Светодиод с регулируемой частотой мигания

Делаем мигающий светодиод своими руками: простейшие и сложные схемы

Мигающие светодиоды применяются в различных сигнальных схемах, в рекламных щитах и вывесках, электронных игрушках. Сфера их применения достаточно широка. Простая мигалка на светодиоде может быть также использована для создания автосигнализации. Надо сказать, что моргать этот полупроводниковый прибор заставляет встроенная микросхема (ЧИП). Основные достоинства готовых МСД: компактность и разнообразие расцветок, позволяющее красочно оформлять электронные устройства, например, рекламное табло с целью привлечения внимания покупателей.

Но можно изготовить мигающий светодиод самостоятельно. Используя простые схемы, это сделать несложно. Как сделать мигалку, имея небольшие навыки работы с полупроводниковыми элементами, описано в этой статье.

Мигалки на транзисторах

Самый простой вариант – светодиодная мигалка на одном транзисторе. Из схемы видно, что база транзистора висит в воздухе. Такое нестандартное включение позволяет ему работать как динистор.

Светодиодная мигалка на одном транзисторе

При достижении порогового значения возникает пробой структуры, открытие транзистора и разрядка конденсатора на светодиод. Такая простая мигалка на транзисторе может найти применение в быту, например, в небольшой елочной гирлянде. Для ее изготовления понадобятся вполне доступные и недорогие радиоэлементы. Светодиодная мигалка, сделанная своими руками, придаст немного шарма пушистой новогодней красавице.

Можно собрать похожее устройство уже на двух транзисторах, взяв детали из любой радиоаппаратуры, отслужившей свой срок. Схема мигалки приведена на рисунке.

Схема мультивибратора на двух транзисторах для простой мигалки

Для сборки понадобятся:

  • резистор R = 6,8–15 кОм – 2 штуки;
  • резистор R = 470–680 Ом – 2 штуки;
  • транзистор n-p-n-типа КТ315 Б – 2 штуки;
  • конденсатор C = 47–100 мкФ – 2 штуки;
  • маломощный светодиод или светодиодная лента.

Диапазон рабочего напряжения 3–12 вольт. Подойдет любой источник питания с такими параметрами. Эффект мигания в данной схеме достигается поочередным зарядом и разрядом конденсаторов, влекущим за собой открытие транзисторов, в результате чего появляется и исчезает ток в цепи светодиода.

Светодиоды с миганием можно получить, подключив выводы к нескольким разноцветным элементам. Встроенный генератор выдает поочередно импульсы на каждый цвет. Частота моргающего импульса зависит от заданной программы. Таким веселым миганием можно порадовать ребенка, если установить устройство в детскую игрушку, например, машинку.

Неплохой вариант получится, если взять трехцветный мигающий светодиод, имеющий четыре вывода (один общий анод или катод и три вывода управления цветом).

Еще один простой вариант, для сборки которого понадобятся батарейки типа CR2032 и резистор сопротивлением от 150 до 240 Ом. Мигающий светодиод получится, если последовательно соединить все элементы в одной схеме, соблюдая полярность.

Мигающий светодиод

Если получается собрать веселые огоньки по простейшей схеме, можно перейти к более сложной конструкции.

Схема мигалки на светодиодах

Данная схема мигалки на светодиодах работает следующим образом: при подаче напряжения на R1 и заряжении конденсатора С1, на нем растет напряжение. После того как оно достигнет 12 В, происходит пробой p-n-перехода транзистора, что увеличивает проводимость и вызывает свечение светодиода. При падении напряжения транзистор закрывается, и процесс идет сначала. Все блоки работают примерно на одной частоте, если не учитывать небольшую погрешность. Схему мигалки на светодиодах с пятью блоками можно собрать на макетной плате.

Макет мигалки на транзисторах

Как сделать мигающий светодиод

Лишены возможности купить готовый мигающий светодиод, где внутрь колбы встроены необходимые элементы для осуществления нужной функции (осталось подключить батарейку) – попробуйте собрать авторскую схему. Понадобится немногое: рассчитать резистор светодиода, задающий совместно с конденсатором период колебаний в цепи, ограничить ток, выбрать тип ключа. По некоторым причинам экономика страны работает на добывающую отрасль, электроника закопана глубоко в землю. С элементной базой напряг.

Принцип действия светодиода

Подключая светодиод, узнайте минимум теории – портал ВашТехник готов помочь. Район p-n перехода за счет существования дырочной и электронной проводимости образует зону несвойственных толще основного кристалла энергетических уровней. Рекомбинируя, носители заряда высвобождают энергию, если величина равна кванту света, спай двух материалов начинает лучиться. Оттенок определен некоторыми величинами, соотношение выглядит так:

E = h c / λ; h = 6,6 х 10-34 – постоянная Планка, с = 3 х 108 – скорость света, греческой буквой лямбда обозначается длина волны (м).

