Соединение полумуфт насоса и электродвигателя

Соединение электродвигателя с насосом. Центровка и регулировка

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Насосы различного вида распространены как в промышленности, так и в быту. Они используются для водоснабжения промышленных объектов и населенных пунктов, в химической промышленности для перекачки агрессивных сред, в агропромышленном комплексе для полива земель и т.д.

Безопасная эксплуатация насосного оборудования напрямую зависит от правильной центровки валов приводного двигателя и самого насоса. Правильная центровка насоса с электродвигателем позволяет минимизировать вибрацию агрегата, которая со временем вызывает преждевременный выход подшипников из строя, искривление валов и износ рабочих органов. Наиболее остро такая проблема стоит в промышленности для насосов с большой объемной подачей, укомплектованными двигателями большой мощности. Моноблочные агрегаты не в центровке не нуждаются, так как рабочие колеса запрессованы непосредственно на удлиненный вал электродвигателя. Эта процедура необходима для агрегатов, у которых соединение между насосом и электродвигателем выполнено с помощью муфты.

Виды несоосности:
Чтобы правильно выполнить соединение насоса с электродвигателем нужно не допустить возникновения несоосности (коллинеарности) между валами. Геометрические оси вращения валов насоса и приводного электродвигателя, связанных между собой муфтой, при неправильной установке могут не совпадать. Такое расхождение может быть параллельным (а), угловым (б) или смешанным (в)


При параллельной неосоосности оси вращения валов располагаются в одной плоскости на определенном промежутке друг от друга по вертикали или горизонтали. Величина несоосности этого типа равна расстоянию между осями валов в миллиметрах.
При угловой коллинеарности оси вращения валов располагаются под углом друг к другу, в результате чего возникает раскрытие полумуфт. Чтобы численно оценить величину несоосности этого типа нужно измерить смещение оси вращения вала двигателя относительно оси вала насоса в двух местах на расстоянии 100 мм друг от друга. После этого полученные данные складываются, а полученный результат делится на расстояние между точками замера. Величина углового раскрытия муфт выражается в мм/100мм.
Смешанная несоосность характеризуется расхождением осей вращения валов как в вертикальной плоскости, так и по углу.
Для измерения расхождения валов используются как современные лазерные, так и аналоговые приборы


Когда проводится центровка

Центровка валов насоса и электродвигателя выполняется:
• после установки нового насосного оборудования;
• по окончании капитального ремонта с заменой трубопроводных линий;
• при возникновении вибрации и повышенного шума во время эксплуатации;
• если температура подшипниковых щитов превышает номинальное значение.

Как производится центровка

Прежде чем выполнять центровку следует определить стационарный и подвижный механизм. В паре насос-двигатель, стационарную позицию занимает первый агрегат, так как к нему обычно уже присоединен трубопровод. Поэтому за опорную линию с нулевыми координатами принимается центр вращения оси насоса. По результатам проведенных замеров осуществляется центровка двигателя относительно неподвижного агрегата. В горизонтальной плоскости несоосность устраняется перемещением корпуса электрической машины вправо или влево с одновременным контролем углового несовпадения, а вертикальная коллинеарность – с помощью регулировочных подкладок под лапы.
При наличии специальных измерительных приборов опытному специалисту не потребуется много времени для устранения несоосности. Но если таковые отсутствуют центровка насоса с электродвигателем своими руками с помощью линейки, штангенциркуля и пластинчатых щупов растянется надолго.
Для проверки коллинеарности валов можно использовать и два отрезка жесткой проволоки, которые закрепляются на полумуфтах со стороны двигателя и насоса и загибаются навстречу друг другу. Для боле точного измерения свободным концам проволок придают форму конуса. Между остриями импровизированных индикаторов должен остаться зазор величиной не более 1 мм. Медленно проворачивая скрепленные болтами полумуфты, с помощью щупа замеряют зазор через каждые 90° в плоскости, перпендикулярной оси вращения. По результатам выполненных измерений принимают решение о способе устранения возможной коллинеарности.

Сопряжение двигателя с приводимым механизмом посредством жестких муфт различной конструкции требует очень точного соблюдения соосности валов. Чтобы снизить вероятность возникновения коллинеарности любого типа для соединения валов используется упругая муфта для соединения насоса с электродвигателем.

Муфты для насосов

Электродвигатель и насос — крепкая любовь через муфту.

