Стабилизатор тока на полевом транзисторе для светодиода

PicHobby.lg.ua

Полезные изобретения на микроконтроллерах

Стабилизатор тока на полевом транзисторе

  • Автор: Ерёмин Антон
  • Добавить комментарий

В статье расскажу, как сделать простой стабилизатор тока для светодиодов на полевом транзисторе.

Описание задумки.

Задолго до разработки фонарика на ATtiny13 мне уже доводилось работать со сверх-яркими светодиодами. И что могу сказать. Редкий радиолюбитель жаждет чтобы светодиоды перегорали, как можно чаще! :). Особенно мощные и дорогие. Вот и мне этого не хотелось и решил взяться за разработку стабилизатора тока.

Немного теории.

Мне часто задают один и тот же вопрос, мол почему именно стабилизатор тока лучше для светодиодов, а не стабилизатор напряжения. Ответ простой, но он многим не нравиться. Постараюсь пояснить на вольт-амперной характеристики(ВАХ) SMD светодиода типоразмера 3528, рисунок 1.

Рисунок 1 – Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528 при 25⁰С.

Ось У – ток через светодиод.

Ось Х – падение напряжения на светодиоде.

Теперь внимание! Заявленный производителем ток для данного светодиода равен 20мА. Смотрим на рисунок и видим, что ток 20 мА приблизительно соответствует напряжению на светодиоде 3,4В. Если поднять напряжение на светодиоде до 3,5В, а это всего лишь на 0,1В больше чем его типовое напряжение, то ток увеличиться до 50мА, а это в 2,5 раза больше чем его заявленный ток. Если всё перевести в процентное соотношение, то получиться что ток возрастает в 2,5 раза, при увеличении напряжения всего лишь на 3%(округлил). Вот почему стабилизатор напряжения должен быть практически идеальным!

Теперь рассмотрим стабилизатор тока. Если стабилизировать ток 20мА, то увеличение тока на 3% даст результат – 20,6мА. Согласитесь, что это совсем другой результат и он куда лучше предыдущего!

Иногда мне пытаются доказать, что последовательное соединение светодиодов + стабилизатор напряжения лучше, чем параллельное + стабилизатор тока. Это, конечно, тема для отдельной статьи, но хочу тут немного пояснить, что параллельное соединение однозначно выигрывает.

Для примера возьмём пять светодиодов 20мА, 3,4В и соединим их последовательно и параллельно. При последовательном соединении если один светодиод перегорает и остаётся замкнутым, а такое бывает и часто, напряжение 17В(3,4В*5шт) делится между оставшимися четырьмя светодиодами в равных пропорциях (предположим что так). Получается, что падение напряжение на каждом светодиоде будет — 4,25В (17В/4шт). Ток при этом возрастает до неимоверных значений, а это приводит к последовательному перегоранию оставшихся светодиодов или части из них.

При параллельном соединении и стабилизации тока в 100мА(20мА*5шт) перегорание светодиода приведёт к увеличению тока на оставшихся всего на 5мА(20мА/4шт). Или по-другому: 100мА/4шт = 25мА – ток на каждом светодиоде. Разница очевидна! В этой статье не буду больше приводить плюсы и минусы каждого из решений, статья совсем о другом. Надеюсь пример был понятным. Мой личный выбор всегда на стороне параллельного соединения светодиодов и стабилизатора тока для них. Если и ваш тоже, то читайте дальше, как сделать несложный стабилизатор тока для светодиодов.

О схеме.

Принципиальная схема стабилизатора тока на полевом транзисторе показана на рисунке 2.

Резистор R1 нужен для того чтобы транзистор VT2 открывался. Стабилитрон VD1 защищает затвор от перенапряжения, для транзистора P0903BDG максимальное напряжение затвор-сток – 20В. Если у вас другой транзистор, то информацию на него смотрите в даташите. Параметр этот называется Gate-Source Voltage. Если напряжение питание значительно меньше максимального напряжения затвор-сток, то можно вообще стабилитрон не ставить. Резисторы R2-R6 выполняют роль шунта. На схему добавил их побольше чтобы можно было удобно подобрать нужный номинал.

Схема работает следующим образом. В начальный момент времени транзистор VT2 открыт, ток протекает через светодиоды и шунт из резисторов R2-R6, транзистор VT1 закрыт. При протекании тока через шунт на нём падает определённое напряжение и если оно равняется напряжению открытия транзистора VT1, то он открывается и «садит» затвор транзистора VT2 на минус питания, транзистор VT2 закрывается и ток через светодиоды и шунт начинает снижаться. При снижении тока через светодиоды будет снижаться падение напряжение и на шунте, как только напряжение станет меньше чем нужно для открытия транзистора VT1, он закроется и «освободит» затвор транзистора VT2. Транзистор VT2 снова откроется и ток устремиться к светодиодам и шунту. Дальше все повторяется по кругу.

Настройка.

Настройка схемы заключается в определении необходимого тока для светодиодов и подбору номиналов резисторов шунта. Приблизительно считаю, что падение напряжение на шунте должно быть около 0,5В. Этого напряжения достаточно для открытия транзистора VT1. Хотя по даташиту напряжение база-эмиттер для транзистора BC846 – 0,66В, для отечественных – 0,7В.

В качестве примера рассчитаю для вас номиналы резисторов шунта на ток 170мА.

