Рассчитать конденсатор компенсации реактивной мощности

Расчет необходимой мощности установки КРМ-0,4 (УКМ-58)

При выборе конденсаторной установки требуемая суммарная мощность конденсаторных батарей определяется, исходя из формулы

Здесь Р – потребляемая активная мощность;
S и S’ – полная мощность до и после компенсации;
QC – требуемая емкостная мощность;
QL и QL’ – индуктивная составляющая реактивной мощности до и после компенсации.

Значение (tg(ф1)-tg(ф2)) определяется, исходя из значений cos(ф1) и cos(ф2).
cos(ф1) – коэффициент мощности потребителя до установки компенсирующих устройств (действующий коэффициент мощности);
cos(ф2) – коэффициент мощности после установки компенсирующих устройств (желаемый или задаваемый предприятием энергоснабжения коэффициент мощности).

Таким образом, формулу можно записать в следующем виде:

где k – коэффициент, получаемый из таблицы в соответствии со значениями коэффициентов мощности cos(ф1) и cos(ф2).

Таблица определения реактивной мощности установки, необходимой для достижения заданного (желаемого) cos(ф).

Текущий (действующий)
cos (ф)
Требуемый (желаемый) cos (ф)
0.80 0.82 0.85 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Коэффициент K
0.30 2.43 2.48 2.56 2.64 2.70 2.75 2.82 2.89 2.98 3.18
0.32 2.21 2.26 2.34 2.42 2.48 2.53 2.60 2.67 2.76 2.96
0.34 2.02 2.07 2.15 2.23 2.28 2.34 2.41 2.48 2.56 2.77
0.36 1.84 1.89 1.97 2.05 2.10 2.17 2.23 2.30 2.39 2.59
0.38 1.68 1.73 1.81 1.89 1.95 2.01 2.07 2.14 2.23 2.43
0.40 1.54 1.59 1.67 1.75 1.81 1.87 1.93 2.00 2.09 2.29
0.42 1.41 1.46 1.54 1.62 1.68 1.73 1.80 1.87 1.96 2.16
0.44 1.29 1.34 1.42 1.50 1.56 1.61 1.68 1.75 1.84 2.04
0.46 1.18 1.23 1.31 1.39 1.45 1.50 1.57 1.64 1.73 1.93
0.48 1.08 1.13 1.21 1.29 1.34 1.40 1.47 1.54 1.62 1.83
0.50 0.98 1.03 1.11 1.19 1.25 1.31 1.37 1.45 1.63 1.73
0.52 0.89 0.94 1.02 1.10 1.16 1.22 1.28 1.35 1.44 1.64
0.54 0.81 0.86 0.94 1.02 1.07 1.13 1.20 1.27 1.36 1.56
0.56 0.73 0.78 0.86 0.94 1.00 1.05 1.12 1.19 1.28 1.48
0.58 0.65 0.70 0.78 0.86 0.92 0.98 1.04 1.11 1.20 1.40
0.60 0.58 0.63 0.71 0.79 0.85 0.91 0.97 1.04 1.13 1.33
0.61 0.55 0.60 0.68 0.76 0.81 0.87 0.94 1.01 1.10 1.30
0.62 0.52 0.57 0.65 0.73 0.78 0.84 0.91 0.99 1.06 1.27
0.63 0.48 0.53 0.61 0.69 0.75 0.81 0.87 0.94 1.03 1.23
0.64 0.45 0.50 0.58 0.66 0.72 0.77 0.84 0.91 1.00 1.20
0.65 0.42 0.47 0.55 0.63 0.68 0.74 0.81 0.88 0.97 1.17
0.66 0.39 0.44 0.52 0.60 0.65 0.71 0.78 0.85 0.94 1.14
0.67 0.36 0.41 0.49 0.57 0.63 0.68 0.75 0.82 0.90 1.11
0.68 0.33 0.38 0.46 0.54 0.59 0.65 0.72 0.79 0.88 1.08
0.69 0.30 0.35 0.43 0.51 0.56 0.62 0.69 0.76 0.85 1.05
0.70 0.27 0.32 0.40 0.48 0.54 0.59 0.66 0.73 0.82 1.02
0.71 0.24 0.29 0.37 0.45 0.51 0.57 0.63 0.70 0.79 0.99
0.72 0.21 0.26 0.34 0.42 0.48 0.54 0.60 0.67 0.76 0.96
0.73 0.19 0.24 0.32 0.40 0.45 0.51 0.58 0.65 0.73 0.94
0.74 0.16 0.21 0.29 0.37 0.42 0.48 0.55 0.62 0.71 0.91
0.75 0.13 0.18 0.26 0.34 0.40 0.46 0.52 0.59 0.68 0.88
0.76 0.11 0.16 0.24 0.32 0.37 0.43 0.50 0.57 0.65 0.86
0.77 0.08 0.13 0.21 0.29 0.34 0.40 0.47 0.54 0.63 0.83
0.78 0.05 0.10 0.18 0.26 0.32 0.38 0.44 0.51 0.60 0.80
0.79 0.03 0.08 0.16 0.24 0.29 0.35 0.42 0.49 0.57 0.78
0.80 0.05 0.13 0.21 0.27 0.32 0.39 0.46 0.55 0.75
0.81 0.10 0.18 0.24 0.30 0.36 0.43 0.52 0.72
0.82 0.08 0.16 0.21 0.27 0.34 0.41 0.49 0.70
0.83 0.05 0.13 0.19 0.25 0.31 0.38 0.47 0.67
0.84 0.03 0.11 0.16 0.22 0.29 0.36 0.44 0.65
0.85 0.08 0.14 0.19 0.26 0.33 0.42 0.62
0.86 0.05 0.11 0.17 0.23 0.30 0.39 0.59
0.87 0.08 0.14 0.21 0.28 0.36 0.57
0.88 0.06 0.11 0.18 0.25 0.34 0.54
0.89 0.03 0.09 0.15 0.22 0.31 0.51
0.90 0.06 0.12 0.19 0.28 0.48
0.91 0.03 0.10 0.17 0.25 0.46
0.92 0.07 0.14 0.22 0.43
0.93 0.04 0.11 0.19 0.40
0.94 0.07 0.16 0.36
0.95 0.13 0.33

