Расчёт фотоэлектрической системы

Расчёт фотоэлектрической системы-общие сведения

Фотоэлектрические системы бывают двух основных типов . Это абсолютно автономные системы и системы соединенные с сетью. Второй тип систем подразделяется в свою очередь еще на два вида: это системы, соединенные с сетью посредством сетевого инвертора и не имеющие в своем составе аккумуляторных батарей(и соответственно резерва на случай отключения сети), а также системы с гибридными(батарейно-сетевыми) инверторами, которые генерируют энергию от СБ даже при наличии внешней сети(эти системы считаются резервными, но с функцией поддержки внешней сети при её наличии за счет СБ). Эти системы получают недостаток энергии из сети, а если образовываются излишки электроэнергии, то отдают их сеть. Иными словами они используют сеть как огромный аккумулятор бесконечной емкости. Мы в этом разделе будем рассматривать пример расчета полностью автономной системы. Системы подобного типа актуальны для передвижных или удаленных объектов, лишенных возможности подвода линии электропередач. Причина может заключаться в нецелесообразности или вообще невозможности подвода линии. Основные компоненты такой системы это: собственно солнечные батареи, контроллер заряда, аккумулятор и соединительные кабели. Если нагрузка питается от переменного напряжения, то необходим еще инвертор.

Принцип работы такой системы традиционен и заключается в следующем: солнечная батарея в светлое время суток ведет заряд аккумуляторных батарей. Контроллер заряда при этом обеспечивает правильный режим заряда АКБ с соблюдением величин зарядных напряжений для каждой стадии и вводя температурную компенсацию напряжений. При этом солнечная батарея при необходимости ведет питание дневных нагрузок. Нагрузки, работающие в темное время суток питаются исключительно от АКБ. Как уже было сказано выше, нагрузки переменного тока запитываются через инвертор. Казалось бы немного компонентов в составе системы, но только правильный их подбор сможет обеспечить надежную работу нагрузок.

Расчет системы состоит из нескольких этапов:

1) Для начала необходимо составить перечень всех нагрузок . Это удобно делать при помощи таблицы. Кроме названий приборов в столбцах таблицы следует указать мощность каждой нагрузки, её среднесуточное время работы и количество однотипных приборов;

2) Следующая задача это максимально сократить и оптимизировать этот список. Электричество в автономной системе достается очень дорого и нужно отказаться от лишних приборов или мощных приборов, которые целесообразней питать от генератора. Под оптимизацией списка понимается, что оставшиеся нагрузки необходимо выбрать максимально энергосберегающими. К примеру, если это освещение, то стоит полность отказаться от ламп накаливаю в пользу энергосбергающих(люминисцентных) или еще лучше светодиодных. Холодильник рекомендуется брать класса А, А+ или А++. Подобные действия возможно приведут к некоторым растратам, но они полностью окупятся при покупке системы(понадобится менее мощная система) и её эксплуатации в будущем. Кроме того имеет смысл рассмотреть возможность использования исключительно нагрузок постоянного тока. Это позволит не приобретать инвертор , и кроме того экономить энергию, которую рассеял бы инвертор, т.к. его КПД не 100%, а обычно 85-95%. Надежность и безопасность системы также возрастут за счет меньшего числа компонентов и остутствия опасных

3) Оптимизированный список теперь позволит провести расчет суточного энергопотребления в кВт*ч. Для этого необходимо для каждого типа нагрузки перемножить её мощность, количество приборов и среднесуточное время работы. Полученные результаты сложить. Это и есть искомая величина потребления в сутки. Для круглосуточно работающих приборов нужно смотреть в паспорте изделия суточное потребление(для холодильников часто указывается потребление в год). Например имеются: 1) ТВ мощности 30Вт, работает 4 часа в сутки; 2) лампы освещения 3шт по 15Вт, горят, 6 часов в сутки; 3) Холодильник с потреблением 600Вт*ч/сутки. Итого получаем: 30Вт*4часа+15Вт*3шт*6часов+600Вт*ч=990Вт*ч. В месяц потребление соответственно около 30кВт*ч. Для нагрузок, использующих переменный ток расчет нужно вести отдельно и закладывать в их потребление запас 5-15% для учета КПД инвертора.