Сопротивление шунта(Ом) = падение напряжение на шунте(В) / ток через шунт (А), получается: Сопротивление шунта = 0,5В / 0,17А = 2,94 Ом. Полученный результат округляю до 3 Ом. Из стандартного ряда можно взять два резистора номиналом 1 Ом и 2 Ом и впаять их на плату, как R2, R3. Резисторы R4-R6 при этом исключаются из схемы.

Дальше нужно проверить какой ток стабилизирует стабилизатор. Для проверки потребуется амперметр или миллиамперметр. Прибор нужно подключить в разрыв любого из проводов питания, подать питающее напряжение, оно, кстати, должно быть больше чем типовое питание светодиодов. Лучше использовать источник питания с возможностью регулировки выходного напряжения. Подключаем, регулируем, смотрим.

В определённый момент времени ток через стабилизатор перестанет меняться – это и будет током стабилизации. Дальнейшее увеличение напряжения ничего не изменит, разве что добавит разогрев транзистора VT2. Нужно понимать, что всё избыточное напряжение будет выделяться на транзисторе VT2 в качестве тепла. Если ток стабилизации получился таким какой нужен значит подбор шунта закончен, если же ток отличается от нужного значения в большую сторону – увеличиваем сопротивление шунта, в меньшую – уменьшаем.

О печатной плате.

Печатную плату разрабатывал под SMD компоненты в программе P-CAD 2006. Размеры платы – 37×18мм, рисунок 3. Вы можете разработать свою печатную плату и прислать мне файл для размещения на сайте.

О деталях.

Перечень деталей, необходимых для сборки стабилизатора тока, свёл в таблицу 1.

Подключение светодиодов через стабилизатор тока

Главным электрическим параметром светодиодов (LED) является их рабочий ток. Когда в таблице характеристик светодиода мы встречаем рабочее напряжение, то нужно понимать, что речь идет о падении напряжения на светодиоде при протекании рабочего тока. То есть рабочий ток определяет рабочее напряжение LED. Поэтому только стабилизатор тока для светодиодов может обеспечить их надежную работу.

  1. Назначение и принцип работы
  2. Обзор известных моделей
  3. Стабилизатор на LM317
  4. Регулируемый стабилизатор
  5. Как сделать стабилизатор для светодиода своими руками
  6. Какой стабилизатор использовать в авто
  7. Вывод

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, как подключить светодиод от сети 220 вольт). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

  1. Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  2. Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  3. Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.

В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно здесь.

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и Rset.

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора Rsens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Читайте также  Как проверить двухцветный светодиод с двумя выводами?

Стабилизатор на LM317

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке.

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

Мощность, рассеиваемая на резисторе равна:

Регулируемый стабилизатор

Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так:

Как сделать стабилизатор для светодиода своими руками

Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Какой стабилизатор использовать в авто

Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты (читайте, как подключить светодиодную ленту в авто). Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора. Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов.

Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема светодиодного драйвера.

Вывод

Подводя итог можно сказать, что для надежной работы светодиодных конструкций их необходимо питать с помощью стабилизаторов тока. Многие схемы стабилизаторов просты и доступны для изготовления своими руками. Мы надеемся, что приведенные в материале сведения будут полезны всем, кто интересуется данной темой.

Схема стабилизатора тока на полевом транзисторе

Для корректной функциональности многих электротехнических устройств необходимо поддержание определенных рабочих параметров сети питания. Выход напряжения за границы нормированного диапазона сопровождается ухудшением КПД. Импульсные помехи провоцируют сбои. Исправить ситуацию поможет стабилизатор тока на полевом транзисторе схема которого представлена в этой публикации.

Принцип стабилизации тока

Целевое назначение специальной схемы – регулирование источника питания в автоматическом режиме для поддержания стабильных параметров цепей нагрузки. Основной компонент – достаточно мощный полупроводниковый прибор, ограничитель силы тока на выходе блока питания.

Требования к управляющему элементу

Критерии выбора можно сформулировать, если известны параметры силы тока (ампер). Однако даже без конкретного технического задания несложно перечислить базовые требования:

  • ток в контрольной цепи поддерживается с определенной точностью;
  • следует компенсировать перепады потребляемой мощности;
  • корректирующие изменения должны выполняться достаточно быстро;
  • для автоматической настройки оптимального режима и улучшения защиты от помех нужна организация обратной связи.

Суть стабилизации

Для уточнения функциональности управляющего элемента необходимо отметить особенности типичной нагрузки. Интенсивность излучения светодиода, например, существенно зависит от температуры в процессе эксплуатации. Соответствующим образом изменяется мощность потребления. При увеличении тока уменьшается напряжение.

Важно! Если установить обратную связь (отрицательную), отмеченное изменение будет регулировать рабочий режим управляющего устройства. В частности, при увеличении напряжения между затвором и стоком полевого транзистора ток через исток уменьшается. Тем самым без иных дополнительных действий обеспечивается стабилизация выходных параметров источника.

Выбор схемы включения

На практике применяют разные инженерные решения. В частности, для подключения светодиодных светильников производители предлагают импульсные источники питания. Эти устройства выполняют свои функции с помощью частотного преобразования и модуляции сигнала. Для управления ключом устанавливают микросхемы. Для дозированного накопления энергии используют дроссель.