Муфты насоса

Для обеспечения работоспособности концы валов двигателя и насоса должны надёжно соединяться. Элемент, обеспечивающий передачу крутящего момента, называется — муфтой . Учитывая, что в каждом конкретном случае оборудование работает в разных условиях, подбор муфт осуществляется индивидуально.

К факторам, влияющим на правильный выбор соединительного элемента, относят:

  • мощность двигателя;
  • частота вращения;
  • наличие вибрации;
  • соосность;
  • наличие постоянного или меняющегося угла между валами;
  • необходимость оперативного отключения соединения или регулирования жесткости сцепления;

В зависимости от типа соединения валов двигателя и насоса муфты делятся на такие категории:

  • глухие;
  • жесткие компенсирующие;
  • упругие компенсирующие;
  • управляемые.

Глухие муфты для насоса

К наиболее простому и максимально надёжному типу соединения валов мотора и насоса относят глухие муфты. Их задача заключается в обеспечении максимально прочного соединения. Такие приспособления устанавливают на моторах большой мощности. Обязательным условием использования таких муфт является идеальная соосность валов. Даже незначительное несовпадение осей приводит к появлению сильной вибрации, износу деталей, поломкам.

Самыми распространенными муфтами с глухим соединением для насосов являются втулочные и фланцевые. Первые имеют очень простую конструкцию, изготавливаются в виде цилиндрической обоймы, внутренний диаметр которой соответствует диаметру валов. Передача крутящего момента обеспечивается штифтами или шпоночной посадкой.

Фланцевая муфта состоит из двух половин – полумуфт. Сначала каждая из полумуфт насаживается через шпоночное соединение на концы валов, а затем плоскости фланцев соединяются между собой болтами.

Жесткие компенсирующие муфты двигателя насоса

Обеспечить работоспособность насосных агрегатов при условии незначительной несоосности или при наличии угла между осями мотора и насоса помогают жесткие компенсирующие муфты. Жесткими такие соединения называют лишь потому, что между рабочими частями элементов не имеется мягких пружинящих прокладок. Само по себе соединение жестким назвать нельзя, т.к. его элементы подвижны друг относительно друга.

Одна из разновидностей муфт – кулачково-дисковая. Между двумя жестко закреплёнными полумуфтами вставляется промежуточный диск. Передача крутящего момента от одного диска к другому обеспечивается наличием соединения типа «паз-гребень». При наличии небольшого осевого смещения свободно передвигающийся промежуточный диск компенсирует его.

Другая муфта привода насоса с жесткой компенсацией, предназначенная для передачи вращения между валами с угловым смещением — зубчатая. Конструкция муфты предусматривает:

  • две полумуфты с наружными зубьями;
  • обойма с внутренними зубьями.

Обладая возможностью изменения угла наклона оси полумуфты, по отношению к обойме, такой механизм может обеспечить передачу крутящего момента при наличии угла между валами.

Упругие компенсирующие соединительные муфты насоса

Для того, чтобы частично погасить вибрационные колебания и продлить ресурс работы подшипников валов насосов и электромоторов, используют муфты с упругими элементами.

Наиболее простой по конструкции и надёжной является муфта втулочно-пальцевого типа. По конструкции она напоминает жесткую фланцевую, полумуфты не приживаются жестко друг к другу, а в одной из них соединительные пальцы имеют эластичные прокладки.

Более сложной по конструкции является пружинная муфта. Кроме двух полумуфт, устанавливающихся на концах валов, между которыми находится пружина, муфта имеет защитный корпус. Корпус или кожух одновременно является хранилищем для смазочного материала. Концы пружины упираются в выступы на разных полумуфтах. Вал насоса начинает движение в тот момент, когда вал мотора, вращаясь, сожмёт пружину и та, в свою очередь, передаст усилие на вторую полумуфту.

Сцепные или управляемые муфты

Если в процессе работы насосного агрегата возникает необходимость останавливать перекачку при работающем двигателе, сделать это можно с помощью сцепной или управляемой муфты. Существует несколько разновидностей муфт с управляемым соединением, а самыми распространенными являются муфты жесткого сцепления и фрикционные. Жесткие муфтовые сцепления обеспечиваются кулачковыми и зубчатыми полумуфтами.