Пример:
Активная мощность 300 кВт.
Действующий cos(ф) = 0,7.
Требуемый (желаемый) cos(ф) = 0,96.
Определяем из таблицы значение коэффициента k = 0,73.
Следовательно, требуемая мощность конденсаторной установки КРМ-0,4 (УКМ-58) Qc=0,73 x 300 = 219кВАр.
Следует отметить, что обычно не рекомендуется компенсировать реактивную мощность полностью (до cos(ф)=1), так как при этом возможна перекомпенсация (за счет переменной величины активной мощности нагрузки и других случайных факторов). Обычно стараются достигнуть значения cos(ф) =0,90…0,95.

Упростить расчет Вам поможет специальный Калькулятор для расчета мощности.

Для расчета необходимой мощности установки КРМ-0,4 заполните, пожалуйста, поля, приведенные ниже, и нажмите кнопку «Рассчитать».

Дополнительная информация, консультации, цены

Мы предложим эффективное и экономичное решение. Воспользуйтесь опытом наших технических специалистов — заполните форму справа, или позвоните.

Расчет, производство и поставка конденсаторных установок. Установки компенсации реактивной мощности, в наличии и под заказ.

Рассчитать конденсатор компенсации реактивной мощности

  • О заводе
  • Каталог
    • Установки компенсации реактивной мощности
      • Регулируемые конденсаторные установки КРМ (АУКРМ) — 0,4 кВ
      • Нерегулируемые конденсаторные установки КРМ (УКРМ ) — 0,4 кВ
      • Тиристорные конденсаторные установки КРМТ (АУКРМТ) — 0,4 кВ
      • Комплектующие для конденсаторных установок
    • Конденсаторы для повышения коэффициента мощности
      • Серия PSPE1 (однофазные конденсаторы)
      • Серия PSPE3 (трехфазные конденсаторы)
    • Конденсаторы для силовой электроники
      • Конденсаторы серии AFC3
      • Конденсаторы серии FA2
      • Конденсаторы серии FA3
      • Конденсаторы серии FB3
      • Конденсаторы серии FO1
      • Конденсаторы серии PO1
      • Конденсаторы серии SPC
    • Компенсирующие конденсаторы для светотехники
      • Серия K78-99 (пластиковый корпус)
      • Серия К78-99 A (алюминиевый корпус)
      • Серия К78-99 AP2 (взрывозащищенный)
    • Конденсаторы для асинхронных двигателей
      • Серия К78-98 (пластиковый корпус)
      • Серия К78-98 A (алюминиевый корпус)
      • Серия К78-98 АР2 (взрывозащищенный)
    • Сырьё и комплектующие
  • Пресс-центр
  • Покупателю
  • Новости
  • Партнеры
  • Библиотека
  • Контакты
  • Контакты
  • Покупателю
  • Пресс-центр
  • О заводе
  • Охрана труда
  • Установки компенсации реактивной мощности
    • Регулируемые конденсаторные установки КРМ (АУКРМ) — 0,4 кВ
    • Нерегулируемые конденсаторные установки КРМ (УКРМ ) — 0,4 кВ
    • Тиристорные конденсаторные установки КРМТ (АУКРМТ) — 0,4 кВ
    • Комплектующие для конденсаторных установок
  • Конденсаторы для повышения коэффициента мощности
    • Серия PSPE1 (однофазные конденсаторы)
    • Серия PSPE3 (трехфазные конденсаторы)
  • Конденсаторы для силовой электроники
    • Конденсаторы серии AFC3
    • Конденсаторы серии FA2
    • Конденсаторы серии FA3
    • Конденсаторы серии FB3
    • Конденсаторы серии FO1
    • Конденсаторы серии PO1
    • Конденсаторы серии SPC
  • Компенсирующие конденсаторы для светотехники
    • Серия K78-99 (пластиковый корпус)
    • Серия К78-99 A (алюминиевый корпус)
    • Серия К78-99 AP2 (взрывозащищенный)
  • Конденсаторы для асинхронных двигателей
    • Серия К78-98 (пластиковый корпус)
    • Серия К78-98 A (алюминиевый корпус)
    • Серия К78-98 АР2 (взрывозащищенный)
  • Сырьё и комплектующие

Конденсаторы для силовой электроники

Конденсаторы для повышения коэффициента мощности

Установки компенсации реактивной мощности 0.4кВ

Моторные и светотехнические конденсаторы

Теория расчета реактивной мощности КРМ

Q = Pa · ( tgφ1-tgφ2)- реактивная мощность установки КРМ (кВАр)

Pa -активная мощность (кВт)

K- коэффициент из таблицы

S -полная мощность(кВА)

cos φ — коэффициент мощности

tg(φ12) согласуются со значениями cos φ в таблице.