Из утверждения следует: может быть создан диод, где разница энергетических уровней присутствует. Так изготавливаются светодиоды. В зависимости от разницы уровней, цвет синий, красный, зелёный. Редкие светодиоды обладают одинаковым КПД. Слабыми считают синие, которые исторически появились последними. КПД светодиодов сравнительно мал (для полупроводниковой техники), редко достигает 45%. Удельное превращение электрической энергии в полезную световую просто потрясающее. Каждый Вт энергии дает фотонов в 6-7 раз больше, нежели спираль накала в эквивалентных условиях потребления. Объясняет, почему светодиоды сегодня занимают прочную позицию в осветительной технике.

Создание мигалки на основе полупроводниковых элементов несравненно проще. Хватит сравнительно малых напряжений, схема начнет работать. Остальное сводится к правильному подбору ключевых и пассивных элементов для создания пилообразного или импульсного напряжения нужной конфигурации:

  1. Амплитуда.
  2. Скважность.
  3. Частота следования.

Очевидно, подключение светодиода к сети 230 вольт выглядит негодной идеей. Присутствуют подобные схемы, но заставить мигать сложно, элементная база отсутствует. Светодиоды работают от гораздо более низких питающих напряжений. Самыми доступными считаются:

  • Напряжение +5 В присутствует в устройствах заряда телефонных аккумуляторов, iPad и других гаджетов. Правда, выходной ток невелик, и не нужно. Вдобавок, +5 В нетрудно найти на шине блока питания персонального компьютера. С ограничением тока проблемы устраним. Провод красного цвета, землю ищите на черном.
  • Напряжение +7…+9 Встречается на зарядных устройствах ручных радиостанций, в обиходе называемых рациями. Великое множество фирм, у каждой стандарты. Здесь бессильные дать конкретные рекомендации. Рации чаще выходят из строя в силу особенностей использования, лишние зарядные устройства обычно можно достать сравнительно дешево.
  • Схема подключения светодиода будет лучше работать от +12 вольт. Стандартное напряжение микроэлектроники, встретим во многих местах. Компьютерный блок содержит вольтаж -12 вольт. Изоляция жилы синяя, сам провод оставлен для совместимости со старыми приводами. В нашем случае может понадобиться, не окажись под рукой элементной базы питания +12 вольт. Комплементарные транзисторы найти, включить вместо исходных сложно. Номиналы пассивных элементов остаются. Светодиод включается обратной стороной.
  • Номинал -3,3 вольт на первый взгляд кажется невостребованным. Посчастливится достать на aliexpress RGB светодиоды SMD0603 4 рубля штука. Однако! Падение напряжения в прямом направлении не превышает 3 вольта (обратное включение не понадобится, но в случае неправильной полярности максимальный вольтаж составляет 5).

Устройство светодиода понятно, условия горения известны, приступим к реализации задумки. Заставим элемент мигать.

Тестирование мигающих RGB светодиодов

Компьютерный блок питания выступает идеальным вариантом тестирования светодиодов SMD0603. Нужно просто поставить резистивный делитель. Согласно схеме технической документации оценивают сопротивления p-n переходов в прямом направлении, заручившись помощью тестера. Прямое измерение здесь невозможно. Соберем схему, показанную ниже:

Схема оценки сопротивления p-n переходов

  1. Микросхема дана вместе с номерами ножек согласно техническим характеристикам.
  2. Питание подается на катод, полярность напряжения отрицательная. 3,3 вольта хватит открыть p-n переходы.
  3. Переменный резистор нужен небольшого номинала. На рисунке установлен с максимальным пределом 680 Ом. В таком положении должен находиться изначально.
  4. Сопротивление открытого p-n перехода невелико, нужен значительный запас, чтобы диоды не погорели (помним, что максимальное прямое напряжение составляет 3 В). Принимается во внимание факт: при низком вольтаже сопротивление каждого светодиода составит 700 Ом. При параллельном включении суммарное сопротивление вычисляется формулой, показанной на рисунке. Подставляя в качестве трех входных параметров 700, получаем 233 Ом. Сопротивление светодиодов, когда только-только начнут открываться (по крайней мере, так полагаем).

Формула расчета суммарного сопротивления

Провод +3,3 В блока питания компьютера оранжевой изоляции, схемную землю берем с черного. Обратите внимание: опасно включать модуль без нагрузки. Идеально подключить DVD-привод или другое устройство. Допускается при наличии умения обращения с приборами под током снять боковую крышку, извлечь оттуда нужные контакты, не снимать блок питания. Подключение светодиодов иллюстрирует схема. Измерили сопротивление на параллельном подключении светодиодов и остановились?

Поясняем: в рабочем состоянии светодиодов понадобится включить несколько, проделаем аналогичную настройку. Напряжение питания на микросхеме составит 2,5 вольта. Обратите внимание, светодиоды мигающие, показания неточные. Максимальное не превыше 2,5 вольта. Индикация успешной работы схемы выражается миганием светодиодов. Чтобы часть мерцала, уберем питание с ненужных. Допускается собрать отладочную схему с тремя переменными резисторами – по одному в ветвь каждого цвета.