В первом случае полумуфты валов имеют на соприкасающихся поверхностях кулачки, которые при сближении входят в прочное соединение и передают вращение. Между полумуфтами устанавливается эластичный элемент — «звездочка» которая гасит толчки и делает запуск более плавным. Упругие звездочки бывают разных цветов в зависимости от ее жесткости и рабочей температуры.

Зубчатые муфты работают по такому же принципу, но в зацепление входят внутренние зубы одной полумуфты и наружные другой. Для жестких соединений характерно резкое зацепление. Такое соединение при большой частоте вращения ведущего вала невозможно. Для смягчения процесса зацепления устройства оборудуют синхронизаторами.

Максимально плавные включение и выключение зацепления валов обеспечивают фрикционные муфты. Принцип их действия основан на использовании силы трения. Соприкасающиеся поверхности двух полумуфт имеют покрытие, которое позволяет им проскальзывать. Чем сильнее полумуфты приживаются друг к другу, тем прочнее соединение. Это позволяет валу насоса плавно набрать частоту вращения. Фрикционные муфты в зависимости от конструкции могут быть однодисковыми, многодисковыми, конусными.

Центровка насоса с электродвигателем: правильные методы работы

Центровка (юстировка) насоса с электродвигателем – ряд технических работ, производимых для достижения соосности вала насоса и вала электродвигателя во всех плоскостях, в пределах требуемых допусков.

Центровка насоса с электродвигателем

Соединение электродвигателя с насосом, центровка и регулировка

Соединение электродвигателя с насосом будет правильным в том случае, когда несоосность (неколлинеарность) валов обоих агрегатов будет минимальной и центровка валов насоса не понадобится или не потребует много времени. При выполнении работ по устранению любой несоосности, агрегаты разделяют на подвижный и стационарный. В соединении «двигатель – насос», подвижным будет двигатель, так как насос уже может быть присоединенным к трубам. При регулировке возникнет необходимость сдвига электромотора влево или вправо от оси вращения вала насоса, если несоосность горизонтальная, и подъёма или опускания двигателя при вертикальной регулировке.

Центровка по видам несоосности

Соединение валов имеет 3 вида несоосности:

  • параллельную;
  • угловую;
  • смешанную.

Параллельная несоосность выражается в том, что оси вращения соединяемых валов, находясь в одной плоскости, располагаются на расстоянии друг от друга. Измеряется этот показатель между осевыми линиями валов и выражается в миллиметрах.

Угловая несоосность – это когда оси вращения валов соединяемых агрегатов находятся под углом друг к другу. Числовое значение угловой несоосности измеряют как расстояние между осями вращения обоих агрегатов в двух точках, отстоящих друг от друга на 10 см. Полученные данные записывают в миллиметрах, затем их складывают и делят на расстояние между ними. Поэтому угловая неколлинеарность имеет вид дроби: мм100 мм.

Еще одним вариантом является смешанная несоосность – когда в соединении валов присутствуют горизонтальный и угловой варианты одновременно. Существует несколько способов измерения неколлинеарности и проведения регулировок: от применения простейших устройств до использования точных приборов и специальных конструкций.

Как производится центровка

Перед тем, как центровать насос с электродвигателем, необходимо измерить несоосность.

Самый простой способ измерения – с помощью двух проволок, размещенных на валах соединяемых агрегатов.

С помощью пары проволок

Способ «двух проволок» является самым доступным вариантом центровки валов насоса и электродвигателя ручным способом.

Для более точного измерения, валы с закрепленными проволоками, поворачивают вручную на 90˚ от точки первого измерения, и проводят второе измерение. Поворачивая вал на 90º после каждого измерения, получают значение несоосности, которое регулируют изменением положения мотора. Параллельную неколлинеарность этим способом проверяют по совпадению острых отгибов проволоки, а угловую – по расстоянию между ними.

Другим вариантом того, как отцентровать насос с электродвигателем без прибора является способ с помощью пары радиально-осевых скоб.

Способ со скобами

Суть способа заключается в установке на центрируемые валы специальных скоб. Представляют собой пару скоб, закрепленных на валах, либо на полумуфтах. Между горизонтальными полками скоб измеряют параллельную несоосность, по расстоянию между специальными выступами на вертикальных частях – угловую.

Крепление на полумуфты необходимо в том случае, когда нужна центровка насосов по полумуфтам. Например, если для крепления скоб на оси требуется значительный перерасход рабочего времени. Схемы со скобами позволяют произвести центровку вала насоса с электродвигателем (или мотор-редуктором) без применения измерительных приборов.