4) Теперь можно определить емкость АКБ. Перед этим нужно выбрать номинальное напряжение аккумуляторного банка, задать количество пасмурных дней подряд, которые система должна пережить без заряда из вне, а также достигаемую при этом глубину разряда. Обычно для автономных систем глубина разряда выбирается не более 30-50% и это позволяет продлить срок службы АКБ. Цифра энергопотребления из п.4 умножается на количество пасмурных дней , и полученная величина должна составлять выбранный процент глубины разряда АКБ от её полной энергии. Как известно емкость АКБ в значительной степени зависит от температуры помещения. Процесс этот обратимый, т.е. при повышении температуры до нормальной емкость восстанавливается(но не нужно путать это с эксплуатацией АКБ при высоких температурах вредных для АКБ). При низких температурах емкость АКБ снижается и поправку на это необходимо закладывать при расчете системы. Окончательная емкость АКБ получается умножением расчетной энергии, заключенной в АКБ на коэффициент из таблицы ниже и последующим делением на напряжение АКБ. Полученную величину округляют в большую сторону к стандартным емкостям аккумуляторных батарей. Параллельно-последовательное соединение АКБ позволит набрать нужную емкость.

Температура, °С Коэффициент
25 1,00
20 1,03
15 1,10
10 1,20
5 1,28
1,36
-5 1,50

5) Мощность инвертора должна быть на 25-30% выше суммарной номинальной мощности одиномоментно подключаемых нагрузок, а также его пиковая мощность должна быть больше суммарной пиковой мощности нагрузок, которые могут запуститься единовременно. Это связано с тем, что некоторые приборы имеют значительную пусковую мощность при старте. Например, это холодильник или насос или иная нагрузка с двигателем.

6) Ну и наконец «десерт». Определим суммарную мощность массива солнечных модулей. В определении этой величины нужно учесть несколько факторов:

• географическое месторасположение объекта;
• период эксплуатации: лето, зима, круглый год?режим эксплуатации: выходные, ежедневно, иная схема;
• возможность позиционировать солнечные модули оптимально, для получения максимальной генерации.;
• наличие деталей рельефа или пейзажа, которые могли бы загораживать поток солнечного света к поверхности солнечных батарей в течении дня;
• возможность или желание применения следящей за положением солнца подвижной платформы.

В нашем примере расчета мы будем рассматривать случай, когда модули ориентированы в пространстве оптимально, ничто их не загораживает в течении дня, а следящей системы нет. Эти факторы можно учесть для реального объекта. Чтобы система получала необходимое количество энергии за весь период эксплуатации, необходимо вести расчет для условий наихудшей инсоляции. Если объект используется круглогодично, то таким месяцем является декабрь. В это время года максимально низкая инсоляции, очень короткий световой день и низкая облачность в большинстве регионов РФ. Оптимальный угол наклона солнечных панелей к горизонту разнится от региона к региону и увеличивается в высоких(более северных) широтах из-за низкого угла стояния солнца. Но существует несложная методика выбора угла наклона солнечных модулей при ориентации их на юг естественно. Это: Чтобы получить максимум энергии летом нужно панели разместить под углом на 15о меньше географической широты местности; Чтобы получить максимум в зимнее время года необходимо панели наклонить к горизонту под углом на 15о больше географической широты местности; Чтобы получить максимум за весь календарный год угол наклона солнечных батарей должен быть равен широте местности;. Выбрав угол наклона солнечных модулей необходимо найти в таблицах инсоляции её значение для Вашего региона, времени года и угла наклона воспринимающей поверхности. Таблицы инсоляции по некоторым регионам РФ и бывшего СССР можно посмотреть здесь. Эта цифра измеряется в кВт*ч/м2. К примеру для Краснодара в июле и угла наклона 30о это примерно 180кВт*ч/м2. Это означает что в июле в Краснодаре наблюдается приход солнечной радиации в количестве 180 пикочасов. Пикочасом называется условный промежуток времени в течении, которой интенсивность солнечной радиации равна 1000Вт/м2. Именно такая освещенность используется для паспортизации солнечных модулей. Т.е. в Краснодаре в июле в день получаем 6 пикочасов. На самом деле солнце светит конечно больше чем 6 часов, но менее интенсивно. Помимо инсоляции в расчете следует учитывать сильный нагрев модуля в летнее время, что снижает его эффективность. Нами предлагается следующая упрощенная формула для расчета необходимой мощности массива солнечных модулей:

• PΣ- суммарная мощность солнечных модулей;
• W-необходимое количество энергии;
• k-сезонный коэффициент(летом 0.55, зимой 0.7);
• E- значение инсоляции.

Коэффициент k учитывает все потери включая потери на заряд АКБ равные 20%, за исключением потерь в соединительных кабелях. Сечение кабелей обычно подбирается из расчета потерь не превышающих 2-3%. Полученная суммарная мощность солнечных модулей может быть разделена на мощность одного модуля и таким образом получено количество солнечных модулей. В подборе мощности и напряжения модулей имеются нюансы, которые должны быть согласованы с параметрами контроллера заряда. Но это тема другого разговора. Выше было упомянуто о системе слежения за положением солнца. Подобное слежение может дать добавку к выработке 20% при слежении только по азимуту и еще 10% при слежении по высоте светила. Т.е. суммарно можно выиграть порядка 30%, но нередко проще купить дополнительно СБ, чем тратиться на трекер и потом его обслуживать. В большинстве случаев для систем эксплуатирующихся круглогодично или преимущественно зимой целесообразно использовать дополнительный источник энергии: ветрогенератор или бензогенератор. Такие системы носят название гибридных и их компоненты хорошо дополняют друг друга.