Теперь знаем, как сделать мигающую светодиодную подсветку своими руками. Можно ли варьировать время срабатывания. Полагаем, внутри должны использоваться емкости. Возможно, собственные паразитные элементы p-n переходов светодиодов. Подключая переменный конденсатор параллельно схеме на вход, можно попробовать что-либо изменить. Номинал очень мал, измеряется пФ. Маленькая микросхема лишена больших емкостей. Допускаем, резистор, подключенный параллельно микросхеме (см. пунктир на рисунке), усаженный на землю, будет образовывать точный делитель. Стабильность возрастет.

Номиналы нужно брать весомые, не забывать: значительно ограничим ток, идущий через светодиоды. Фактически потребуется продумать вопрос согласно ситуации.

Обычный светодиод мигает

Схема мигающего светодиода

Читайте также  Функция преобразования измерительного прибора

Схема, изображенная рисунком, использует для работы лавинный пробой транзистора. КТ315Б, используемый в качестве ключа, имеет максимальное обратное напряжения между коллектором и базой 20 вольт. Опасного в таком включении мало. У модификации КТ315Ж параметр составляет 15 вольт, гораздо ближе выбранному напряжению питания +12 вольт. Транзистор использовать не стоит.

Лавинный пробой нештатный режим p-n перехода. За счет превышения обратного напряжения между коллектором и базой происходит ионизация атомов ударами разогнавшихся носителей заряда. Образуется масса свободных заряженных частиц, увлекаемых полем. Очевидцы утверждают: для пробоя транзистора КТ315 требуется обратное напряжение, приложенное между коллектором и эмиттером, амплитудой 8-9 В.

Пара слов о работе схемы. В первоначальный момент времени начинает заряжаться конденсатор. Подключен на +12 вольт, остальная часть схемы оборвана – закрыт транзисторный ключ. Постепенно разница потенциалов повышается, достигает напряжения лавинного пробоя транзистора. Напряжение конденсатора резко падает, параллельно подключены два открытых p-n перехода:

  1. Транзисторный находится в режиме пробоя.
  2. Светодиод открыт за счет прямого включения.

В сумме напряжение составит порядка 1 вольта, конденсатор начинает разряжаться через открытые p-n переходы, только напряжение падает ниже 7-8 вольт, везение кончается. Транзисторный ключ закрывается, процесс повторяется заново. Схеме присущ гистерезис. Транзистор открывается при более высоком напряжении, нежели закрывается. Обусловлено инерционностью процессов. Видим, как работает светодиод.

Номиналы резистора, ёмкости определяют период колебаний. Конденсатор можно взять значительно меньше, включив меж коллектором транзистора и светодиодом небольшое сопротивление. Например, 50 Ом. Постоянная разряда резко увеличится, проверить светодиод визуально будет проще (возрастет время горения). Понятно, ток не должен быть слишком большим, максимальные значения берутся из справочников. Не рекомендуется вести подключение светодиодных светильников из-за низкой термостабильности системы и наличия нештатного режима транзистора. Надеемся, обзор получился интересным, картинки доходчивыми, объяснения ясными.

Мигающие светодиоды (Blinking LEDs)

Устройство и параметры мигающих светодиодов

Мигающий светодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 – 3 Гц. Многие, наверное, видели такие светодиоды на прилавках магазинов радиодеталей.

Есть мнение, что с практической точки зрения, мигающие светодиоды бесполезны и могут быть заменены более дешёвой альтернативой – обычными индикаторными светодиодами, которые стоят дешевле.

Возможно, такой взгляд на мигающие светодиоды имеет право на жизнь, но хотелось бы сказать несколько слов в защиту мигающего светодиода.

Мигающий светодиод, по сути, представляет завершенное функциональное устройство, которое выполняет функцию световой сигнализации (привлечения внимания). Отметим то, что мигающий светодиод по размерам не отличается от рядовых индикаторных светодиодов.

Несмотря на компактность в мигающий светодиод входит полупроводниковый чип-генератора и некоторые дополнительные элементы. Если выполнить генератор импульсов на стандартных элементах с использованием обычного индикаторного светодиода, то конструктивно такое устройство имело бы куда большие размеры. Также стоит отметить то, что мигающий светодиод довольно универсален – напряжение питания такого светодиода может лежать в пределах от 3 до 14 вольт – для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

Перечислим отличительные качества мигающих светодиодов.

Компактное устройство световой сигнализации

Широкий диапазон питающего напряжения (вплоть до 14 вольт)

Различный цвет излучения. В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно – 3) разноцветных светодиода с разной периодичностью вспышек.

Применение мигающих светодиодов оправдано в компактных устройствах, где предъявляются высокие требования к габаритам радиоэлементов и электропитанию – мигающие светодиоды очень экономичны, т.к электронная схема МСД выполнена на МОП структурах.
Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок – пунктирные и символизируют мигающие свойства светодиода.