Пошаговая инструкция центровки пары электродвигатель – насос

Пошаговая инструкция показывает, как сделать центровку насоса с электродвигателем своими руками, с помощью одного часового индикатора. Прибор типа ИЧ широко распространен, и найти его особого труда не составит. Первым шагом инструкции по центровке будет установка индикатора. Методика работы такова:

  1. Собирается устройство с магнитным держателем индикатора.
  2. Готовое приспособление устанавливается на вал насоса.
  3. На выносной конец стержня крепится индикатор и его щуп упирается в вал мотора.
  4. Снимаются показания индикатора.
  5. Проводятся аналогичные операции при установке устройства на вал мотора.

В состав приспособления входят:

  • магнитный держатель;
  • вертикальная стойка;
  • хомут крепления для горизонтального стержня;
  • горизонтальный стержень;
  • поворотное устройство;
  • хомут крепления для индикатора;
  • индикатор типа ИЧ.

Следующим шагом инструкции станет проведение измерений и регулировки. Процесс центровки пары «мотор-насос» часовым индикатором аналогичен процессу с использованием проволок или скоб: делают 4 замера и 4 регулировки, в 4-х точках. Хорошим результатом будет разница в показаниях на 0,06 мм между собой. Последним, 5-м замером считается новый замер в первоначальной точке. Если в показаниях первого измерения и показаниях пятого измерения получилась разница больше требуемой величины, то измерения и регулировки проводят повторно.

Приведенная методика показывает, как центровать насос с электродвигателем с помощью одного индикатора. В технике существует практика более точного и более быстрого способа, когда центровка валов и электродвигателя проводится с помощью измерительного комплекта. В комплект входят специальные крепления и два индикатора.

Применение двух индикаторов позволяет измерить одновременно горизонтальную и вертикальную несоосности.

На фото, индикатор, расположенный вертикально, измеряет горизонтальную несоосность, а расположенный горизонтально – угловую.

Центровка валов агрегатов: практическое руководство

Перед вычислением параметров центровки по любому способу следует все произведенные замеры для удобства свести в таблицу. Приведенное руководство может быть применено при проведении регулировок по любому способу, основанному на применении механических средств измерения.

Пояснения к таблице. При измерении угловой несоосности, измерения производят в двух местах, отстоящих друг от друга на 10 см. Для удобства, в таблице эти места обозначены как «положение Ф» (фронтальное) и «положение Т» (тыловое). Измерения горизонтальной несоосности могут быть проведены при расположении средств измерения и на полумуфтах, и на валах.

Ослабление посадки полумуфты на валу электродвигателя

Низкое качество ремонта — залог проблем с Вашим оборудованием. При развитой системе коллективной безответственности специалист по технической диагностике является последним рубежом в защите оборудования от «человеческого фактора». В данной статье предлагаю рассмотреть пример выявления брака после ремонта электродвигателя.

Имеем центробежный насосный агрегат с электродвигателем АИР250М4 N = 90 кВт, n = 1475 об/мин. После перегрева подшипника №2 была выполнена его замена. Эксплуатирующий персонал рассказал, что полумуфту с электродвигателя кувалдочкой ремонтникам сбить не удалось (следы ударов имеются) и ротор электродвигателя пришлось переносить в мастерскую. Там полумуфту еле-еле сорвали. После замены подшипника полумуфта уже не садилась внатяг и она была просверлена и закреплена посредством гужона. Затем сочленение и меня вызвали проверить качество центровки, которая оказалась в допуске. Через несколько часов раздался телефонный звонок и мне сообщили, что насос уже 40 минут в работе, но от него исходит непонятный посторонний шум и виброручкой намерили высокую осевую вибрацию на подшипнике №2 электродвигателя в осевом направлении, которая составила 5 мм/с. Срочно нужна помощь.


Схема насосного агрегата с указанием точек измерений

Данные СКЗ виброскорости в диапазоне 10. 1000 Гц:

Направление 1 2 3 4
В 2,2 2,4 1,5 1,8
П 3,9 2,2 3,0 2,4
О 5,1 1,2 1,2

Работа агрегата действительно сопровождается посторонним шумом. Шум не постоянный, то появляется, то пропадает, то усиливается, то ослабевает. Трудно описать на что он похож, но вроде как исходит из-под защитного кожуха муфтового соединения насоса. Температура подшиника №2 около 60 °С. Вибрация нестабильна.