Для упрощения в данной статье рассмотрена линейная стабилизация. Устройства, созданные по этой схеме, не создают сильные электромагнитные помехи. В этом – главное отличие от импульсных аналогов.

Работа стабилизаторов тока

Минимальное количество функциональных элементов в схемах этой категории подразумевает разумную стоимость. При выборе такого варианта нетрудно изучить рабочие режимы, особенности настройки.

Особенности полевых структур

В радиотехнических приборах этого типа p-n переходы расположены особым образом. Для регулировки прохождения тока через центральный канал изменяются напряжение и соответствующее электромагнитное поле. Разницу потенциалов создают на стоке и затворе.

На рисунке показаны принципиальные отличия, по сравнению с биполярным транзистором. При использовании полевой структуры управляющий ток отсутствует, а входное сопротивление становится значительно больше. При такой схеме прибор потребляет минимум энергии, но не способен обеспечить усиление сигнала. Впрочем, для решения обозначенной задачи (стабилизации) увеличивать напряжение не нужно.

Принцип управления переходом

В области между зонами р типа формируется канал. Для прохождения тока создается разница потенциалов «сток-исток». Управляют переходом изменением напряжения «затвор-исток» – Uзи.

Устройство и работа полевого транзистора

Для изучения функциональности полевого транзистора можно рассмотреть две схемы подключения. В первом варианте соединяют исток и затвор проводником, выравнивая соответствующий потенциал: Uзи= 0. Повышением напряжения Uси (сток-исток) обеспечивают прохождение тока в рабочей зоне.

В показанном на рисунке состоянии прибор функционирует как типичный проводник. Специфическое название на графике «Омическая область» определяет зону пропорционального увеличения силы тока по мере увеличения разницы потенциалов. При переходе в режим насыщения количества свободных зарядов недостаточно для поддержания отмеченного изменения.

На этом рисунке канал прохождения зарядов сужают дополнительным источником питания, который уменьшает Uзи Полевые транзисторы в стабилизаторах тока

В идеальном примере источник питания обеспечивает стабильность тока, если электрическое сопротивление цепи нагрузки меняется от нуля (КЗ) до бесконечности. Однако в действительности рабочие параметры проводимости (напряжения) ограничены определенным диапазоном. Схема на полевом транзисторе с последовательным подключением к зарядному устройству, солнечной батарее или другому «реальному» источнику обеспечит поддержание тока в линии на заданном уровне.

Пример стабилизатора на полевом транзисторе

При создании радиотехнических устройств с применением ламп типовой анодный блок питания не обеспечивает необходимую стабильность выходных параметров. Добавление резистора в цепь увеличивает потери, не позволяет точно корректировать изменение мощности в нагрузке.

Своими руками несложно собрать этот стабилизатор тока на полевом транзисторе. С его помощью обеспечивается точность заданных параметров в диапазоне не более 6% от номинала.

Видео

Простейший стабилизатор постоянного тока

Полупроводниковый прибор, о котором пойдет речь, предназначен для стабилизации тока на требуемом уровне, обладает низкой стоимостью и дает возможность упростить разработку схем многих электронных приборов. Попытаюсь немного восполнить недостаток информации о простых схемотехнических решениях стабилизаторов постоянного тока.

Немного теории

Идеальный источник тока обладает бесконечно большим ЭДС и бесконечно большим внутренним сопротивлением, что позволяет получить требуемый ток в цепи независящий от сопротивления нагрузки.

Условное графическое обозначение источника тока:

Рассмотрение теоретических допущений о параметрах источника тока помогает понять определение идеального источника тока. Ток, создаваемый идеальным источником тока остается постоянным при изменении сопротивления нагрузки от короткого замыкания до бесконечности. Для поддержания величины тока неизменной значение ЭДС меняется от величины не равной нулю до бесконечности. Свойство источника тока, позволяющее получить стабильное значение тока: при изменении сопротивления нагрузки изменяется ЭДС источника тока таким образом, что значение тока остается постоянным.

Реальные источники тока поддерживают ток на требуемом уровне в ограниченный диапазон напряжения, создаваемого на нагрузке и ограниченном сопротивление нагрузки. Идеальный источник рассматривается, а реальный источник тока может работать при нулевом сопротивлении нагрузки. Режим замыкания выхода источника тока не является исключением или трудно реализуемой функцией источника тока, это один из режимов работы, в который может безболезненно перейти прибор при случайном замыкании выхода и перейти на режим работы с сопротивлением нагрузки более нуля.

Реальный источник тока используется совместно с источником напряжения. Сеть 220 вольт 50 Гц, лабораторный блок питания, аккумулятор, бензиновый генератор, солнечная батарея – источники напряжения, поставляющие электроэнергию потребителю. Последовательно с одним из них включается стабилизатор тока. Выход такого прибора рассматривается как источник тока.

Простейший стабилизатор тока представляет собой двухвыводной компонент, ограничивающий протекающий через него ток величиной и точностью соответствующей данным фирмы изготовителя. Такой полупроводниковый прибор в большинстве случаев имеет корпус, напоминающий диод малой мощности. Благодаря внешнему сходству и наличию всего двух выводов компоненты этого класса часто упоминаются в литературе как диодные стабилизаторы тока. Внутренняя схема не содержит диодов, такое название закрепилось только благодаря внешнему сходству.