© 2001-2015 «SOLBAT-Солнечные батареи», Все права защишены. Копирование запрещено.

Расчёт фотоэлектрической системы

Все фотоэлектрические системы (ФЭС) можно разделить на два типа: автономные и соединенные с электрической сетью. Станции второго типа отдают излишки энергии в сеть, которая служит резервом в случае возникновения внутреннего дефицита энергии.

Автономная система в общем случае состоит из набора солнечных модулей, размещенных на опорной конструкции или на крыше, аккумуляторной батареи (АКБ), контроллера разряда — заряда аккумулятора, соединительных кабелей. Если потребителю необходимо иметь переменное напряжение, то к этому комплекту добавляется инвертор-преобразователь постоянного напряжения в переменное.

Под расчетом ФЭС понимается определение номинальной мощности модулей, их количества, схемы соединения; выбор типа, условий эксплуатации и емкости АКБ; мощностей инвертора и контроллера заряда-разряда; определение параметров соединительных кабелей.

Прежде всего надо определить суммарную мощность всех потребителей, подключаемых одновременно. Мощность каждого из них измеряется в ваттах и указана в паспортах изделий. На этом этапе уже можно выбрать мощность инвертора, которая должна быть не менее, чем в 1,25 раза больше расчетной. Следует иметь в виду, что такой хитрый прибор как компрессорный холодильник в момент запуска потребляет мощность в 7 раз больше паспортной. Номинальный ряд инверторов 150, 300, 500, 800, 1500, 2500, 5000 Вт. Для мощных станций (более 1кВт) напряжение станции выбирается не менее 48 В, т.к. на больших мощностях инверторы лучше работают с более высоких исходных напряжений.

Читайте также  Как рассчитать эквивалентное сопротивление электрической цепи?

Следующий этап — это определение емкости АКБ. Емкость АКБ выбирается из стандартного ряда емкостей с округлением в сторону, большую расчетной. А расчетная емкость получается простым делением суммарной мощности потребителей на произведение напряжения АКБ на значение глубина разряда аккумулятора в долях.

Например, если суммарная мощность потребителей 1000 Втч в сутки, а допустимая глубина разряда АКБ 12 В — 50 %, то расчетная емкость составит :

1000 / (12 * 0,5) = 167 Ач

При расчете емкости АКБ в полностью автономном режиме необходимо принимать во внимание и наличие в природе пасмурных дней в течении которых аккумулятор должен обеспечивать работу потребителей.

Последний этап –это определение суммарной мощности и количества солнечных модулей. Для расчета потребуется значение солнечной радиации, которое берется в период работы станции, когда солнечная радиация минимальна. В случае круглогодичного использования — это декабрь.

В разделе “метеорология” даны месячные и суммарные годовые значения солнечной радиации для основных регионов России, а также с градацией по различным ориентациям световоспринимающей плоскости.

Взяв оттуда значение солнечной радиации за интересующий нас период и разделив его на 1000, получим так называмое количество пикочасов, т.е., условное время, в течении которого солнце светит как бы с интенсивностью 1000 Вт/м 2 .

Например, для широты Москвы и месяца-июля значение солнечной радиации составляет 167 кВтч/м 2 при ориентации площадки на юг под углом 40 о к горизонту. Это значит, что среднестатистически солнце светит в июле 167 часов (5,5 часов в день) с интнсивностью 1000 Вт/м 2 , хотя максимальная освещенность в полдень на площадке, ориентированной перпендикулярно световому потоку, не превышает 700-750 Вт/м 2 .

Модуль мощностью Рw в течении выбранного периода выработает следующее количество энергии :

W = k Pw E / 1000, где Е — значение инсоляции за выбранный период, k- коэффициент равный 0,5 летом и 0,7 в зимний период.

Он (k) делает поправку на потерю мощности солнечных элементов при нагреве на солнце, а также учитывает наклонное падение лучей на поверхность модулей в течении дня.

Разница в его значении зимой и летом обусловлена меньшим нагревом элементов в зимний период.

Исходя из суммарной мощности потребляемой энергии и приведенной выше формулы — легко расчитать суммарную мощность модулей. А зная ее, простым делением ее на мощность одного модуля, получим количество модулей.

При создании ФЭС настоятельно рекомендуется максимально снизить мощность потребителей. Например, в качестве осветителей использовать (по возможности) только люминисцентные лампы. Такие светильники, при потреблении в 5 раз меньшем, обеспечивают световой поток, эквивалентный световому потоку лампы накаливания.