Посмотрим спектры виброскорости:


Спектры виброскорости подшипниковых опор в вертикальном направлении


Спектры виброскорости подшипниковых опор в поперечном (горизонтальном) направлении


Спектры виброскорости подшипниковых опор в осевом направлении

Как видим, спектры насыщены гармониками оборотной частоты 24,9 Гц. Доминирующей является вторая гармоника. При измерении в режиме без усреднений наблюдается сильная флуктуация амплитуд гармоник оборотной частоты, но кроме первой. Такая картина характерна для дефектов типа ослабления (при расцентровке гармоники более стабильны). Учитывая шум от муфты предполагаю наличие ослабления посадки.

В спектрах огибающей интерес представляет подшипник №2 — большое количество гармоник частоты наружного кольца 77,1 Гц (76,7 Гц по расчету подшипника 6317):


Спектры огибающей вибросигнала в поперечном (горизонтальном) направлении

Некоторые гармоники модулированы двойной частотой вращения сепаратора. Очень похоже на дефект наружного кольца, но не спешим его дефектовать. Предполагаемое ослабление на валу вызывает знакопеременные нагрузки на наружное кольцо (наиболее часто 2 раза за 1 оборот, судя по прямым спектрам). Так как вибрация более высока в осевом направлении, то можно представить себе осевые перемещения ротора (так же 2 раза за оборот), приводящие к периодическому подклиниванию сепаратора дважды за оборот. Это всего лишь предположение, но с учетом того что подшипник новый — очень похоже на правду.

Вопреки желанию персонала продолжить эксплуатацию в надежде на то что осевая вибрация снизится (а она временами падает до 4 мм/с) и рост температуры остановится, я сообщаю, что вероятной причиной шума и вибрации является дефект полумуфты на валу электродвигателя и требую остановить агрегат для осмотра.

После разборки схемы и снятия ограждения приступаю к осмотру муфты. Визуально все хорошо, вроде прочно сидят обе полумуфты, не заклинены, зазор между торцами 5-7 мм. Но стоило дернуть тяжелую полумуфту электродвигателя, она скользнула по валу и звонко ударилась об ответную полумуфту насоса. Хотя вмонтированный гужон на месте. Дефект подтвержден.

Соединительные муфты

Если стоит задача передачи крутящего момента между силовыми агрегатами (электродвигатель, редуктор) и исполнительными механизмами, то решают её муфты для соединения валов. При выборе муфты учитываются два показателя: величина передаваемого крутящего момента и способность компенсировать несоосность соединяемых валов. Самый многочисленный вид муфт — механические соединительные муфты.

Виды механических муфт по принципу действия и области применения

Жесткие муфты. Самые простые и прочные, т.к. цельнометаллические. Способны передавать большие крутящие моменты без деформации и явления «мертвого хода». По этой же причине неспособны компенсировать несоосность валов, гасить вибрации. Поэтому применяются там, где гарантировано высокое качество сборки, и есть возможность для тщательной центровки соединяемых валов.

Кулачковые муфты. Это разборные муфты, состоящие из двух полумуфт с торцевыми кулачками. Включение кулачковой муфты под нагрузкой сопровождается ударами, в этом случае применяют кулачковые муфты с упругой вставкой между кулачками. По форме вставки напоминают звездочку (ромашку, паук), производятся из полиуретана, резины. Они достаточно жесткие, чтобы передавать крутящий момент без запаздывания и достаточно упруго-вязкие, чтобы гасить вибрации, компенсировать небольшую несоосность (до 1 градуса). Эти же вставки являются наиболее слабым звеном, со временем изнашиваются и требуют замены. Благодаря способности передавать большие крутящие моменты и небольшим габаритам, кулачковые муфты широко используются в промышленности.

Виброгасящие муфты для соединения валов. Это разновидность кулачковых муфт с эластичной вставкой. Полиуретановая вставка поглощает вибрации и нивелирует несоосность. Каждая полумуфта крепится на валу двумя винтами. Применяются в станках с ЧПУ и в приборостроении. В нашем магазине можно приобрести виброгасящие муфты TECHNIX.