Примеры диодных стабилизаторов тока

Диодные стабилизаторы тока выпускаются многими производителями полупроводников.

1N5296
Производители: Microsemi и CDI

Ток стабилизации 0,91мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 1,29 В
Максимальное импульсное напряжение 100 В

E-103
Производитель Semitec

Ток стабилизации 10 мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 4,2 В
Максимальное импульсное напряжение 50 В

L-2227
Производитель Semitec

Ток стабилизации 25 мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 4 В
Максимальное импульсное напряжение 50 В

От теории к практике

Применение диодных стабилизаторов тока упрощает электрические схемы и снижает стоимость приборов. Использование диодных стабилизаторов тока привлекательно не только своей простотой, но и повышением устойчивости работы разрабатываемых приборов. Один полупроводник этого класса в зависимости от типа обеспечивает стабилизацию тока на уровне от 0,22 до 30 миллиампер. Наименования этих полупроводниковых приборов по ГОСТу и схемного обозначения найти не удалось. В схемах статьи пришлось применить обозначение обычного диода.

При включении в цепь питания светодиода диодный стабилизатор обеспечивает требуемый режим и надежную работу. Одна из особенностей диодного стабилизатора тока – работа в диапазоне напряжений от 1,8 до 100 вольт позволяющая защитить светодиод от выхода из строя при воздействии импульсных и длительных изменений напряжения. Яркость и оттенок свечения светодиода зависят от протекающего тока. Один диодный стабилизатор тока может обеспечить режим работы нескольких последовательно включенных светодиодов, как показано на схеме.

Эту схему легко преобразовать в зависимости от светодиодов и напряжения питания. Один или несколько параллельно включенных диодных стабилизаторов тока в цепь светодиодов зададут ток светодиодов, а количество светодиодов зависит от диапазона изменения напряжения питания.

Читайте также  Соединение оптоволокна без сварки

С помощью диодных источников тока можно построить индикаторный или осветительный прибор, предназначенный для питания от постоянного напряжения. Благодаря питанию стабильным током источник света будет иметь постоянную яркость свечения при колебаниях напряжения питания.

Использование резистора в цепи светодиода индикатора напряжения питания двигателя постоянного тока станка сверловки печатных плат приводило к быстрому выходу светодиода из строя. Применение диодного стабилизатора тока позволило получить надежную работу индикатора. Диодные стабилизаторы тока допускается включать параллельно. Требуемый режим питания нагрузок можно получить, меняя тип или включая параллельно требуемое количество этих приборов.

При питании светодиода оптопары через резистор пульсации напряжения питания схемы приводят к колебаниям яркости, накладывающимся на фронт прямоугольного импульса. Применение диодного стабилизатора тока в цепи питания светодиода, входящего в состав оптопары, позволяет снизить искажение цифрового сигнала, передаваемого через оптопару и увеличить надежность канала информации.

Применение диодного стабилизатора тока задающего режим работы стабилитрона позволяет разработать простой источник опорного напряжения. При изменении питающего тока на 10 процентов напряжение на стабилитроне меняется на 0,2 процента, а так как ток стабилен, то величина опорного напряжения стабильна при изменении других факторов.

Влияние пульсаций питающего напряжения на выходное опорное напряжение уменьшается на 100 децибел.

Внутренняя схема

Вольтамперная характеристика помогает понять работу диодного стабилизатора тока. Режим стабилизации начинается при превышении напряжения на выводах прибора около двух вольт. При напряжениях более 100 вольт происходит пробой. Реальный ток стабилизации может отклоняться от номинального тока на величину до десяти процентов. При изменении напряжения от 2 до 100 вольт ток стабилизации меняется на 5 процентов. Диодные стабилизаторы тока, выпускаемые некоторыми производителями, изменяют ток стабилизации при изменении напряжения до 20 процентов. Чем выше ток стабилизации, тем больше отклонение при увеличении напряжения. Параллельное включение пяти приборов, рассчитанных на ток 2 миллиампера, позволяет получить более высокие параметры, чем у одного на 10 миллиампер. Так как уменьшается минимальное напряжение стабилизации тока, то диапазон напряжения в котором работает стабилизатор увеличивается.

Основой схемы диодного стабилизатора тока является полевой транзистор с p-n переходом. Напряжение затвор-исток определяет ток стока. При напряжении затвор-исток равному нулю ток через транзистор равен начальному току стока, который течет при напряжении между стоком и истоком более напряжения насыщения. Поэтому для нормальной работы диодного стабилизатора тока напряжение, приложенное к выводам должно быть больше некоторого значения от 1 до 3 вольт.

Полевой транзистор имеет большой разброс начального тока стока, точно эту величину предсказать нельзя. Дешевые диодные стабилизаторы тока представляют собой отобранные по току полевые транзисторы, у которых затвор соединен с истоком.

При смене полярности напряжения диодный стабилизатор тока превращается в обычный диод. Это свойство обусловлено тем, что p-n переход полевого транзистора оказывается смещенным в прямом направлении и ток течет по цепи затвор-сток. Максимальный обратный ток некоторых диодных стабилизаторов тока может достигать 100 миллиампер.