Для небольших ФЭС целесообразно устанавливать ее модули на поворотном кронштейне для оптимального разворота относительно падающий лучей. Это позволит увеличить мощность станции на 20-30 %.

КОЛЛЕКЦИЯ НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ ЗАБЛУЖДЕНИЙ

НАЧНЕМ С САМЫХ ПОПУЛЯРНЫХ:

— солнечная батарея сама по себе не заряжается, а сама заряжает аккумулятор;

— название «солнечная батарея» не означает,что она дает паспортную мощность при той же освещенности, при которой калькулятор на солнечной батарейке еще работает. Паспортная мощность означает, что солнечная батарея могла бы давать эту мощность при стандартных условиях (е=1000вт/м 2 , т=25 о с, ам=1,5), которых в природе не бывает. Мощность батареи прямо пропорциональна освещенности.реально же из-за нагрева модулей и освещенности более низкой, чем стандартная, и из-за наклонного падения лучей на поверхность модуля, генерируемая мощность отличается от паспортной.например, станция мощностью 1000 Вт на широте Москвы в течении июля месяца будет вырабатывать порядка 70-75 кВт*ч, а не 1000 Вт в час, как думают многие!

— следующее распространенное заблуждение состоит в том, что нельзя, установив пару модулей на балконе, стать независимым от чубайса. Такие потребители энергии, как холодильник, электрокомфорки, утюги, лампы накаливания и т.п., очень прожорливы и их не прокормить этими двумя модульками!

— тестировать солнечную батарею при свете люстры в комнате конечно можно, только параметры будут далеки от истинных также как освещенность создаваемая люстрой от солнечной освещенности, т.е. в десятки раз!

Расчёт фотоэлектрической системы

ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра Электроэнергетики и электротехники

Андреев Александр Андреевич

Курс 2 группа ЭЭ-б-о-181

РАСЧЁТНО-ГРАФИЧЕСКАЯ РАБОТА

По дисциплине «Солнечные электроэнергетические установки»

Отметка о зачете___________________ _______________

Руководитель___________ ___________ _______________

(должность) (подпись) (Ф.И.О.)

Содержание.

2. Расчёт освещения по методу удельной мощности—————————6

3. Определение энергопотребления и мощности инвертора——————10

5. Определение необходимого количества солнечных батарей————-28

6. Расчёт капитальных вложений и сроков окупаемости———————34

Расчёт параметров солнечной батареи.

Вариант 1

Задача 1

Дано: Решение:

Задача 2

Дано: Решение:

UЭ = 0,5 В; Uб = UЭ ∙ NПС => ;

PЭ = 0,2 Вт; Pб = PЭ ∙ NПС ∙ NПР =>

Uб = 120 В; Pб = Uб ∙ Iб => А;

Pб = 1000 Вт Iб = IЭ ∙ NПР => А;

Расчёт фотоэлектрической системы

1. Исходные данные для расчёта.

Эл. Оборудование, №/количество

Угол установки СБ, град

1.1 Объект строительства

1.2 Среднемесячные и среднегодовые суммы поступления прямой (I), рассеянной (II) и суммарной (III) солнечной радиации на горизонтальную поверхность, кВт∙ч/м 2

1.3 Электрическое оборудование, установленное в данном объекте, и его мощность.

Потребитель Мощность, Вт
1 Микроволновая печь 1000
3 Холодильник 250
5 Кофемолка 220
7 Блендер 400
10 Телевизор 300
13 Пылесос 1000
14 Фен 1200
15 Стиральная машина 1500
16 Утюг 1000
21 Насос 500
22 Музыкальный центр 100
24 Вытяжка 100
25 Вентилятор 60
27 Бритва 15

2. Расчёт освещения по методу удельной мощности.

(Для удобства оформления все результаты будут заноситься в соответствующую таблицу).

2.1 Определим требуемую освещенность для данного объекта.

2.2 Определим требуемую удельную мощность при освещении лампами накаливания для каждого помещения.

Помещение 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Pуд, Вт/м 2 17 20 18 17 18 16 16 16 17 17 18 19 17 17

2.3 Найдем удельную мощность для требуемого уровня освещенности по формуле:

Помещение 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Pуд, Вт/м 2 17 20 18 17 18 16 16 16 17 17 18 19 17 17
Е, лк 50 150 150 20 300 50 30 150 50 50 150 150 100 75
, Вт/м 2 8,5 30 27 3,4 54 8 4,8 24 8,5 8,5 27 28,5 17 12,75

2.4 Определим требуемую мощность ламп по формуле:

Помещение 1 2 3 4 5 6 7 8 9 10 11
Вт/м 2 8,5 30 27 3,4 54 8 4,8 24 8,5 8,5 27
F, м 2 5,2 22,5 13,1 6,1 12,4 1,7 2,2 3,7 6,1 5 13
Pтр, Вт/м 2 44,2 675 353,7 20,74 669,6 13,6 10,56 88,8 51,85 42,5 351
Помещение 12 13 14
Вт/м 2 28,5 17 12,75
F, м 2 17,6 4,3 6,6
Pтр, Вт 501,6 73,1 84,15

2.5 Подберем лампы необходимой мощности (согласно ГОСТ 2239-79 «Лампы накаливания общего назначения») и определим требуемое количество.