Разберёмся подробнее в конструкции мигающего светодиода.

Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.

Чип генератора размещён на основании анодного вывода.

Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

Чип генератора состоит из высокочастотного задающего генератора – он работает постоянно — частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,53 Гц.
Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

В микроэлектронике для создания конденсатора ёмкостью несколько микрофарад потребовалось бы использование большей площади полупроводника для создания обкладок конденсатора, что с экономической стороны нецелесообразно.

Чтобы не расходовать площадь подложки полупроводника на создание конденсатора большой ёмкости инженеры пошли на хитрость. Высокочастотный генератор требует небольшой ёмкости конденсатора во времязадающей цепи, поэтому и площадь обкладок минимальна.

Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.

Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует. Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

На примере мигающего светодиода L-816BID фирмы Kingbright рассмотрим основные параметры мигающих светодиодов.

Частота вспышек светодиода L-816BID непостоянна и изменяется в зависимости от напряжения питания.

Как видно из графика с увеличением питающего напряжения (forward voltage) частота вспышек светодиода L-816BID уменьшается c 3 Гц (Hz) при напряжении питания 3,5 вольт, до 1,5 Гц при 14.

Зависимость прямого тока (forward current), протекающего через светодиод L-816BID, от приложенного постоянного прямого напряжения (forward voltage) показана на графике. Из графика видно, что максимальный потребляемый ток – 44 mA (0,044 A). Минимальный потребляемый ток составляет 8 mA.

Безопасно проверить исправность мигающего светодиода, например, при покупке, можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

Цоколёвка выводов мигающих светодиодов аналогична цоколёвке обычных светодиодов. Длинный вывод – анод (+), более короткий – катод (-).

Как сделать простую мигалку своими руками или схемы мигающих светодиодов

Схема мигалки на светодиодах работает без настройки и подойдет тем, кто хочет опробовать свои силы в радиоэлектронике. С ее помощью можно изготовить елочную гирлянду, «оживить» глаза игрушки, изготовить реле поворотов для велосипеда или имитировать работу сигнализации на автомобиле. Рассмотрим несколько простых и популярных вариантов схем, доступных для повторения своими руками.

Собираем простую схему мигающего светодиода на одном транзисторе

Самая простая схема мигалки состоит из трех радиоэлементов, а четвертый – светодиод. Хотя в качестве ключевого элемента представлен транзистор, его база не подключена, и полупроводник работает как динистор.

При включении питания конденсатор не заряжен, между эмиттером и коллектором присутствует низкое напряжение, динистор закрыт и не пропускает электрический ток, светодиод не горит. По мере заряда конденсатора напряжение на нем и на динисторе растет. В определенный момент динистор открывается, и конденсатор разряжается через светодиод. Далее цикл повторяется. Частота мерцаний светодиода определяется емкостью конденсатора и сопротивлением резистора.

Всю схему легко разместить в спичечном коробке. Мигающий светодиод и провода питания удобно закрепить горячим клеем.

Если сделать несколько подобных светодиодных мигалок и включить их вместе, получится гирлянда. Так как радиоэлектронные элементы имеют определенный разброс параметров, светодиоды будут мерцать в хаотичном порядке. При этом мигалку можно изготовить в виде единого блока, как на фото.

Светодиодная мигалка с низковольтным питанием

Случается, что в качестве источника питания выступает батарейка с напряжением 1,5 или 3 вольта. Этого напряжения явно недостаточно, чтобы светодиод ярко светился. В электронных схемах питание на него чаще всего подается через транзистор, на котором падает 0,7 В, так что светодиод в таком случае не будет гореть совсем. В этом случае применяется специальная схема, где дополнительное напряжение создает электролитический конденсатор.

В момент включения питания оба транзистора закрыты, и конденсатор С2 заряжается через резисторы R3, R2, напряжение на нем растет. Конденсатор С1 заряжается через резисторы R1, R2, напряжение на нем также растет. В итоге открывается транзистор VT1, который, в свою очередь, открывает транзистор VT2. В результате источник питания и конденсатор С2 включаются последовательно, и на светодиод подается повышенное напряжение питания. По мере разряда конденсатора С2 светодиод гаснет. Далее цикл повторяется.

Популярная схема мультивибратора

Схема мигающего светодиода на симметричном мультивибраторе надежно работает сразу после включения питания. В ней удается легко регулировать периоды свечения и отключения светодиодов. Она хорошо подходит для имитации работы сигнализации автомобиля или в качестве реле поворотов для велосипеда.

Читайте также  Как рассчитать мощность шуруповерта в ваттах?

В данном случае конденсаторы С1 и С2 последовательно заряжаются через резисторы R2 и R3 соответственно. При достижении определенного напряжения на базе одного из транзисторов он открывается и происходит разряд соответствующего конденсатора. При этом протекает ток через светодиод в коллекторе открытого транзистора. Процесс повторяется.