Источник тока 0.5А и более

Для стабилизации токов силой 0,5-5 ампер и более применима схема, главный элемент которой мощный транзистор. Диодный стабилизатор тока стабилизирует напряжение на резисторе 180 Ом и на базе транзистора КТ818. Изменение резистора R1 от 0,2 до10 Ом изменяется ток, поступающий в нагрузку. С помощью этой схемы можно получить ток, ограниченный максимальным током транзистора или максимальным током источника питания. Применение диодного стабилизатора тока с наиболее возможным номинальным током стабилизации улучшает стабильность выходного тока схемы, но при этом нельзя забывать о минимально возможном напряжении работы диодного стабилизатора тока. Изменение резистора R1 на 1-2 Ом значительно меняет величину выходного тока схемы. Этот резистор должен иметь большую мощность рассеяния тепла, изменение сопротивления из-за нагрева приведет к отклонению выходного тока от заданного значения. Резистор R1 лучше собрать из нескольких параллельно включенных мощных резисторов. Резисторы, применённые в схеме должны иметь минимальное отклонение сопротивления при изменении температуры. При построении регулируемого источника стабильного тока или для точной настройки выходного тока резистор 180 Ом можно заменить переменным. Для улучшения стабильности тока транзистор КТ818 усиливается вторым транзистором меньшей мощности. Транзисторы соединяются по схеме составного транзистора. При использовании составного транзистора минимальное напряжение стабилизации увеличивается.

Эту схему можно использовать для питания соленоидов, электромагнитов, обмоток шаговых двигателей, в гальванике, для зарядки аккумуляторов и других целей. Транзистор обязательно устанавливается на радиатор. Конструкция прибора должна обеспечивать хороший теплоотвод.

Если бюджет проекта позволяет увеличить затраты на 1-2 рубля и конструкция прибора допускает увеличение площади печатной платы, то использую параллельное объединение диодных стабилизаторов тока можно улучшить параметры разрабатываемого прибора. Соединенные параллельно 5 компонентов 1N5305 позволят стабилизировать ток на уровне 10 миллиампер, как и компонент СDLL257, но минимальное напряжение работы в случае пяти 1N5305 составит 1,85 вольт, что важно для схем с напряжением питания 3,3 или 5 вольт. Также к положительным свойствам 1N5305 относится его доступность, по сравнению с приборами производителя Semitec. Соединение параллельно группы стабилизаторов тока вместо одного позволяет снизить нагрев разрабатываемого прибора и отодвинуть верхнюю границу температурного диапазона.

Увеличение рабочего напряжения

Для использования диодных стабилизаторов тока при напряжениях более напряжения пробоя последовательно включается один или несколько стабилитронов, при этом область напряжений работы диодного ограничителя тока смещается на величину стабилизации напряжения стабилитроном. Схему можно использовать для грубого определения превышения порогового значения напряжения.

Найти отечественные аналоги зарубежных диодных стабилизаторов тока не удалось. Вероятно с течением времени ситуация с отечественными диодными стабилизаторами тока изменится.

Стабилизатор тока на полевом транзисторе для светодиода

Стабилизаторы тока

Бывают случаи, когда необходимо пропускать стабильный ток через светодиоды, ограничить ток зарядки аккумуляторов или испытать источник питания, а реостата под рукой нет. В этом, и не только, случае помогут специальные схемотехнические решения ограничивающие, регулирующие и стабилизирующие ток. Далее подробно рассмотрены схемы стабилизаторов и регуляторов тока

Источники тока, в отличие от источников напряжения, стабилизируют выходной ток, изменяя выходное напряжение так, чтобы ток через нагрузку всегда оставался одинаковым.
Таким образом, источник тока отличается от источника напряжения, как вода отличается от суши. Типичное применение источников тока – питание светодиодов, зарядка аккумуляторов и т.п.
Внимание! Не путайте стабилизатор тока со стабилизатором напряжения! Это может плохо кончиться =)

Простой стабилизатор тока на КРЕНке

Для этого стабилизатора тока достаточно применить КР142ЕН12 или LM317. Это регулируемые стабилизаторы напряжения способные работать с токами до 1,5А, входными напряжениями до 40В и рассеивают мощность до 10Вт (при соблюдении теплового режима).
Схема и применение показаны на рисунках ниже

Стабилизатор тока на КР142ЕН12 (LM317)

Стабилизатор тока на КРЕН в качестве зярядного устройства

Собственное потребление данных микросхем относительно невелико – около 8мА и это потребление практически не меняется при изменении тока протекающего через крен или изменения входного напряжения. Как видим, в вышеприведенных схемах, стабилизатор LM317 работает как стабилизатор напряжения, удерживая на резисторе R3 постоянное напряжение, которое можно регулировать в некоторых пределах построечным резистором R2. В данном случае R3 называется токозадающим резистором. Поскольку сопротивление R3 неизменно, то ток через него будет стабильным. Ток на входе крен будет примерно на 8мА больше.

Таким образом, мы получили простой как веник стабилизатор тока, который может применяться как электронная нагрузка, источник тока для заряда аккумуляторов и т.п.

Интегральные стабилизаторы достаточно шустро реагируют на изменение входного напряжения. Недостаток же такого регулятора тока – весьма большое сопротивление токозадающего резистора R3 и как следствие необходимость применять более мощные и более дорогие резисторы.