Помещение Pтр, Вт Pлампы, Вт Тип лампы N, шт.
1 44,2 25 B215-225-25 2
2 675 75 БК215-225-75-1 9
3 353,7 75 БК215-225-75-1 5
4 20,74 25 В215-225-25 1
5 669,6 75 БК215-225-75-1 9
6 13,6 25 В215-225-25 1
7 10,56 25 В215-225-25 1
8 88,8 60 БК215-225-60-1 2
9 51,85 60 БК215-225-60-1 1
10 41,5 60 БК215-225-60-1 1
11 351 75 БК215-225-75-1 5
12 501,6 75 БК215-225-75-1 7
13 73,1 75 БК215-225-75-1 1
14 84,15 60 БК215-225-60-1 2

2.6 Определим суммарную мощность ламп Вт, а также суммарную энергию, расходуемую ими за день , Вт∙ч (где t – время работы лампы в день).

3. Определение энергопотребления и мощности инвертора

3.1 Перечислим всю нагрузку переменного тока с указанием ее номинальной мощности и числа часов работы в неделю.

Цель: Расчёт автономной фотоэлектрической системы (ФЭС).

Лабораторная работа № 20

Название: Расчёт фотоэлектрической системы

Цель: Расчёт автономной фотоэлектрической системы (ФЭС).

Фотоэлектрические системы (солнечные электростанции или фотоэлектрические станции) бывают двух основных типов . Это автономные системы и системы, соединенные с сетью. Второй тип систем подразделяется в свою очередь еще на два вида: это системы, соединенные с сетью посредством сетевого инвертора и не имеющие в своем составе аккумуляторных батарей ( и соответственно резерва на случай отключения сети), а также системы с гибридными (батарейно-сетевыми) инверторами, которые генерируют энергию от солнечной батареи даже при наличии внешней сети. Эти системы считаются резервными, но с функцией поддержки внешней сети при её наличии за счет СБ. Эти системы получают недостаток энергии из сети, а если образуются излишки электроэнергии, то отдают их в сеть. Иными словами, они используют сеть как огромный аккумулятор бесконечной емкости.

Рис.1

Рис.2

Автономные ФЭС используются для передвижных или удаленных объектов, лишенных возможности подвода линии электропередач. Причина может заключаться в нецелесообразности или невозможности подвода электрической линии.

Основные компоненты автономной ФЭС : солнечные батареи, контроллер заряда-разряда аккумуляторной батареи, аккумуляторная батарея и соединительные кабели. Если нагрузка (различные устройства) питается от переменного напряжения, то необходим еще инвертор. Схема ФЭС показана на рис.1, 2.

Принцип работы ФЭС заключается в следующем: солнечная батарея в светлое время суток ведет заряд аккумуляторных батарей АКБ. Контроллер заряда-разряда обеспечивает правильный режим заряда и разряда АКБ. При этом солнечная батарея при необходимости ведет питание дневных нагрузок. Нагрузки, работающие в темное время суток, питаются исключительно от АКБ. Нагрузки переменного тока запитываются через инвертор.

Для надёжной работы, подключаемых к ФЭС устройств (нагрузки), необходим правильный подбор компонентов фотоэлектрической системы, основанный на предварительном расчёте. Под расчётом ФЭС понимается определение номинальной мощности солнечных модулей, их количества, схемы соединения, выбор типа, ёмкости и условий эксплуатации АКБ, мощности инвертора и контроллера заряда – разряда, определение параметров соединительных кабелей.

Расчет фотоэлектрической системы состоит из нескольких этапов:

1. Вначале необходимо составить перечень всех нагрузок.Это удобно делать при помощи таблицы. Кроме названий подключаемых устройств в столбцах таблицы следует указать мощность каждого устройства, его среднесуточное время работы и количество однотипных приборов.

Электроэнергия, получаемая с помощью ФЭС, дорогая и нужно отказаться от лишних или мощных приборов, которые целесообразней питать от генератора. Имеет смысл использовать нагрузки постоянного тока. Это позволит не приобретать инвертор и экономить энергию, поскольку к.п.д. инвертора обычно 85-95%.

2. Расчет суточного энергопотребления Wc ( в кВт · час).Для этого надо для каждого типа нагрузки перемножить её мощность, количество приборов и среднесуточное время работы. Полученные результаты сложить, что и даст энергию, потребляемую в течение суток. Для круглосуточно работающих приборов нужно найти в паспорте изделия его суточное потребление.