Частота и длительность мигания светодиода определяется элементами С1, R2 и С2, R3. Сопротивление резисторов можно изменять в пределах (5,1 – 100)кОм, а емкость конденсаторов — в пределах (1 – 100)мкФ. Подбирая названные элементы, можно добиться предпочтительного результата. Сначала устройство собирают на макетной плате, где удобно заменять и подбирать элементы схемы.

Все элементы – практически любого типа. Подойдет светодиод типа АЛ 3075, который очень похож на светодиоды сигнализаций. Различные вариации на базе схемы симметричного мультивибратора позволяют получить необходимый результат в зависимости от конкретных требований к схеме.

Например, светодиод может быть только один. Во втором плече мультивибратора в качестве нагрузки будет достаточно резистора порядка 500 Ом при напряжении питания до 12В.

В данном примере мы заменили транзисторы КТ315 « обратной» проводимости или n-p-n на комплементарные транзисторы КТ361 «прямой» проводимости или p-n-p. При этом понадобилось изменить полярность питания, светодиодов и конденсаторов. Кроме того, в схему добавлен переменный резистор, который позволяет регулировать частоту мигания светодиодов в определенных пределах.

В этом примере исключены нагрузочные резисторы. Они не нужны, так как при питании порядка 2,4 или 3 вольта и падении напряжения на открытом транзисторе 0,7 В светодиоды не будут перегружены.

В каждое плечо мультивибратора можно включить по два светодиода параллельно. При этом они будут загораться в обратном порядке, то есть тогда, когда соответствующие транзисторы будут закрываться. Однако в этом случае парные светодиоды могут светиться с разной яркостью из-за различия параметров.

В этой схеме включено по три светодиода в каждом плече схемы, и через них будет протекать одинаковый ток. Можно включать последовательно и ленту светодиодов, однако при этом придется поднимать напряжение питания схемы. Для простоты можно считать, что на одном из них падает порядка 1,5 В. При этом нужно использовать транзисторы и конденсаторы, рабочее напряжение которых выше напряжения питания схемы.

Включить светодиодную ленту, не повышая напряжение питания, можно с помощью этой схемы. При этом заметно возрастает ток через транзисторы, так что пришлось добавить выходные каскады на транзисторах средней мощности.

Эта схема позволяет реализовать «бегущие огни» довольно простым способом. Элементы R1-R4 и С1-С4 подобраны так, чтобы светодиоды мигали последовательно. Подбирая их, можно менять световые эффекты. Переменные резисторы R6,R7 позволяют регулировать частоту мерцания светодиодов.

Подборка элементов схемы и правила монтажа своими руками

Далеко не всегда есть в наличии детали, указанные на схеме. Их нетрудно заменить. Часто на схемах указаны транзисторы КТ 315Б, которые имеют небольшие размеры. Вместо них подойдут такие же с любой буквой, однако при высоком напряжении питания схемы надо убедиться с помощью справочника, что они выдержат. Практически во всех примерах подойдут почти любые транзисторы малой мощности.

При этом можно использовать элементы другой проводимости, изменив полярность подключения питания, светодиодов и конденсаторов. Конкретно у транзисторов К315 буквенный индекс находится справа, а у КТ361 — посередине корпуса. Резисторы и электролитические конденсаторы подойдут любые малогабаритные.

Если мы говорим об устройстве, имитирующем автосигнализацию, или реле поворотов для велосипеда, то монтаж лучше всего сделать на печатной плате, которую помещают в пластмассовую коробку. Два провода из коробки подводят к мигающему светодиоду, еще один соединяют с корпусом, а четвертый подсоединяют через тумблер к питанию + 12 В. Подключаться необходимо к цепи, которая находится постоянно под напряжением и защищена предохранителем. Монтажные провода должны иметь надежную изоляцию. Их необходимо хорошо закрепить и надежно защитить от возможного перетирания.

Реверс-инжиниринг мерцающего светодиода

Конечно, самый интересный вопрос — как они работают? Учитывая, что стоят они буквально по несколько центов за штуку, там внутри не может быть какой-то дорогой электроники. В связи с этим возникает еще один вопрос: правда ли эти светодиоды хуже, чем многочисленные «свечи» на микроконтроллерах, схем которых полно в интернете?


Устройство относительно простое. В стандартном 5-миллиметровом корпусе размещены кристалл светодиода и микросхема, которая чуть больше первого по размеру. Схема контроллера соединена как с положительным, так и с отрицательным выводами. Третьей перемычкой к ней подключен анод светодиода, в то время как катодом он «сидит» на отрицательном выводе.

В блоге Evil Mad Scientist недавно был рассказ о похожих светодиодах. Там было показано, как они «поют», если преобразовать изменения яркости в звук. А также — как с их помощью управлять более мощным диодом. Подобные трюки основаны на том, что светодиод потребляет больший ток в те моменты, когда контроллер зажигает его ярче. Обычный светодиод, включенный последовательно с мерцающим, показывает очень похожие изменения яркости. Иными словами, падение напряжения на добавочном резисторе изменяется пропорционально яркости.