Таблица определения реактивной мощности конденсаторной установки — КРМ (кВАр), необходимой для достижения заданного cos(φ).

Текущий (действующий) Требуемый (достижимый) cos (φ)
tan (φ) cos (φ) 0.80 0.82 0.85 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Коэффициент K
3.18 0.30 2.43 2.48 2.56 2.64 2.70 2.75 2.82 2.89 2.98 3.18
2.96 0.32 2.21 2.26 2.34 2.42 2.48 2.53 2.60 2.67 2.76 2.96
2.77 0.34 2.02 2.07 2.15 2.23 2.28 2.34 2.41 2.48 2.56 2.77
2.59 0.36 1.84 1.89 1.97 2.05 2.10 2.17 2.23 2.30 2.39 2.59
2.43 0.38 1.68 1.73 1.81 1.89 1.95 2.01 2.07 2.14 2.23 2.43
2.29 0.40 1.54 1.59 1.67 1.75 1.81 1.87 1.93 2.00 2.09 2.29
2.16 0.42 1.41 1.46 1.54 1.62 1.68 1.73 1.80 1.87 1.96 2.16
2.04 0.44 1.29 1.34 1.42 1.50 1.56 1.61 1.68 1.75 1.84 2.04
1.93 0.46 1.18 1.23 1.31 1.39 1.45 1.50 1.57 1.64 1.73 1.93
1.83 0.48 1.08 1.13 1.21 1.29 1.34 1.40 1.47 1.54 1.62 1.83
1.73 0.50 0.98 1.03 1.11 1.19 1.25 1.31 1.37 1.45 1.63 1.73
1.64 0.52 0.89 0.94 1.02 1.10 1.16 1.22 1.28 1.35 1.44 1.64
1.56 0.54 0.81 0.86 0.94 1.02 1.07 1.13 1.20 1.27 1.36 1.56
1.48 0.56 0.73 0.78 0.86 0.94 1.00 1.05 1.12 1.19 1.28 1.48
1.40 0.58 0.65 0.70 0.78 0.86 0.92 0.98 1.04 1.11 1.20 1.40
1.33 0.60 0.58 0.63 0.71 0.79 0.85 0.91 0.97 1.04 1.13 1.33
1.30 0.61 0.55 0.60 0.68 0.76 0.81 0.87 0.94 1.01 1.10 1.30
1.27 0.62 0.52 0.57 0.65 0.73 0.78 0.84 0.91 0.99 1.06 1.27
1.23 0.63 0.48 0.53 0.61 0.69 0.75 0.81 0.87 0.94 1.03 1.23
1.20 0.64 0.45 0.50 0.58 0.66 0.72 0.77 0.84 0.91 1.00 1.20
1.17 0.65 0.42 0.47 0.55 0.63 0.68 0.74 0.81 0.88 0.97 1.17
1.14 0.66 0.39 0.44 0.52 0.60 0.65 0.71 0.78 0.85 0.94 1.14
1.11 0.67 0.36 0.41 0.49 0.57 0.63 0.68 0.75 0.82 0.90 1.11
1.08 0.68 0.33 0.38 0.46 0.54 0.59 0.65 0.72 0.79 0.88 1.08
1.05 0.69 0.30 0.35 0.43 0.51 0.56 0.62 0.69 0.76 0.85 1.05
1.02 0.70 0.27 0.32 0.40 0.48 0.54 0.59 0.66 0.73 0.82 1.02
0.99 0.71 0.24 0.29 0.37 0.45 0.51 0.57 0.63 0.70 0.79 0.99
0.96 0.72 0.21 0.26 0.34 0.42 0.48 0.54 0.60 0.67 0.76 0.96
0.94 0.73 0.19 0.24 0.32 0.40 0.45 0.51 0.58 0.65 0.73 0.94
0.91 0.74 0.16 0.21 0.29 0.37 0.42 0.48 0.55 0.62 0.71 0.91
0.88 0.75 0.13 0.18 0.26 0.34 0.40 0.46 0.52 0.59 0.68 0.88
0.86 0.76 0.11 0.16 0.24 0.32 0.37 0.43 0.50 0.57 0.65 0.86
0.83 0.77 0.08 0.13 0.21 0.29 0.34 0.40 0.47 0.54 0.63 0.83
0.80 0.78 0.05 0.10 0.18 0.26 0.32 0.38 0.44 0.51 0.60 0.80
0.78 0.79 0.03 0.08 0.16 0.24 0.29 0.35 0.42 0.49 0.57 0.78
0.75 0.80 0.05 0.13 0.21 0.27 0.32 0.39 0.46 0.55 0.75
0.72 0.81 0.10 0.18 0.24 0.30 0.36 0.43 0.52 0.72
0.70 0.82 0.08 0.16 0.21 0.27 0.34 0.41 0.49 0.70
0.67 0.83 0.05 0.13 0.19 0.25 0.31 0.38 0.47 0.67
0.65 0.84 0.03 0.11 0.16 0.22 0.29 0.36 0.44 0.65
0.62 0.85 0.08 0.14 0.19 0.26 0.33 0.42 0.62
0.59 0.86 0.05 0.11 0.17 0.23 0.30 0.39 0.59
0.57 0.87 0.08 0.14 0.21 0.28 0.36 0.57
0.54 0.88 0.06 0.11 0.18 0.25 0.34 0.54
0.51 0.89 0.03 0.09 0.15 0.22 0.31 0.51
0.48 0.90 0.06 0.12 0.19 0.28 0.48
0.46 0.91 0.03 0.10 0.17 0.25 0.46
0.43 0.92 0.07 0.14 0.22 0.43
0.40 0.93 0.04 0.11 0.19 0.40
0.36 0.94 0.07 0.16 0.36
0.33 0.95 0.13 0.33