Читайте также  Соединение проводов с накидными клеммами

Например, нагрузочные устройства ФЭС следующие:

1. Телевизор мощностью 30 Вт, работает 4 часа в сутки;

2. Осветительные лампы – 3 шт., по 15 Вт, работают 6 часов в сутки;

3. Холодильник с энергопотреблением 600 Вт·ч/сутки.

Итого получаем: Wc = 30 Вт ·4 ч + 15 Вт ·3 · 6 ч + 600 Вт·ч = 990 Вт·ч. За месяц энергопотребление примерно равно W = 990 · 30 Вт·ч = 30 Вт·час.

Для нагрузок, использующих переменный ток, расчет нужно вести отдельно и закладывать в их потребление запас 5 % — 15% (в сторону увеличения) для учета к.п.д. инвертора, то есть его энергопотребления. При питании от инвертора (переменный ток) можно грубо учесть потери в нём, умножив энергопотребление W на коэффициент Kи = 1,2.

В примередля приведенных устройств переменного тока:

суточное энергопотребление Wc = 1,2 · 990 Вт·ч = 1200 Вт·ч ; (округлено)

месячное энергопотребление W = 1,2 · 990 · 30 Вт·ч = 36 кВт·ч. (округлено)

Расчет фотоэлектрической системы

Расчет системы состоит из 4-х основных этапов:

После выполнения 4 шага, если стоимость системы недопустимо велика, можно рассмотреть следующие варианты уменьшения стоимости системы автономного электроснабжения:

  • уменьшение потребляемой энергии за счет замены существующей нагрузки на энергоэффективные приборы, а также исключение тепловой, “фантомной” и необязательной нагрузки (например, можно использовать холодильники, кондиционеры и т.п., работающие на газе)
  • замену нагрузки переменного тока на нагрузку постоянного тока. В этом случае можно выиграть на остутствии потерь в инверторе (от 10 до 40%). Однако, нужно учитывать особенности построения низковольтных систем постоянного тока.
  • введение в систему электроснабжения дополнительного генератора электроэнергии – ветроустановки или дизель- или бензогенератора.
  • смириться с тем, что электроэнергия будет у Вас не всегда. И чем больше будет мощность системы отличаться от потребляемой мощности, тем более вероятны будут у Вас периоды отсутствия электроэнергии.

Расчет автономной ФЭС

1. Определение энергопотребления

Составьте список устройств-потребителей электроэнергии, которые Вы собираетесь питать от ФЭС . Определите потребляемую мощность во время их работы. Большинство устройств имеют маркировку, на которой указана номинальная потребляемая мощность в ваттах или киловаттах. Если указан потребляемый ток, то нужно умножить этот ток на номинальное напряжение (обычно 220 В). Для справки Вы можете посмотреть значения потребляемой мощности для типовой бытовой нагрузки.

После того, как Вы узнаете данные по потребляемой мощности Вашей нагрузки, Вам нужно заполнить таблицу №1.

Используйте эту таблицу для определения общей дневной потребляемой энергии.

Подсчитайте нагрузку переменного тока. Если у Вас нет такой нагрузки, то можете пропустить этот шаг и перейти к подсчету нагрузки постоянного тока.

1.1. Перечислите всю нагрузку переменного тока, ее номинальную мощность и число часов работы в неделю. Умножьте мощность на число часов работы для каждого прибора. Сложите получившиеся значения для определения суммарной потребляемой энергии переменного тока в неделю.

Нагрузка переменного тока Ватт X часов/неделю = Втч/неделю
X =
X =
X =
X =
X =
X =
X =
Всего

1.2. Далее нужно подсчитать сколько энергии постоянного тока потребуется. Для этого нужно умножить получившееся значение на коэффициент 1,2, учитывающий потери в инверторе.

1.3. Определите значение входного напряжения инвертора по характеристикам выбранного инвертора. Обычно это 12 или 24 В.

1.4. Разделите значение п.1.2 на значение п.1.3. Вы получите число Ампер-часов в неделю, требуемое для покрытия вашей нагрузки переменного тока.

Подсчитайте нагрузку постоянного тока

1.5. Запишите данные нагрузки постоянного тока :

Описание нагрузки постоянного тока Ватт X часов/неделю = Вт*ч/неделю
X =
X =
X =
X =
X =
X =
X =
Всего

1.6. Определите напряжение в системе постоянного тока. Обычно это 12 или 24 В. (Как в п.1.3)

1.7. Определите требуемое количество А*ч в неделю для нагрузки постоянного тока (разделите значение п.1.5 на значение п.1.6).

1.8. Сложите значение п.1.4 и п. 1.7 для определения суммарной требуемой емкости аккумуляторной батареи. Это будет количество А*ч, потребляемых в неделю.