Спиральные муфты. Спиральные муфты цельнометаллические, как и жесткие муфты, но имеют отличие: в средней части они имеют тонкие поперечные пропилы. По этой причине спиральные муфты в определённых пределах могут изгибаться под нагрузкой, т.е. компенсировать небольшую несоосность (до 2-х градусов угловую и до 2 мм линейную). В тоже время они сохраняют жёсткость и прочность, чтобы передавать крутящий момент, но значительно (до 5-8 раз) уступают в этом жестким муфтам.

Сильфонные муфты. В этих муфтах полумуфты жестко (сваркой или развальцовкой) соединены с гибким гофрированным элементом — сильфоном, поэтому способны компенсировать небольшие отклонения от соосности. Жесткое соединение без зазора позволяет передавать крутящий момент мгновенно, без инерции, поэтому сильфонные муфты широко применяются в станкостроении для привода шариково-винтовых пар (станки с ЧПУ).

Зубчатые муфты. Это жёсткие муфты, состоящие из полумуфт с внешними зубчатыми венцами и полуобойм с внутренними зубчатыми венцами. Крутящий момент между полумуфтами передается с помощью болтов, стягивающих полуобоймы. Зубья имеют бочкообразную форму, венцы могут смещаться в осевом направлении. Все это позволяет компенсировать угловую (до 4-х градусов) и линейную (до 4 мм) несоосность валов. Компенсация сопровождается проскальзыванием зубьев, поэтому зубчатые муфты требуют смазки. Общемашиностроительное применение.

Муфты с металлическим пружинным элементом. Разборные жесткие муфты. Могут передавать большие крутящие моменты в условиях вибраций и небольшой несоосности валов. Полумуфты соединяются пружинным элементом оригинальной конструкции, который укладывается в прорези-пазы. За счет пружинящих свойств эти муфты способны гасить вибрации и нивелировать отклонения от соосности. При замене пружинного элемента производить повторную центровку полумуфт не требуется.

Торовые муфты для соединения валов. Это упругие муфты с торообразным элементом из резинокордного материала. Передают крутящий момент за счет сил трения между упругим элементом и сжимающих его стальными ступицами. Применяются там, где требуется высокая эластичность: невозможность центровки, работа с вибрациями. А это насосные установки, приводы строительно-дорожных машин, силовые приводы судов, вспомогательные приводы тепловозов и электровозов.

Цепные муфты. Эти муфты состоят из полумуфт-звездочек, передающих крутящий момент через охватывающую их единую роликовую цепь. Простая, малогабаритная конструкция. Так как между зубьями звездочек и цепью, а также между звеньями цепи всегда есть зазор, допускается небольшая несоосность валов. Это же является причиной износа звездочек, цепи, требует смазки и специального защитного кожуха. Общемашиностроительное применение, кроме реверсивных приводов с динамическими нагрузками.

Подбор соединительных муфт по каталогу

Компания Техноберинг предлагает качественные соединительные муфты производства Sati (Италия), SKF (Швеция) и TECHNIX. Вся продукция сертифицирована, соответствует ГОСТ РФ и стандартам ISO.

Для подбора муфты для соединения валов пользуйтесь интерактивной таблицей. Она простая, интуитивно понятная. Просто введите тип посадки на вал и диаметр вала согласно спецификации по вашей документации.

Приобретайте ответственные решения для производственных задач в компании с долголетней репутацией, широкой линейкой продукции и легкодоступным оперативным складом.

Опытные специалисты Техноберинга подскажут, быстро подберут и порекомендуют наиболее оптимальный вариант муфты для решения вашей производственной задачи.

Магазин Техноберинг — надёжный поставщик качественных соединительных муфт!

Центровка насосов центробежных и другие требования к ним

Центробежные насосы: ГОСТ 54806*2011

Если учесть, что и в быту и на производствах для перекачки воды применяют в основном насосное оборудование центробежного типа, то всеобщий интерес к нему вполне понятен. Технические требования к насосам предъявляются разные, и, соответственно, регламентируют их разные документы. ГОСТ «Центробежные насосы» под номером 54806-2011 представляет собой свод наиболее жёстких требований к насосам, относящимся к I классу.

Именно его мы возьмём за основу. Видео в этой статье, предложенное вашему вниманию для наглядности, покажет, как производится центровка наносов.

Краткий обзор стандарта

Всего существует три класса в классификации насосов. Наименее строгие требования предъявляются к агрегатам III класса, но это не значит, что допускается какая-то возможность снижения качества.