Пример:

Активная мощность двигателя : P=100 кВт

Действующий cos φ = 0.61

Требуемый cos φ = 0.96

Коэффициент K из таблицы = 1.01

Необходимая реактивная мощности КРМ (кВАр):

Реактивная мощность

Реактивная мощность обусловлена способностью реактивных элементов накапливать и отдавать электрическую или магнитную энергию.

Eмкостная нагрузка в цепи переменного тока за время половины периода накапливает заряд в обкладках конденсаторов и отдаёт его обратно в источник.
Индуктивная нагрузка накапливает магнитную энергию в катушках и возвращает её в источник питания в виде электрической энергии.

Напряжение на выводах реактивного элемента будет достигать максимального значения во время смены направления тока, следовательно, расхождение во времени между напряжением и током в пределах элемента составит четверть периода (сдвиг фаз 90°).

Угол сдвига фаз φ в цепи нагрузки определяется соотношением активного и реактивного сопротивлений нагрузки.

Реактивная мощность характеризует потери, созданные реактивными элементами в цепи переменного тока, и выражается формулой Q = UIsinφ.

Природу потерь в цепи с реактивными элементами можно рассмотреть с помощью графиков на рисунках.


φ = 90° sin90° = 1 cos90° = 0

При отсутствии активной составляющей в нагрузке, сдвиг фаз между напряжением и током составит 90°.
В начале периода, когда напряжение максимально – ток будет равен нулю, следовательно, мгновенное значение мощности UI в это время будет равно нулю.
В течении первой четверти периода, мощность можно видеть на графике, как произведение UI, которое станет равным нулю при максимуме тока и нулевом значении напряжения.

В следующую четверть периода на графике UI принимает отрицательное значение, следовательно, мощность возвращается обратно в источник питания. То же самое произойдёт и в отрицательном полупериоде тока. В результате средняя (активная) потребляемая мощность P avg за период будет равна нулю.

В таком случае:
Реактивная мощность Q = UIsin90° = UI
Потребляемая мощность P = UIcos90° = 0
Полная мощность S = UI = √(P² + Q²) будет равна реактивной мощности
Коэффициент мощности P/S = 0

При отсутствии реактивных элементов и сдвига фаз в нагрузках, мгновенная мощность в полупериоде Umax*Imax будет максимальной, и в следующем полупериоде произведение отрицательного напряжения с отрицательным током дадут положительный результат – полезную мощность в нагрузке.


φ = 0° sin90° = 0 cos90° = 1

В этом случае:
Реактивная мощность Q = UIsin0 = 0
Потребляемая мощность P = UIcos0 = UI
Полная мощность S = UI = √(P² + Q²) будет равна потребляемой мощности
Коэффициент мощности P/S = 1

Ниже представлен рисунок графиков со сдвигом фаз 45°, для случая равенства активного и реактивного сопротивлений в нагрузке.


φ = 45° sin45° = cos45° = √2/2 ≈ 0.71

Здесь:
Реактивная мощность Q = UIsin45° = 0.71UI
Потребляемая мощность P = UIcos45° = 0.71UI
Полная мощность S = √(P² + Q²) = UI
Коэффициент мощности P/S = 0.71

В примерах рассмотрены случаи с индуктивной нагрузкой, когда ток отстаёт от напряжения (положительный сдвиг фаз).
В случаях с ёмкостной нагрузкой, процессы и расчёты аналогичны, только напряжение будет отставать от тока (отрицательный сдвиг фаз).
Угол сдвига фаз в сети определится соотношением активного и реактивного сопротивлений нагрузок в параллельном соединении следующим образом:

XL и XС соответственно индуктивное и ёмкостное сопротивление нагрузок.
Преобладание индуктивных нагрузок будет уменьшать общее индуктивное сопротивление.
Из выражения видно, что угол в этом случае будет принимать положительный знак, а преобладание ёмкостных нагрузок будет уменьшать ёмкостное сопротивление и вызывать отрицательный сдвиг. При равенстве индуктивного и ёмкостного сопротивлений, угол сдвига будет равен нулю.
В бытовых и производственных потребителях индуктивное сопротивление обычно существенно преобладает над ёмкостным.