1.9. Разделите значение п.1.8 на 7 дней; Вы получите суточное значение потребляемых А*ч.

2. Оптимизируйте Вашу нагрузку

На этом этапе важно проанализировать Вашу нагрузку и попытаться уменьшить потребляемую мощность как можно больше. Это важно для любой системы, но особенно важно для системы электроснабжения жилого дома, так как экономия может быть очень существенной. Сначала определите большую и изменяемую нагрузку (например, насосы для воды, наружное освещение, холодильники переменного тока, стиральная машина, электронагревательные приборы и т.п) и попытайтесь исключить их из вашей системы или заменить на другие аналогичные модели, такие как приборы, работающие на газе или от постоянного тока.

Начальная стоимость приборов постоянного тока обычно выше (потому что они выпускаются не в таком массовом количестве), чем таких же приборов переменного тока, но вы избежите потерь в инверторе. Более того, зачастую приборы постоянного тока более эффективны, чем приборы переменного тока (во многих бытовых приборах, особенно электронных, переменный ток преобразуется в постоянный, что ведет к потерям энергии в блоках питания приборов).

Замените лампы накаливания на люминесцентные лампы везде, где это возможно. Люминесцентные лампы обеспечивают такой же уровень освещенности при том, что потребляют в 4-5 раз меншье электроэнергии. Срок их службы также примерно в 8 раз больше.

Если у Вас есть нагрузка, которую Вы не можете исключить, рассмотрите вариант, при котором Вы будете включать ее только в солнечные периоды, или только летом. Пересмотрите список Вашей нагрузки и пересчитайте данные.

3. Определите состав и размер вашей аккумуляторной батареи (АБ )

Выберите тип аккумуляторной батареи, которую Вы будете использовать. Мы рекомендуем использовать герметичные необслуживаемые свинцово-кислотные аккумуляторы, которые обладают самыми лучшими эксплуатационно-экономическими параметрами.

3.2. Умножьте суточное потребление в А*ч (см. п.1.9 расчета потребляемой энергии выше) на количество дней, определенных в предыдущем пункте.

3.4. Разделите п.3.2 на п.3.3

3.5. Выберите коэффициент из таблицы, приведеной ниже, который учитывает температуру окружающей среды в помещении, где установлены АБ . Обычно это средняя температура в зимнее время. Этот коэффициент учитывает уменьшение емкости АБ при понижении температуры.

Температурный коэффициент для аккумуляторной батареи

Температура в градусах коэффициент
Фаренгейта Цельсия
80F 26.7C 1.00
70F 21.2C 1.04
60F 15.6C 1.11
50F 10.0C 1.19
40F 4.4C 1.30
30F -1.1C 1.40
20F -6.7C 1.59

3.6. Умножьте значение п.3.4 на коэффициент п.3.5. Вы получите общую требуемую емкость АБ .

3.7. Разделите это значение на номинальную емкость выбранной Вами аккумуляторной батареи. Округлите полученное значение до ближайшего большего целого. Это будет количество батарей, которые будут соединены параллельно.

3.8. Разделите номинальное напряжение постоянного тока системы (12, 24 или 48В) на номинальное напряжение выбранной аккумуляторной батареи (обычно 2, 6 или 12В).Округлите полученное значение до ближайшего большего целого. Вы получите значение последовательно соединенных батарей.

3.9. Умножьте значение п.3.7 на значение п.3.8. для того, чтобы подсчитать требуемое количество аккумуляторных батарей.

4. Определите количество пиковых солнце-часов в день для вашего места

Несколько факторов влияют на то, как много солнечной энергии будет принимать Ваша солнечная батарея:

  • Когда будет использоваться система? Летом? Зимой? Круглый год?
  • Типичные погодные условия вашей местности
  • Будет ли система ориентироваться на солнце
  • Расположение и угол наклона фотоэлектрических модулей

Для определения среднемесячного прихода солнечной радиации Вы можете воспользоваться таблицей прихода солнечной радиации для некоторых городов России. Выработка электроэнергии солнечноей фотоэлектрической батареей (СБ ) зависит от угла падения солнечных лучей на СБ . Максимум бывает при угле 90 градусов. При отклонении от этого угла все большее количество лучей отражается, а не поглощается СБ .

Зимой приход радиации значительно меньше из-за того, что дни короче, облачных дней больше, Солнце стоит ниже на небосклоне. Если Вы используете Вашу систему только летом, используйте летние значения, если круглый год, используете значения для зимы. Для надежного электроснабжения выбирайте из среднемесячных значений наименьшее для периода, в течение которого будет использоваться ФЭС .

Выбранное среднемесячное значение для худшего месяца нужно разделить на число дней в месяце. Вы получите среднемесячное количество число пиковых солнце-часов, которое будет использоваться для расчета Вашей СБ .

