещаем тот самый плавающий затвор, окружённый тонким слоем диэлектрика. В результате, при протекании тока через такой «модифицированный» полевой транзистор часть электронов с высокой энергией туннелируют сквозь диэлектрик и оказываются внутри плавающего затвора. Понятно, что пока электроны туннелировали, бродили внутри этого затвора, они потеряли часть энергии и назад практически вернуться не могут.

    NB: «практически» — ключевое слово, ведь без перезаписи, без обновления ячеек хотя бы раз в несколько лет Flash «обнуляется» так же, как оперативная память, после выключения компьютера.

    Там же, на ixbt, есть ещё одна статья, которая посвящена возможности записи на один транзистор с плавающим затвором нескольких бит информации, что существенно увеличивает плотность записи.

    В случае рассматриваемой нами флешки память будет, естественно, NAND и, скорее всего, multi-level cell (MLC).

    Если интересно продолжить знакомиться с технологиями Flash-памяти, то тут представлен взгляд из 2004 года на данную проблематику. А здесь (1, 2, 3) некоторые лабораторные решения для памяти нового поколения. Не думаю, что эти идеи и технологии удалось реализовать на практике, но, может быть, кто-то знает лучше меня?!

    Что такое DRAM?

    Если кто-то забыл, что такое DRAM, то милости просим сюда.

    Опять мы имеем двумерный массив, который необходимо заполнить 0 и 1. Так как на накопление заряда на плавающем затворе уходит довольно продолжительное время, то в случае RAM применяется иное решение. Ячейка памяти состоит из конденсатора и обычного полевого транзистора. При этом сам конденсатор имеет, с одной стороны, примитивное физическое устройство, но, с другой стороны, нетривиально реализован в железе:


    Устройство ячейки RAM. Источник

    Опять-таки на ixbt есть неплохая статья, посвящённая DRAM и SDRAM памяти. Она, конечно, не так свежа, но принципиальные моменты описаны очень хорошо.

    Единственный вопрос, который меня мучает: а может ли DRAM иметь, как flash, multi-level cell? Вроде да, но всё-таки…

    Часть практическая

    Flash

    Те, кто пользуется флешками довольно давно, наверное, уже видели «голый» накопитель, без корпуса. Но я всё-таки кратко упомяну основные части USB-Flash-накопителя:


    Основные элементы USB-Flash накопителя: 1. USB-коннектор, 2. контроллер, 3. PCB-многослойная печатная плата, 4. модуль NAND памяти, 5. кварцевый генератор опорной частоты, 6. LED-индикатор (сейчас, правда, на многих флешках его нет), 7. переключатель защиты от записи (аналогично, на многих флешках отсутствует), 8. место для дополнительной микросхемы памяти. Источник

    Пойдём от простого к сложному. Кварцевый генератор (подробнее о принципе работы тут). К моему глубокому сожалению, за время полировки сама кварцевая пластинка исчезла, поэтому нам остаётся любоваться только корпусом.


    Корпус кварцевого генератора

    Случайно, между делом, нашёл-таки, как выглядит армирующее волокно внутри текстолита и шарики, из которых в массе своей и состоит текстолит. Кстати, а волокна всё-таки уложены со скруткой, это хорошо видно на верхнем изображении:


    Армирующее волокно внутри текстолита (красными стрелками указаны волокна, перпендикулярные срезу), из которого и состоит основная масса текстолита

    А вот и первая важная деталь флешки – контроллер:


    Контроллер. Верхнее изображение получено объединением нескольких СЭМ-микрофотографий

    Признаюсь честно, не совсем понял задумку инженеров, которые в самой заливке чипа поместили ещё какие-то дополнительные проводники. Может быть, это с точки зрения технологического процесса проще и дешевле сделать.

    После обработки этой картинки я кричал: «Яяяяязь!» и бегал по комнате. Итак, Вашему вниманию представляет техпроцесс 500 нм во всей свой красе с отлично прорисованными границами стока, истока, управляющего затвора и даже контакты сохранились в относительной целостности:


    «Язь!» микроэлектроники – техпроцесс 500 нм контроллера с прекрасно прорисованными отдельными стоками (Drain), истоками (Source) и управляющими затворами (Gate)

    Теперь приступим к десерту – чипам памяти. Начнём с контактов, которые эту память в прямом смысле этого слова питают. Помимо основного (на рисунке самого «толстого» контакта) есть ещё и множество мелких. Кстати, «толстый»
    Во-первых, полный список опубликованных статей на Хабре:

    Во-вторых, помимо блога на HabraHabr, статьи и видеоматериалы можно читать и смотреть на Nanometer.ru, YouTube, а также Dirty.

    В-третьих, если тебе, дорогой читатель, понравилась статья или ты хочешь простимулировать написание новых, то действуй согласно следующей максиме: «pay what you want»