Подробнее о вычислениях общего угла сдвига φ для вариантов соединений активного и реактивного сопротивлений в нагрузках можно ознакомиться на страничке электрический импеданс.

Компенсация реактивной мощности

Огромное количество индуктивных нагрузок в сети суммарно обладает колоссальной реактивной мощностью, которая возвращается в генераторы и не совершает никакой полезной работы, расходуя энергию на нагрев кабелей и проводов ЛЭП, перегружает трансформаторы, снижая их КПД, тем самым уменьшая пропускную способность активных токов.

Если параллельно индуктивной нагрузке подключить конденсатор, фаза тока в цепи источника будет смещаться в противоположную сторону, компенсируя угол, созданный индуктивностью нагрузки. При определённом соотношении номиналов, можно добиться отсутствия сдвига фаз, следовательно, и отсутствия реактивных токов в цепи источника питания.
Ёмкость конденсатора определяется реактивным (индуктивным) сопротивлением нагрузки, которое необходимо компенсировать:
C = 1/(2πƒX),
X = U²/Q — реактивное сопротивление нагрузки,
Q — реактивная мощность нагрузки.

Компенсация реактивных токов в сети позволяет значительно уменьшить потери на активном сопротивлении проводов ЛЭП, кабелей и обмоток трансформаторов питающей сети.
В целях компенсации реактивной мощности на производственных предприятиях, где основными потребителями энергии являются асинхронные электродвигатели, индукционные печи, люминесцентное освещение, которые обладают индуктивным сопротивлением, часто применяют специальные конденсаторные установки, способные в ручном или автоматическом режиме поддерживать нулевой сдвиг фаз, тем самым минимизировать реактивные потери.

В масштабах энергосистемы компенсация происходит непосредственно на электростанциях путём контроля сдвига фаз и обеспечения соответствующего тока подмагничивания роторных обмоток синхронных генераторов станций.

Компенсация реактивной мощности — одна из составляющих комплекса мер по Коррекции Коэффициента Мощности (ККМ) в электросети (Power Factor Correction — PFC в англоязычной литературе). Применяется в целях уменьшения потерь электроэнергии, как на паразитную реактивную, так и нелинейную составляющую искажений тока в энергосистеме. Более подробно с материалом о ККМ (PFC) можно ознакомиться на странице — коэффициент мощности.

Онлайн-калькулятор расчёта реактивной мощности и её компенсации.

Достаточно вписать значения и кликнуть мышкой в таблице.

Расчет компенсирующего устройства

Типичным примером компенсации реактивной мощности, который не так часто рассматривается, но однозначно важен для практики, является компенсация реактивной мощности трансформатора, используемого для распределения электроэнергии. По сути, задача заключается в компенсации реактивной мощности, потребляемой ненагруженным трансформатором (что характерно для ночного времени). Расчет необходимой мощности компенсирующего устройства несложен и основан на выражении:

I% – ток намагничивания трансформатора;

AN – полная мощность трансформатора [кВА];

При отсутствии указанных параметров удобно воспользоваться следующей таблицей.

Полная мощность трансформатора (кВА) Масляный трансформатор (квар) Сухой трансформатор (квар)
10 1 1,5
20 2 1,7
50 4 2
75 5 2,5
100 5 2,5
160 7 4
200 7,5 5
250 8 7,5
315 10 7,5
400 12,5 8
500 15 10
630 17,5 12,5
800 20 15
1000 25 17,5
1250 30 20
1600 35 22
2000 40 25
2500 50 35
3150 60 50

Рассмотрим еще один пример коррекции коэффициента мощности и расчета компенсирующего устройства – индивидуальную компенсацию трехфазных асинхронных двигателей. Наиболее вероятные значения реактивных мощностей приведены в таблице:

Мощность двигателя Требуемая реактивная мощность (квар)
л.с. кВт 3000 об/мин 1500 об/мин 1000 об/мин 750 об/мин 500 об/мин
0,4 0,55 0,5 0,5
1 0,73 0,5 0,5 0,6 0,6
2 1,47 0,8 0,8 1 1
3 2,21 1 1 1,2 1,6
5 3,66 1,6 1,6 2 2,5
6 5,15 2 2 2,5 3
10 7,36 3 3 4 4 5
15 11 4 5 5 6 6
30 22,1 10 10 10 12 15
50 36,8 15 20 20 25 25
100 73,6 25 30 30 30 40
150 110 30 40 40 50 60
200 147 40 50 50 60 70
250 184 50 60 60 70 80

Будьте осторожны: при индивидуальной компенсации реактивной мощности электрических машин и прямом подключении конденсатора к зажимам машины емкость конденсатора не должна быть слишком большой. Конденсатор, включенный в параллель с машиной, может выступать в качестве «источника питания» для двигателя, что приводит к сильным перенапряжениям (явление самовозбуждения). Для машин с фазным ротором емкость конденсатора следует увеличить на 5%.