В основном ужесточения или послабления требований связаны с условиями, в которых оборудованию придётся работать. Некоторые сферы применения диктуют особые требования к безопасности эксплуатации.

  • Выбор насоса всегда основан на определённых критериях. Это надёжность, энергоэффективность, необходимые характеристики, а так же конкретные условия эксплуатации — не только рабочие, но и климатические.
  • Учитывая, что промышленное оборудование изготавливается в основном под проект, то многие решения, касающиеся требований к насосу, на заводе принимаются только после согласования с заказчиком.

Требования, представленные в ГОСТ «Насосы центробежные», обязательны для пользования проектировщиками и конструкторами, изготовителями и дилерами. Что касается потребителя, то он должен быть в полной мере информирован о конструктивных особенностях агрегата.

Требования к конструкции насосов

Стандарт, о котором идёт речь, регламентирует правила сборки насосов и основных узлов, их монтажа и техобслуживания. Требования распространяются на опорную раму и вспомогательный трубопровод, но не относятся к приводу.

Изготовление двигателей производится в соответствии с другими документами:

  • Так как производство насосов для промышленности — вещь практически индивидуальная, то нередко допускаются и альтернативные варианты исполнения. Даже если отклонения от данного стандарта и допускаются, то они должны быть согласованы с заказчиком.
  • Особое внимание в стандарте уделяется снижению давления на уплотнение вала и уравновешиванию нагрузок на его ось. Если давление выше 0,35 Мпа, то в одноступенчатых насосах, в тыльной части рабочего колеса, должны быть установлены уплотнительные кольца или специальная крыльчатка (импеллер). Это хорошо видно на фото внизу.

Насосы центробежные ГОСТ

  • В насосах горизонтальных многоступенчатых (см. Многоступенчатые центробежные насосы: особенности конструкций) давление уменьшается путём парной установки колёс либо по прямой, но с использованием уравновешивающего диска. Конструкции мощных насосов просчитывают так, чтобы радиус рабочего колеса мог гарантированно предотвратить максимально допустимые уровни вибрации и шума.
  • Механизм вертикального насоса должен оснащаться устройством, предупреждающим вращение вала в обратную сторону. К основным сборочным единицам относят корпуса агрегата и подшипника и крышку. Они должны быть выполнены так, чтобы точная ориентация при разборке и повторной сборке своими руками была обеспечена.
  • Для обеспечения надлежащего ресурса насоса изготовитель ориентируется на конкретные, указанные заказчиком условия его установки. Прежде всего, это место: снаружи под навесом или внутри здания; а если в помещении, то отапливаемое оно или нет.

Большое значение имеют такие нюансы, как: агрессивность среды (уровень запылённости); влажность воздуха; температурные показатели — как максимальные, так и минимальные. Данным условиям должны соответствовать сам насос, его узлы и примыкающая арматура.

Предупреждение вибрации

Успешная работа насоса возможна только в том случае, если все вращающиеся детали сбалансированы. Это касается не только вала и колеса, но и ротора двигателя.

  • Инструкция в данном стандарте устанавливает обязанность изготовителя произвести демонстрацию способности агрегата работать на постоянной подаче, не превышая вибрационного предела. Ведь цена промышленного насоса не маленькая, а доказать вину производителя в процессе эксплуатации практически невозможно.
  • После того, как агрегат установлен и внедрён в систему, ответственность за возникновение вибраций ложится на потребителя. Поэтому испытания проводятся не только на стенде завода, но и перед запуском на штатном месте, где насос будет эксплуатироваться. Наиболее важную роль при этом играет опорная рама или фундамент, на который устанавливают насос и двигатель.
  • Чаще всего они находятся на одной раме, если, конечно, это поверхностные насосы. У глубинных агрегатов насос может быть погружен в скважину, а двигатель находиться на поверхности и сообщаться с ним трансмиссионным валом. В любом случае, на плите, предназначенной для опоры механизма, должен быть предусмотрен поддон для сбора и отвода утечек жидкостей, установленный с уклоном 8,5 мм/1м в сторону стока.