Простой стабилизатор тока на двух транзисторах

Достаточно широкое распространение получили простенькие стабилизаторы тока на двух транзисторах. Основной минус данной схемы – не очень хорошая стабильность тока в нагрузке при изменении питающего напряжения. Впрочем, для многих применений сгодятся и такие характеристики.

Далее показана схема стабилизатора тока на транзисторе. В данной схеме токозадающим резистором является R2. При увеличении тока через VT2, увеличится напряжение на токозадающем резисторе R2, которое при величине примерно 0,5…0,6В начинает открывать транзистор VT1. Транзистор VT1 открываясь начинает закрывать транзистор VT2 и ток через VT2 уменьшается.

Стабилизатор тока на транзисторах

Вместо биполярного транзистора VT2, можно применить MOSFET – полевой транзистор.

Стабилитрон VD1 выбирается на напряжение 8…15В и необходим в случаях, когда напряжение источника питания достаточно велико и может пробить затвор полевого транзистора. Для мощных MOSFET это напряжение составляет порядка 20В. Далее показана схема стабилизатора тока с использованием MOSFET.

Стабилизатор тока на полевом транзисторе

Нужно учитывать, что MOSFET открываются при напряжении на затворе не менее 2В, соответственно увеличивается и напряжение, необходимое для нормальной работы схемы стабилизатора тока. При зарядке аккумуляторов и некоторых других задачах вполне достаточно будет включить транзистор VT1 с резистором R1 непосредственно к источнику питания так, как это показано на рисунке:

Стабилизатор тока на полевом транзисторе

В схемах стабилизатора тока на транзисторах необходимое значение токозадающего резистора для заданного значения тока примерно в два раза меньше, чем в схемах со стабилизатором на КР142ЕН12 или LM317. Это позволяет применить токозадающий резистор меньшей мощности.

Стабилизатор тока на операционном усилителе (на ОУ)

Если необходимо собрать регулируемый в широких пределах стабилизатор тока или стабилизатор тока с токозадающим резистором на порядок или даже два ниже, чем на схемах, показанных ранее, можно применить схему с усилителем ошибки на ОУ (операционном усилителе). Схема такого стабилизатора тока показана на рис:

Стабилизатор тока на операционном усилителе

В данной схеме токозадающим является резистор R7. ОУ DA2.2 усиливает напряжение токозадающего резистора R7 – это усиленное напряжение ошибки. ОУ DA2.1 сравнивает опорное напряжение и напряжение ошибки и регулирует состояние полевого транзистора VT1.

Обратите внимание, что схема требует отдельного питания, подаваемого на разъем XP2. Напряжение питания должно быть достаточным для работы компонентов схемы и не превышать значения напряжения пробоя затвора MOSFET VT1.

В качестве генератора опорного напряжения в схеме на рис. 7 применена микросхема DA1 REF198 с выходным напряжением 4,096В. Это достаточно дорогая микросхема, поэтому ее можно заменить обычной кренкой, а если напряжение питания схемы (+U) является стабильным, то и вовсе обойтись без стабилизатора напряжения в данной схеме. В этом случае переменный резистор R подсоединяется не к REF, а к +U. В случае электронного управления схемой вывод 3 DA2.1 можно подключить непосредственно к выходу ЦАП.

Для настройки схемы необходимо выставить ползунок переменного резистора R1 в верхнее по схеме положение, подстроечным резистором R3 установить необходимое значение тока – это значение будет максимальным. Теперь резистором R1 можно регулировать ток через VT1 от 0 до установленного при настройке максимального тока. Элементы R2, C2, R4 необходимы для предотвращения возбуждения схемы. Из-за этих элементов временные характеристики не являются идеальными, что видно по осциллограмме

Читайте также  Электронные генераторы и измерительные приборы

Осциллограмма стабилизатора тока на ОУ

На осциллограмме луч 1 ( желтый ) показывает напряжение нагружаемого ИП (источника питания), луч 2 ( голубой ) показывает напряжение на токозадающем резисторе R7. Как видно, в течение 80 мкс через схему протекает ток в несколько раз больше установленного.

Стабилизатор тока на микросхеме импульсного стабилизатора напряжения

Иногда от стабилизатора тока требуется не только работать в широком диапазоне питающих напряжений и нагрузок, но и иметь высокий КПД. В этих случаях компенсационные стабилизаторы не годятся и на смену им приходят стабилизаторы импульсные (ключевые). Кроме того, импульсные стабилизаторы могут при небольшом входном напряжении получать высокое напряжение на нагрузке.

Далее предлагается к рассмотрению широко распространенная микросхема MAX771. Основные характеристики MAX771:

  • Напряжение питяния 2…16,5В
  • Собственное потребление 110uA
  • Выходная мощность до 15W
  • КПД при токе нагрузки 10mA…1A достигает 90%
  • Опорное напряжение 1,5V

На рисунке показан один из вариантов включения микросхемы, именно его мы и возьмем за основу нашей схемы.

MAX771 включен как повышающий стабилизатор напряжения

Упрощенно процесс стабилизации выглядит следующим образом. Резисторы R1 и R2 являются делителями выходного напряжения микросхемы, как только делимое напряжение, поступающее на вывод FB микросхемы MAX771, больше опорного напряжения (1,5V) микросхема уменьшает выходное напряжение и наоборот — если напряжение на выводе FB меньше 1,5V, микросхема увеличивает входное напряжение.