Коррекция коэффициента мощности: технические аспекты

Недавнее упразднение государственного регулирования рынка электроснабжения и появление многочисленных электроснабжающих компаний привели к появлению множества способов тарификации, во многих из которых коэффициент мощности не тарифицируется явно.

Однако конечная стоимость электроэнергии стабильно растет, и оптимизация коэффициента мощности становится все более и более оправданной.

В большинстве случаев установка оборудования для улучшения коэффициента мощности окупается за несколько месяцев.

Установка конденсаторной батареи дает следующие преимущества:

  • уменьшение потерь в сети и трансформаторах за счет уменьшения протекающего тока;
  • уменьшение падения напряжения в линиях;
  • оптимизация типоразмеров оборудования распредсистемы.

Ток I, текущий в системе, определяется формулой:

P – активная мощность;

V – номинальное напряжение.

По мере увеличения cos ? ток, необходимый для получения одной и той же активной мощности, снижается. Как следствие, снижаются потери в сети и необходимая мощность трансформаторов. Как следствие, появляется возможность сэкономить на оборудовании за счет снижения необходимой мощности и типоразмеров.

Правильный выбор мощностей и типоразмеров оказывает влияние на падение напряжения в линиях. Это легко понять из следующей формулы:

P – активная мощность в сети (кВт);

Q – реактивная мощность в сети (квар);

R – активное сопротивление кабеля, а X – его индуктивное сопротивление (R © 2021 «Хомов электро»

Расчет реактивной мощности УКМ (расчет компенсации реактивной мощности)

Расчет реактивной мощности необходимой для конденсаторной установки осуществляется по формуле:

Qc = P x (tg(φ1)-tg(φ2))

Где:
Р – потребляемая активная мощность;
S и S’ – полная мощность до и после компенсации;
QC – требуемая емкостная мощность;
QL и QL’ – индуктивная составляющая реактивной мощности до и после компенсации.

Таблица: расчет реактивной мощности конденсаторной установки (кВАр), необходимой для достижения заданного cos(φ).

Для удобства расчета реактивной мощности УКМ, обратитесь в таблицу

Текущий (действующий) Требуемый (достижимый) cos (φ)
tan (φ) cos (φ) 0.80 0.82 0.85 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Коэффициент K
3.18 0.30 2.43 2.48 2.56 2.64 2.70 2.75 2.82 2.89 2.98 3.18
2.96 0.32 2.21 2.26 2.34 2.42 2.48 2.53 2.60 2.67 2.76 2.96
2.77 0.34 2.02 2.07 2.15 2.23 2.28 2.34 2.41 2.48 2.56 2.77
2.59 0.36 1.84 1.89 1.97 2.05 2.10 2.17 2.23 2.30 2.39 2.59
2.43 0.38 1.68 1.73 1.81 1.89 1.95 2.01 2.07 2.14 2.23 2.43
2.29 0.40 1.54 1.59 1.67 1.75 1.81 1.87 1.93 2.00 2.09 2.29
2.16 0.42 1.41 1.46 1.54 1.62 1.68 1.73 1.80 1.87 1.96 2.16
2.04 0.44 1.29 1.34 1.42 1.50 1.56 1.61 1.68 1.75 1.84 2.04
1.93 0.46 1.18 1.23 1.31 1.39 1.45 1.50 1.57 1.64 1.73 1.93
1.83 0.48 1.08 1.13 1.21 1.29 1.34 1.40 1.47 1.54 1.62 1.83
1.73 0.50 0.98 1.03 1.11 1.19 1.25 1.31 1.37 1.45 1.63 1.73
1.64 0.52 0.89 0.94 1.02 1.10 1.16 1.22 1.28 1.35 1.44 1.64
1.56 0.54 0.81 0.86 0.94 1.02 1.07 1.13 1.20 1.27 1.36 1.56
1.48 0.56 0.73 0.78 0.86 0.94 1.00 1.05 1.12 1.19 1.28 1.48
1.40 0.58 0.65 0.70 0.78 0.86 0.92 0.98 1.04 1.11 1.20 1.40
1.33 0.60 0.58 0.63 0.71 0.79 0.85 0.91 0.97 1.04 1.13 1.33
1.30 0.61 0.55 0.60 0.68 0.76 0.81 0.87 0.94 1.01 1.10 1.30
1.27 0.62 0.52 0.57 0.65 0.73 0.78 0.84 0.91 0.99 1.06 1.27
1.23 0.63 0.48 0.53 0.61 0.69 0.75 0.81 0.87 0.94 1.03 1.23
1.20 0.64 0.45 0.50 0.58 0.66 0.72 0.77 0.84 0.91 1.00 1.20
1.17 0.65 0.42 0.47 0.55 0.63 0.68 0.74 0.81 0.88 0.97 1.17
1.14 0.66 0.39 0.44 0.52 0.60 0.65 0.71 0.78 0.85 0.94 1.14
1.11 0.67 0.36 0.41 0.49 0.57 0.63 0.68 0.75 0.82 0.90 1.11
1.08 0.68 0.33 0.38 0.46 0.54 0.59 0.65 0.72 0.79 0.88 1.08
1.05 0.69 0.30 0.35 0.43 0.51 0.56 0.62 0.69 0.76 0.85 1.05
1.02 0.70 0.27 0.32 0.40 0.48 0.54 0.59 0.66 0.73 0.82 1.02
0.99 0.71 0.24 0.29 0.37 0.45 0.51 0.57 0.63 0.70 0.79 0.99
0.96 0.72 0.21 0.26 0.34 0.42 0.48 0.54 0.60 0.67 0.76 0.96
0.94 0.73 0.19 0.24 0.32 0.40 0.45 0.51 0.58 0.65 0.73 0.94
0.91 0.74 0.16 0.21 0.29 0.37 0.42 0.48 0.55 0.62 0.71 0.91
0.88 0.75 0.13 0.18 0.26 0.34 0.40 0.46 0.52 0.59 0.68 0.88
0.86 0.76 0.11 0.16 0.24 0.32 0.37 0.43 0.50 0.57 0.65 0.86
0.83 0.77 0.08 0.13 0.21 0.29 0.34 0.40 0.47 0.54 0.63 0.83
0.80 0.78 0.05 0.10 0.18 0.26 0.32 0.38 0.44 0.51 0.60 0.80
0.78 0.79 0.03 0.08 0.16 0.24 0.29 0.35 0.42 0.49 0.57 0.78
0.75 0.80 0.05 0.13 0.21 0.27 0.32 0.39 0.46 0.55 0.75
0.72 0.81 0.10 0.18 0.24 0.30 0.36 0.43 0.52 0.72
0.70 0.82 0.08 0.16 0.21 0.27 0.34 0.41 0.49 0.70
0.67 0.83 0.05 0.13 0.19 0.25 0.31 0.38 0.47 0.67
0.65 0.84 0.03 0.11 0.16 0.22 0.29 0.36 0.44 0.65
0.62 0.85 0.08 0.14 0.19 0.26 0.33 0.42 0.62
0.59 0.86 0.05 0.11 0.17 0.23 0.30 0.39 0.59
0.57 0.87 0.08 0.14 0.21 0.28 0.36 0.57
0.54 0.88 0.06 0.11 0.18 0.25 0.34 0.54
0.51 0.89 0.03 0.09 0.15 0.22 0.31 0.51
0.48 0.90 0.06 0.12 0.19 0.28 0.48
0.46 0.91 0.03 0.10 0.17 0.25 0.46
0.43 0.92 0.07 0.14 0.22 0.43
0.40 0.93 0.04 0.11 0.19 0.40
0.36 0.94 0.07 0.16 0.36
0.33 0.95 0.13 0.33