Насос и двигатель на одной опорной плите

  • Все места стыковки деталей наноса, называемые монтажными приливами, должны быть обработаны механически так, чтобы при их соединении размеры зазоров не превышали 0,2 мм/1м стыка. Что касается приводных соединений, то в них должна быть предусмотрена возможность установки прокладок толщиной 1,5-3 мм.
  • Кстати, если двигатель изготавливается на том же предприятии что и насос, то производитель обязан укомплектовать агрегат прокладками из нержавеющей стали. При монтаже оборудования на штатное место и под насосом, и под приводом, должна быть установлена сварная крестовина, блокирующая раму от вертикального перемещения после замоноличивания цементным раствором.

Фундамент под промышленный насос

  • В заливаемых вариантах опорных плит предусмотрены специальные отверстия. Их расположение должно быть таким, чтобы обеспечивалась возможность качественного заполнения раствором пространства под рамой. Хотя, фундаментная рама может быть и незаливаемой. В этом случае она сама, а также болтовые соединения должны быть достаточно жёсткими, чтобы противостоять механическим нагрузкам и вибрации.
  • Если мощность двигателя насоса превышает 150 кВт, стандарт предусматривает обязательное выполнение центровки всех приводных элементов винтами. Это значительно облегчает горизонтальное регулирование пространственного положения агрегата. Вертикальное выравнивание выполняется винтами, расположенными по периметру рамы с вешней стороны.

Винтов должно быть минимум шесть для горизонтального насоса и четыре для вертикального. Они воспринимают нагрузку от веса оборудования и должны быть рассчитаны на допускаемый прогиб. Очень важно при этом, чтобы расстояние от рамы до оси вала было минимально возможным.

Подготовка к монтажу

Так как насос не является статичным механизмом, а оснащён вращающимся на высоких скоростях ротором, необходимо прилагать все усилия, чтобы нагрузки, предусмотренные производителем, не были превышены. Для этого должны соблюдаться определённые условия, предлагаемые изготовителем, но согласованные с заказчиком.

  • Одним из таких условий является предмонтажная центровка соединения насоса и привода. Её следует не просто выполнить, но и контролировать в течение всего периода эксплуатации. Далее мы расскажем более подробно, как это делается.
  • Вторым важным условием комфортной работы насоса является регулярная проверка соединений трубопровода. Это наиболее важно, когда выполняется частичный или полный демонтаж элементов системы.

Вертикальные насосы наиболее чувствительны к несоосности, чем горизонтальные. Поэтому для них стандарт устанавливает меньшие допустимые значения крутящих моментов на фланцах. Чрезмерные нагрузки на них приводят к усилению вибрации.

Центровка

Центровка выполняется при установке крупных центробежных, а также поршневых агрегатов. Бытовые насосы в этом не нуждаются, так как у них двигатель и насос заключены в одном корпусе и отцентрованы производителем.

  • Самая ответственная часть предмонтажной подготовки агрегата – это центровка по полумуфтам: насоса и редуктора, или редуктора и электродвигателя. Суть данного действия такова.

Центровка вала двигателя и центробежного насоса

  • Один из валов принимают за базовый, чаще всего это вал насоса. Его закрепляют на раме и с помощью штангенциркуля и щупа выверяют зазоры. Затем то же самое проделывают на полумуфте двигателя. При наличии отклонений его вал смещают так, чтобы он принял нужное положение.
  • Делают это путём установки подкладок или смещения самого двигателя. Затем снова проверяют ширину торцевых зазоров. Оси насоса и двигателя совпадут только в том случае, если зазоры на полумуфтах будут одинаковыми.
  • Кстати, центровать элементы агрегата необходимо не только перед первичным запуском, но и после проведения ремонта и технического обслуживания двигателя. Для этого его отсоединяют от насоса и разбирают.
  • При небольшом износе рабочих деталей их не меняют, а просто очищают и промывают керосином. Шейки валов шлифуют, набивают сальник и собирают вновь. После центровки оси вала двигателя и насоса никакой вибрации и шума, а также нагрева сальника и подшипников не должно быть.

Редуктор для центробежного насоса

  • При установке центробежных насосов, механики придерживаются таких правил: если насос идёт с завода в сборе, то его ротор центруют по валу двигателя, если же насос собирают на опорной раме, то вал ротора двигателя выверяют по нему.

В тех случаях, когда насос соединяется с двигателем через редуктор и промежуточный вал, сначала центруют редуктор и фиксируют его штифтами. Положение валов всех остальных частей агрегата ориентируют уже на него.