Это я и использовал, чтобы извлечь управляющий сигнал контроллера и завести его на логический анализатор (см. схему выше). Подстройкой переменного резистора я добился того, чтобы анализатор воспринимал броски тока как «нули» и «единицы», а светодиод при этом нормально работал.


На диаграмме выше показаны изменения яркости диода в течение примерно минуты, записанные с частотой выборки 1 МГц. Заметны интервалы, когда светодиод непрерывно включен, и периоды, когда его яркость каким-то образом модулируется. Светодиод никогда не выключается надолго. Это разумно, ведь настоящая свеча тоже ярко светит большую часть времени, снижая яркость на короткие периоды мерцания.


Более пристальный взгляд покзывает, что сигнал имеет широтно-импульсную модуляцию. Это означает, что перед нами цифровая схема, без всяких аналоговых трюков.

Любопытно, что частота сигнала — примерно 440 Гц, как у стандартного камертона (нота Ля первой октавы — прим. перев.). Совпадение? Или разработчик просто взял генератор из какой-то музыкальной схемы? Так что есть доля правды в рассказах о «музыкальности» этих светодиодов. Каждый «кадр» постоянной яркости составляет ровно 32 такта и длится около 72 мс. Это соответствует 13-14 кадрам в секунду.

Я написал небольшую программу для определения яркости в каждом кадре по коэффициенту заполнения ШИМ-сигнала. Программа читает поток отсчетов с логического анализатора и выводит серию вещественных чисел — по одному на каждый кадр.


График яркости в зависимости от времени наводит на некоторые мысли: изменения яркости случайны, дискретны и имеют неравномерное распределение. Кажется, существуют 16 уровней яркости, низшие 4 из которых используются очень редко. Им соответствуют только 13 из 3600 отсчетов.


Постороение гистограммы открывает всю картину: фактически используется только 12 уровней яркости. Ровно половина кадров имеет максимальную яркость, остальные значения распределены примерно поровну.

Как это может быть реализовано на аппаратном уровне? Вполне вероятно, используется генератор равномерно распределенных случайных чисел, которые пропускают через простую функцию-формирователь. Для того распределения, которое мы наблюдаем, требуется как минимум 12×2=24 дискретных уровня. Половина из них отображаются в один. Это весьма любопытно, так как генератор, скорее всего, выдает двоичные числа. Наиболее логичной была бы разрядность числа 5 бит, а это 32 состояния. Отобразить 32-уровневую дискретную случайную величину в 24 уровня, не изменив распределения, не так просто, как кажется. Не забываем также, что это совсем не критичная схема, и у разработчика, вероятно, не было много времени на красивое решение. Поэтому он применил самое простое, своего рода хак.

Единственный простой способ, что приходит на ум — просто отбрасывать неподходящие значения и брать следующее случайное число. Нежелательные значения можно легко отделить по битовой маске. Так как схема синхронная, есть только конечное число попыток, пока не начнется следующий кадр. Если контроллер не уложился в заданное количество попыток, он застрянет на «неправильном» значении. Помните редкие выбросы на графике яркости?

Реализация на ANSI-C могла бы выглядеть так:

Можно узнать, сколько делается попыток? По статистике, доля a=0,25 всех чисел должн быть отброшена и сгенерирована заново. Вероятность того, что за n попыток не будет выбрано «правильное» число, равна a n .

Доля аномально низких уровней яркости составляет 13/3600=0,0036, что хорошо совпадает с вариантом n=4. Таким образом, MAX_ATTEMPTS==4.

Обратите внимание, что более простым решением было бы просто использовать значение из предыдущего кадра, если встретилось недопустимое число. Этот вариант можно было бы исключить, исходя из автокорреляции (см. ниже). Наиболее же простое, вероятно, решение — изменить схему ШИМ — не было здесь использовано.

Последний кусочек головоломки — это сам генератор случайных чисел. Типичным способом генерации случайных последовательностей в цифровых схемах является применение сдвиговых регистров с линейной обратной связью. Такой регистр выдает псевдослучайную битовую последовательность, которая повторится не позже, чем через 2 x -1 тактов, где x — разрядность регистра. Одной из особенностей таких последовательностей (и хороших псевдослучайных последовательностей в целом) является то, что их автокорреляционная функция равна единице только в точке 0 и в координатах, кратных длине последовательности. Во всех остальных интервалах она нулевая.

Читайте также  Как рассчитать мощность солнечной электростанции для дома?


Я рассчитал автокорреляцию всей последовательности значений. Самоподобия не было найдено вплоть до 3500 кадров (на графике выше показано только 1200), что означает уникальность мерцания на протяжении по меньшей мере 4 минут. Неясно, наблюдалось ли дальнейшее повторение последовательности, или логический анализатор автора просто не позволял записывать дольше — прим. перев. Поскольку на каждый кадр нужно как минимум 5 бит случайных данных (а учитывая механизм отбрасывания нежелательных чисел — еще больше), псевдослучайная последовательность имеет длину по меньшей мере 17500 бит. Для этого потребуется регистр разрядности не менее 17, либо настоящий аппаратный генератор случайных чисел. В любом случае, интересно, как много внимания при разработке уделили тому, чтобы картина мерцания не повторялась.