Очевидно, что если контрольные цепи изменить так, чтобы MAX771 реагировала (и соответственно регулировала) выходной ток, то мы полчим стабилизированный источник тока.
Ниже показаны модифицированная схема с ограничением выходного напряжения и вариант нагрузки.

При небольшой нагрузке, пока падение напряжения на токоизмерительном резисторе R3 меньше 1,5V, схема на Рис.10a работает как стабилизатор напряжения, стабилизируя напряжение на уровне стабилитрона VD2 + 1,5V. Как только ток нагрузки становится достаточно большим, на R3 падение напряжения увеличивается и схема переходит в режим стабилизации тока.

Резистор R8 устанавливается в том случае, если напряжение стабилизации может быть большим — больше 16,5V. Резистор R3 является токозадающим и рассчитывается по формуле: R3 = 1,5/Iст.
Недостатком схемы является достаточно большое падение напряжения на токоизмерительном резисторе R3. Данный недостаток устраняется применением операционного усилителя (ОУ) для усиления сигнала с резистора R3. Например, если резистор требуется уменьшить в 10 раз при заданном токе, то усилитель на ОУ должен усилить напряжение падающее на R3 тоже в 10 раз.

Заключение

Итак, было рассмотрено несколько схем выполняющих функцию стабилизации тока. Конечно же, эти схемы можно улучшать, увеличивая быстродействие, точность и т.д. Можно применять в качестве датчика тока специализированные микросхемы и делать сверхмощные регулирующие элементы, но эти схемы идеально подходят в тех случаях, когда требуется быстро создать инструмент для облегчения своей работы или решения определенного круга задач.

Как сделать стабилизатор тока для светодиодов?

Большое разнообразие электроники на современном рынке способствует формированию высоких требований к электропитанию. Существует огромное количество готовых модулей и электронных компонентов. Для светодиодов часто применяются специальные стабилизаторы. Данная технология используется практически в каждом современном светодиодном прожекторе, светильнике или лампе.

Среди пользователей, которые хотят сделать стабилизатор тока для светодиодов своими руками, наибольшей популярностью пользуется микросхема LM317 (включая ее аналоги), относящаяся к подклассу линейных стабилизаторов.

Такие устройства подразделяются на несколько видов:

  1. Линейный стабилизатор тока для светодиодов, входное напряжение которого не превышает 40 В при токе 10 А.
  2. Импульсные устройства, которые отличаются низким входным напряжением (например, импульсный ШИМ-контроллер);
  3. Импульсный стабилизатор тока, для которого характерно высокое входное напряжение.

Выбор наиболее подходящего стабилизатора зависит от КПД и системы охлаждения устройства.

Повышающий и понижающий стабилизаторы

Повышающий стабилизатор преобразует низкое входное напряжение в более высокое на выходе. Этот вариант применяется для светодиодов с блоком питания на малое количество вольт (к примеру, в автомобиле может потребоваться повысить 12 вольт для светодиодов до 19 В или 45 В). Понижающие стабилизаторы, наоборот, снижают высокое напряжение до нужного уровня. Все модули подразделяются на универсальные и специализированные. Универсальные обычно оборудуются двумя переменными сопротивлениями — для получения нужных параметров тока и напряжения на выходе. У специализированных устройств значения на выходе чаще всего фиксированы.

В качестве стабилизатора для светодиодов используется специальный стабилизатор тока, схемы которого можно в большом количестве найти в интернете. Популярной моделью здесь является Lm2596. Светодиоды часто подключаются к автомобильной сети или аккумулятору через резистор. При этом напряжение может колебаться импульсами до 30 вольт, из-за чего низкокачественные светодиоды могут выходить из строя (мигающие ходовые огни с частично неработающими светодиодами). Стабилизация тока в данном случае может осуществляться с помощью миниатюрного преобразователя.

Простой преобразователь тока

Сборка миниатюрного преобразователя тока своими руками считается довольно простой. Такие стабилизаторы напряжения обычно изготавливаются в режиме для стабилизации тока. При этом не следует путать максимальное напряжение для всего блока и максимальную нагрузку на ШИМ-контроллер. На блок может быть установлена система низковольтных конденсаторов на 20 В, а импульсная микросхема может иметь вход до 35 В. Наиболее простой светодиодный стабилизатор тока, выполненный своими руками, — это вариант LM317. Потребуется только рассчитать резистор для светодиода с помощью онлайн калькулятора.

Для LM317 можно использовать подручное питание (к примеру, блок питания на 19 В от ноутбука, на 24 В или 32 В от принтера либо на 9 или на 12 вольт от бытовой электроники). К преимуществам такого преобразователя относят его низкую цену, минимальное количество деталей, высокую надежность, а также наличие в магазинах. Более сложную схему стабилизатора тока собирать своими руками не рационально. Поэтому если вы не являетесь опытным радиолюбителем, то импульсный стабилизатор тока намного проще и быстрее будет купить в готовом виде. При необходимости его можно доработать до требуемых параметров.

Обратите внимание! Модули не обладают защитой от подачи высокого напряжения, способного вывести устройство из строя. Поэтому доработку модуля нужно выполнять максимально внимательно.

Чтобы выполнить сборку LM317, никаких особых знаний и навыков по электронике не потребуется (в схемах число внешних элементов минимально). Стоит такой простой стабилизатор тока очень дешево, при этом его возможности многократно проверены на практике.