Пример расчета мощности конденсаторной установки:

Активная мощность двигателя- 110 кВт
Действующийcos φ– 0,63
Требуемыйcos φ– 0,98
КоэффициентK из таблицы= 1,03

Сам расчет реактивной мощности:
Необходимая реактивная мощности КРМ(кВАр)
Q = 110 • 1,03 = 113,3 кВАр

Расчет компенсации реактивной мощности в электрических сетях 0.4 кВ

Анонс: Электрические сети 0.4 кВ и подстанции 6 (10) кВ/0.4 кВ в расчетах компенсации реактивной мощности. Расчет компенсации реактивной мощности в электрических сетях 0.4 кВ. Как посчитать мощность установки для электрической сети 0.4 кВ.

Все электрические сети 0.4 кВ объектов по факту границы балансовой принадлежности, как правило, определяемой наличием или отсутствием собственных нагрузок 6/10 кВ, можно условно разделить на включающие подстанции 6 (10) кВ/0.4 кВ и присоединенные по стороне низшего напряжения ТП, что обуславливает выбор способа, методику расчета компенсации реактивной мощности и выбор установок коррекции коэффициента мощности. Так, для сетей с:

  • подстанциями 6 (10) кВ/0.4 кВ при малом объеме нелинейных нагрузок может быть целесообразной компенсация по стороне высшего напряжения;
  • нагрузками 6/10 кВ необходимо учитывать, что для этих нагрузок реактивная мощность должна передаваться из сети 6 (10) кВ, т.е. при интеграции устройств коррекции коэффициента мощности по стороне низшего напряжения ТП 6/10 кВ нужно задействовать способ индивидуальной или групповой компенсации.

Расчет компенсации реактивной мощности в электрических сетях 0.4 кВ

При расчетах компенсации реактивной мощности в электрических сетях 0.4 кВ нужно учитывать, что:

  • реальная мощность, генерируемая установкой компенсации на базе конденсаторных батарей, зависит от номинального напряжения сети Uн и напряжения в точке присоединения установки Uвх — Qф = (Uн/Uвх)²*Qпасп, где Qпасп — паспортная номинальная мощность установки. Для сети 0.4 кВ Uн = Uвх – 1, для сетей 6/10 кВ Uн/Uвх = 0.95;
  • при наличии в электрической сети объекта синхронных двигателей и/или протяженных воздушных линий допустимую расчетную мощность генерации установкой КРМ, УКРМИ, УКМ нужно уменьшить при интеграции по стороне:
    — напряжения 0.4 кВ на Qсд – мощность, генерируемую синхронными двигателями в сети 0.4 кВ (Qсд = α*Qн, где α – паспортное (или справочное) предельное значение перегрузки двигателя по реактивной мощности, Qн – номинальная реактивная мощность);
    — напряжения 6/10 кВ на (0.7*Qсд + Qл), где Qл – реактивная мощность, генерируемая воздушной (или кабельной) линией, которая равна U²*Qу*L (U – номинальное сетевое напряжение, Qу – удельная мощность 1 км кабельной/воздушной линии, L – длина линии);
  • коррекция коэффициента мощности интеграцией установок КРМ, УКРМ, УКМ и пр. не выполняется в сети 0.4 кВ при расчетной мощности установки Таблица. Таблица. Зависимость Кс от Ки.
    Ки 0,4 0,5 0,6 0,7 0,8 0,9
    Кс 0,5 0,6 0,65-0,70 0,75-0,80 0,85-0,90 0,92-0,95