В заключение ответим на вопросы, заданные в начале статьи. Мерцающий светодиод оказался гораздо сложнее, чем я ожидал (также я не ожидал потратить на него 4 часа). Многие микроконтроллерные реализации свечей просто подают биты с генератора псевдослучайных чисел на ШИМ-выход. Покупной светодиод использует более хитрый алгоритм изменения яркости. Безусловно, определенное внимание было уделено разработке алгоритма, и при этом использован кристалл почти минимально возможной площади. Доля цента потрачена не зря.

Каков же лучший алгоритм мерцания? Можно ли улучшить этот?

Дополнение: Я наконец нашел время написать эмулятор. Написанная на ANSI-C программа, эмулирующая поведение этого светодиода, здесь. Код написан под AVR, но его легко портировать под любой другой контроллер. Репозиторий на Гитхабе содержит все данные и исходные коды, использованные в процессе реверс-инжиниринга светодиода.

Мигающий светодиод: как сделать, подключить и где применять

Моргающий световой сигнал находит широкое применение – от особого режима работы фонарей до индикации сложной аппаратуры. В его основе все чаще используется мигающий светодиод, как надежная и долговечная альтернатива любым другим видам светоисточников.

Рассмотрим, каков его принцип действия, какие готовые решения подобного прибора доступны сегодня на рынке, как сделать, чтобы лед-элемент, функционирующий в обычном режиме, стал работать в мерцающем ритме, какова общая сфера их применения, а также как своими руками на их основе изготовить гирлянды и бегущие огни.

Принцип действия

Светодиод с мигающим световым излучением – это стандартный лэд-кристалл, в электрическую схему питания которого включены задающие режим функционирования емкость и резистор. Внешне он ничем не отличается от обычных аналогов. При этом механизм его работы на уровне процессов, происходящих в электрической цепи, сводится к следующему:

  1. При подаче тока на резистор R накапливается заряд и напряжение в конденсаторе С.
  2. При достижении его потенциала 12 вольт образуется пробой в p-n-границе в транзисторе. Это повышает проводимость, что и инициирует производство светового потока лед-кристаллом.
  3. Когда напряжение снижается, транзистор снова становится закрытым и процесс начинается заново.

Все модули такой схемы функционируют на единой частоте.

Готовые мигающие светодиоды

Мигающие светодиоды от различных производителей по сути представляют собой функционально завершенные, готовые к применению в различных областях схемы. По внешним параметрам они мало чем отличаются от стандартных лед-устройств. Однако в их конструкцию внедрена схема генераторного типа и сопутствующих ему элементов.

Среди главных преимуществ готовых мигающих светодиодов выделяются:

  1. Компактность, прочность корпуса, все компоненты в одном корпусе.
  2. Большой диапазон напряжения питающего тока.
  3. Многоцветное исполнение, широкое разнообразие ритмов переключения оттенков.
  4. Экономичность.

Совет! Простейший мигающий светодиод можно сделать, если соединить в одну цепочку соблюдая правила полярности led-кристалл, CR-батарейку и резистор 160-230 Ом.

Схемы использования

Самый простой вариант схемы, выпускаемых сегодня мигалок на базе светодиодов, изготовление которых возможно своими силами радиолюбителям, включает:

  1. Транзистор малой мощности.
  2. Конденсатор полярного типа на 16 вольт и 470 микрофарад.
  3. Резистор.
  4. Лед-элемент.

При накоплении заряда осуществляется лавинообразный его пробой с открытием транзисторного модуля и свечением диода. Устройство такого типа часто используется в елочной гирлянде. Недостатком схемы является необходимость применения особого источника питания.

Другой вариант популярных на сегодня схем светодиодов мигающего типа включает пару n-p-n-транзисторов модификации КТ315 Б. Для ее сборки применяются также следующие компоненты:

  1. Две пары резисторов на 6,8–15 кОм и 470–680 Ом.
  2. Два конденсатора емкостью на 47-100 мкФ.
  3. Небольшой светодиод или отрезок лед-полоски.
  4. Источник питания от 3 до 12 В.

Принцип действия устройства обуславливается попеременной сменой цикла зарядки/разрядки конденсаторов, которые в свою очередь открывают транзисторы и питают светодиоды и обеспечивают их мигание.

Обычные светодиоды

Стандартный не мигающий светодиод дает яркое равномерное освещение и характеризуется малым потреблением электроэнергии. Наряду с такими качествами, как долговечность, компактность, энергоэффективность и широкий диапазон температур свечения это делает его вне конкуренции среди прочих искусственных источников света. На базе таких led-элементов и собирается схема мерцающих светильников. Рассмотрим, по какому принципу они изготавливаются.