Единственный недостаток заключается в том, что LM317 может потребовать дополнительного охлаждения. Также стоит опасаться китайских микросхем LM317 с более низкими параметрами. Стоимость в любом случае более чем доступна, при этом в цену включена доставка. Китайские производители выполняют довольно трудоемкую работу при цене изделия в 30-50 рублей за штуку. Ненужные запчасти можно распродать на Авито или форумах в интернете.

Сборка простого стабилизатора своими руками

Светодиод представляет собой полупроводниковый прибор, для работы которого необходим ток. Включение светодиодов через стабилизатор считается наиболее правильным. Продолжительность функционирования светодиода без потери яркости зависит от его режима работы. Главное достоинство простейших стабилизаторов (драйверов), таких как микросхема-стабилизатор LM317, — их довольно трудно спалить. Схема подключения LM317 требует всего двух деталей: самой микросхемы, включаемой в режим стабилизации, и резистора.

  1. Потребуется купить переменный резистор сопротивлением в 0.5 кОм (имеет три вывода и ручку регулировки). Заказать его можно через интернет или купить в «Радиолюбителе».
  2. Провода припаиваются к среднему выводу, а также к одному из крайних.
  3. С помощью мультиметра, включенного в режиме измерения сопротивления, замеряется сопротивление резистора. Нужно добиться максимального показания в 500 Ом (чтобы светодиод не перегорел при низком сопротивлении резистора). О том, как проверить мультиметром сам светодиод, написано здесь.
  4. После внимательной проверки правильности соединений перед подключением, собирается цепь.

Максимальная мощность LM317 — 1.5 Ампер. Если вы хотите увеличить ток, то в схему можно добавить полевой или обычный транзистор. В результате, для устройства на транзисторе на выходе можно добиться подачи 10 А (задается низкоомным сопротивлением). Для этих целей можно использовать транзистор КТ825 или установить аналог с лучшими техническими характеристиками и системой охлаждения.

В любом случае, ассортимент продаваемых модулей и блоков достаточно широкий, поэтому устройство с нужными параметрами можно собрать за минимальное время. КПД зависит от разницы напряжения входа и выхода, а также от режима работы.

Устройства средней сложности

Среднюю сложность изготовления имеют драйверы для светодиодов на 220В. Много времени может занять их настройка, требующая опыта по наладке. Такой драйвер извлечь можно из светодиодных ламп, прожекторов и светильников с неисправной светодиодной цепью. Большинство драйверов также возможно доработать, узнав модель ШИМ-контроллера преобразователя. Параметры на выходе обычно задаются одним или несколькими резисторами. В datasheet указывается уровень сопротивления, необходимый для получения нужного тока. Если установить регулируемый резистор, то на выходе количество Ампер будет настраиваемым (но без превышения указанной номинальной мощности).

Высокой популярностью на Китайских сайтах в 2016 году пользовался универсальный модуль XL4015. По своим характеристикам он подходит для подключения светодиодов с высокой мощностью (до 100 Ватт). Стандартный вариант корпуса данного модуля припаян к плате, выполняющей функции радиатора. Чтобы улучшить охлаждение XL4015, схема стабилизатора тока должна быть доработана с установкой радиатора на корпус устройства.

Многие пользователи просто ставят радиатор сверху, однако эффективность такой установки довольно низкая. Систему охлаждения лучше всего располагать внизу платы, напротив пайки микросхемы. Для оптимального качества ее можно отпаять и установить на полноценный радиатор, используя термопасту. Провода при этом потребуется удлинить. Дополнительное охлаждение можно установить и для диодов, что значительно повысит эффективность работы всей схемы.

Среди драйверов наиболее универсальным считается регулируемый драйвер. В цепи в данном случае устанавливается переменный резистор, который задает количество ампер на выходе. Эти характеристики обычно указываются в следующих документах:

  • в спецификации на микросхему;
  • в datasheet;
  • в типовой схеме включения.

Без добавочного охлаждения микросхемы такие устройства выдерживают 1-3 А (в соответствии с моделью ШИМ-контроллера). Слабое место таких драйверов — нагрев диода и дросселя. Выше 3 А потребуется охлаждение мощного диода и ШИМ-контроллера. Дроссель при этом заменяют более подходящим либо перематывают толстым проводом.

Где заказать детали?

Для поиска качественных и одновременно доступных по цене модулей можно воспользоваться сайтом Aliexpress. Стоимость при этом будет в 2-3 раза дешевле по сравнению с другими магазинами. Поэтому для тестирования лучше заказать сразу 2-3 штуки (например, на 12 вольт) по минимальной цене. На сайте возможно найти любой стабилизатор тока в свободной продаже, включая узкоспециализированный. При наличии соответствующего опыта, всего за 10000 рублей можно изготовить спектрометр стоимостью в 100000 рублей. Разница в 90% — это, как правило, накрутка за бренд (плюс несколько переработанный китайский софт).

Лидерские позиции по ассортименту преобразователей тока, блоков питания и драйверов заняли китайские интернет-магазины. Заказы приходят в 98% случаев. Цены за DC-DC преобразователь начинаются от 35 рублей. Более дорогие версии могут отличаться наличием двух-трех подстроечных резисторов, вместо одного. Заказ лучше оформлять заранее.