Как посчитать баланс мощностей между сетями 0.4 кВ и 6 (10) кВ.

Расчетные значения активной Рр и реактивной Qр мощности определяются, как Рр = Рмакс + ΔРт и Qр = Qмакс + ΔQт, где ΔРт и ΔQт потери мощности в трансформаторах по паспортным данным или приближенно по формулам ΔРт = 0.02*Sр и ΔQт = 0.1*Sр, где полная расчетная мощность Sр = √(P²+Q²)

Устанавливают заданные по ТУ или расчетные входные реактивные мощности QЭ1 и QЭ2, которые будут переданы из сети электросетевой компании в сеть объекта в режимах наибольшей и наименьшей активных нагрузок:

QЭ1 принимается по меньшему значению, определяемому из формул QЭ1 = Qр – 0.7*Qсд и QЭ1 = α*Рр, где Qсд – реактивная мощность, генерируемая синхронными двигателями (см. выше или при отсутствии синхронных двигателей в сети Qсд = 0), α – расчетный коэффициент из таблицы ниже

Таблица. Расчетные коэффициенты α для энергосистем разных регионов.

Энергетические системы по регионкам Значение коэффициента α для шин 6-20 кВ при высшем напряжении
35 кВ 110-150 кВ 200-330 кB
Северо — Запада, Центра, Средней Волги, Юга, Казахстана 0,23 0,28 0,37
Средней Азии 0,30 0,35 0,47
Сибири 0,24 0,29 0,40
Урала 0,27 0,31 0,42
Северного Кавказа, Закавказья 0,22 0,26 0,34
Востока 0,20 0,35 0,32

QЭ2 устанавливается по большему предельному значению из формул QЭ2 = Qмин – (Qр — QЭ1) и QЭ2 = Qмин + Qк, где Qк – реактивная мощность, генерируемая эксплуатируемыми установками при их наличии (при отсутствии Qк = 0 и QЭ2 = Qмин).

Как посчитать число и мощность трансформаторов.

Определяют удельную плотность нагрузки трансформаторов по расчетной полной мощности Sр и площади объекта F, а именно σ = Sр/F

Устанавливают пороговые значения номинальной мощности трансформаторов Sнт по удельной плотности нагрузки с учетом того, что:

  • при σ ˂ 0.2 кВА/м² целесообразны трансформаторы мощностью до 1000 кВА;
  • при σ ˂ 0.2-0.3 кВА/м² целесообразны трансформаторы мощностью 1600 кВА;
  • при σ > 0.3 кВА/м² целесообразны трансформаторы мощностью 1600 кВА или 2500 кВА.

Таблица. Рекомендуемая номинальная мощность трансформатора при различной удельной плотности нагрузки.

Удельная плотность нагрузки σ кВА 0,05 0,08-0,14 0,15-0,2 0,21-0,3 0,3-0,35
Номинальная мощность Sнт кВА 400 630 1000 1600 2500

Находят число трансформаторов (с округлением в сторону большего целого значения) Nт = Рмакс/(Кз*Sнт), где Кз – коэффициент загрузки трансформатора, который принимают равным:

  • Кз = 0.65-0.7 при преобладании нагрузок I категории для двухтрансформаторной подстанции;
  • Кз = 0.7-0.8 при преобладании нагрузок II категории для однотрансформаторных ТП и взаимном резервировании на стороне низшего напряжения;
  • Кз = 0.9-0.95 при нагрузках II категории и наличии складского резерва, а также при преобладании нагрузок III категории.

Как посчитать мощность установки для компенсации реактивной мощности

Общая (максимальная) реактивная мощность, доступная для компенсации, рассчитывается по формуле: Qку = 1.1*Qр — QЭ1,

Возможность применения и мощность нерегулируемых конденсаторных установок определяют по формуле Qку.н = Qмин – QЭ2 (при QЭ2 = Qмин нерегулируемые установки не применяют).

Определяют реактивную мощность для высоковольтной нагрузки Qв, которая передается из сети 6/10 кВ и не должна компенсироваться, по формуле Qэн = QЭ1 – Qв, где Qв = Qвн + ΔQт (Qвн – суммарная реактивная мощность высоковольтной нагрузки, ΔQт – потери в трансформаторе и линии).

Находят реактивную мощность установок для:

    компенсации по низшей стороне Qнку = Qмакс – Qэн – Qт, где Qт – реактивная мощность, передаваемая через трансформаторы (для сети 0.4 кВ при Qнку 3513 11.11.2019