Как сделать чтобы светодиоды мигали

Мигалка на светодиоде может быть собрана на базе одной из выше представленных схем. Соответственно нужно будет приобрести компоненты, описанные выше. Они необходимы для функционирования того или иного варианта. При этом для сборки потребуется паяльник, припой, флюс и другие необходимые комплектующие для пайки.

Сборка цепочки мигающих светодиодов предваряется обязательным лужением выводных контактов всех соединяемых элементов. Также нельзя забывать о соблюдении правил полярности, особенно при включении конденсаторов. Готовый светильник будет выдавать мерцание с частой около 1,5 Гц или что тоже самое порядка 15 импульсов каждый 10-секундный отрезок времени.

Схемы мигалок на их основе

Чтобы происходили элементарные заданные определенной периодичностью вспышки света, требуется пара транзисторов типа C945 или аналоговых элементов. Для первого варианта коллектор размещается в центре, а у второго – по середине располагается база. Один или пара мигающих светодиодов изготавливается по обычной схеме. При этом частотность вспышек задается наличием в цепочке конденсаторов С1 и С2.

В такую систему допустимо внедрение одновременно нескольких лед-кристаллов при монтаже достаточно мощного транзистора pnp-типа. При этом мигающими светодиоды делаются при соединении их контактов с разноцветными элементами, поочередность вспышек задается генераторным модулем, а частотность – заданными программными настройками.

Область применения

Светодиоды, функционирующие в мигающем ритме, применяются в различных областях:

  1. В развлекательной сфере, в игрушках, для украшения декора, в качестве гирлянд.
  2. Как индикация в бытовых и промышленных приборах.
  3. Светосигнализирующих устройствах.
  4. В элементах рекламы, вывесках.
  5. Информационных табло.

Важно! Светодиоды, излучающие свет в мигающем заданном ритме, применяются не только в видимом диапазоне спектра, но также в инфракрасном и ультрафиолетовом сегментах. Область их назначения – системы автоматизации и дистанционного управления различной техники – отоплением, вентиляцией, бытовыми приборами.

Бегущие огни на светодиодах своими руками

Одной из сфер эксплуатации мигающих светодиодов является устройство «бегущие огни». Для сборки схемы применяются такие компоненты:

  1. Генератор импульсом прямоугольного вида.
  2. Устройство индикации.
  3. Дешифратор.
  4. Счетчик.

Изготовление схемы осуществляется на макетной плате беспаечного типа. При этом по номиналу резисторов и конденсаторов допускается небольшой разброс, но не выше 20%. Светодиоды от HL1 до HL16 могут быть не обязательно одного цвета, но различных оттенков. Однако падение напряжение каждого лед-элемента должно быть в рамках 3 вольт.

Как сделать гирлянду из светодиодов

Для изготовления гирлянды, периодически мигающей с заданным ритмом, потребуются следующие компоненты и набор инструмента:

  1. Светодиоды на 20 мАч.
  2. Проводка площадью сечения 0,5-0,25 мм 2 .
  3. Трансформатор на 6 вольт.
  4. Резистор на 100 Ом.
  5. Паяльная станция с наконечником небольшого сечения, припой, канифоль.
  6. Нож с острым лезвием.
  7. Герметик на силиконовой основе.
  8. Фломастер.
  1. Определиться точно с промежутками между мигающими элементами.
  2. Подготовить провод и обозначить фломастером отметины под светодиоды.
  3. На местах отметок сделать срезы изоляции острым ножом.
  4. Далее на оголенные участки нанести канифоль с припоем.
  5. Припаять электроды диодов к этим местам.
  6. Нанести силиконовый герметик на оголенные участки для обеспечения электроизоляции.

По завершении подсоединяется блок питания и обычный резистор. Устройство включается в сеть и проверяется на работоспособность.

Совет! При изготовлении гирлянд нужно учитывать, что исключительно последовательный характер соединения светодиодов в цепи будет обеспечивать свойственный им мигающий эффект.

Основные выводы

Мигающий светодиод – это стандартный лед-элемент, оснащенный для специфического ритмичного свечения резистором и конденсатором, работающий по следующему принципу:

  1. Поступающий ток накапливает заряд на резисторе.
  2. По достижении заданного потенциала происходит пробой в p-n-переходе транзистора – ток проходит, светодиод вспыхивает.
  3. По мере снижения заряда транзистор закрывается и процесс повторяется.

Схема распространенного мигающего самодельного светодиода может включать один или пару транзисторов. При самостоятельной их сборке нужно заранее подготовить все необходимые компоненты и требуемые в ходе работы инструменты. Область применения мерцающих лед-светильников огромна – от игрушек и гирлянд до сигнализации, индикации и систем дистанционного управления.

Если вы знаете, как другим способом собрать схему мигающего светодиода, обязательно поделитесь полезной информацией в комментариях.