5. Расчет солнечной фотоэлектрической батареи

Выберите модуль из списка предлагаемых. Для определения характеристик и цен фотоэлектрических модулей зайдите на страницу “Солнечные батареи” Интернет-магазина.

Далее необходимо определить общее количество модулей, необходимых для вашей системы.

Ток в точке максимальной мощности Impp может быть определен из спецификаций модулей. Вы также можете определить Impp поделив номинальную мощность модуля на напряжение в точке максимальной мощности Umpp (обычно 17 – 17.5 В для 12-вольтового модуля).

5.1. Умножьте значение п. 1.9 на коэффициент 1.2 для учета потерь на заряд-разряд АБ

5.2. Разделите полученное значение на среднее число пиковых солнце-часов в вашей местности. Вы получите ток, который должна генерировать СБ

5.3. Для определения числа модулей, соединенных параллельно разделите значение п. 5.2 на Impp одного модуля. Округлите полученное число до ближайшего большего целого.

5.4. Для определения числа модулей, соединенных последовательно, разделите напряжение постоянного тока системы (обычно 12, 24, 48 В) на номинальное напряжение модуля (обычно 12 или 24 В).

5.5. Общее количество требуемых фотоэлектрических модулей равно произведению значений п. 5.3 и п. 5.4.

6. Расчет стоимости системы

7. Готовая таблица для расчета системы

Для вашего удобства мы составили специальную таблицу расчета фотоэлектрической системы в виде таблице MS Excel. Вы можете сгрузить файл excel.

Вы также можете воспользоваться online формой расчета фотоэлектрической системы, которая сразу посчитает Вам почти все технические параметры автономной фотоэлектрической системы.

8. Определитесь, нужна ли Вам готовая система или Вы будете собирать систему электроснабжения из компонентов сами

Мы разработали фотоэлектрические комплекты для различных случаев. Хотя Вы можете спроектировать систему электроснабжения сами, используя изложенную выше методику, выбор комплекта гарантирует, что все элементы системы подобраны правильно. Также зачастую цена комплекта ниже суммарной стоимости его составляющих. Перейдите на страницу с описанием готовых комплектов фотоэлектрических систем.

Однако если Вам нужна специфическая система, Вы можете выбрать соответствующее оборудования для Ваших нужд в нашем каталоге. Вам может потребоваться следующие компоненты системы:

    • Контроллер заряда
    • Инвертор
    • Соединительные провода
    • Предохранители, переключатели и разъемы
    • Измерители и индикаторы
  • Инструмент для монтажа
  • Резервный генератор

Вы найдете большинство этих компонентов в нашем каталоге. Позвоните нам и мы поможем Вам спроектировать систему электроснабжения под Ваши нужды с учетом Вашей нагрузки и финансовых возможностей. Перед тем как обратиться к нам, Вам нужно будет знать данные пунктов 1, 2 и 4 вышеприведенной методики расчета фотоэлектрической системы.

Читайте также  Заземление фланцевых соединений трубопроводов ПУЭ

Расчет фотоэлектрической системы.

Использовать энергию солнечных элементов можно также как и энергию других источников питания, с той разницей, что солнечные элементы не боятся короткого замыкания. Каждый из них предназначен для поддержания определенной силы тока при заданном напряжении. Но в отличии от других источников тока характеристики солнечного элемента зависят от количества падающего на его поверхность света. Например, набежавшее облако может снизить выходную мощность более чем на 50%. Кроме того отклонения в технологических режимах влекут за собой разброс выходных параметров элементов одной партии. Следовательно, желание обеспечить максимальную отдачу от фотоэлектрических преобразователей приводит к необходимости сортировки элементов по выходному току. В качестве наглядного примера “вшивой овцы портящей все стадо” можно привести следующий: в разрыв водопроводной трубы большого диаметра врезать участок трубы с гораздо меньшим диаметром, в результате водоток резко сократится. Нечто аналогичное происходит и в цепочке из неоднородных по выходным параметрам солнечных элементов.

Кремниевые солнечные элементы являются нелинейными устройствами и их поведение нельзя описать простой формулой типа закона Ома. Вместо нее для объяснения характеристик элемента можно пользоваться семейством простых для понимания кривых — вольтамперных характеристик (ВАХ)

Напряжение холостого хода, генерируемое одним элементом, слегка изменяется при переходе от одного элемента к другому в одной партии и от одной фирмы изготовителя к другой и составляет около 0.6 В. Эта величина не зависит от размеров элемента. По иному обстоит дело с током. Он зависит от интенсивности света и размера элемента, под которым подразумевается площадь его поверхности.

Элемент размером 100100 мм в 100 раз превосходит элемент размером 1010 мм и, следовательно, он при той же освещенности выдаст ток в 100 раз больший.

Нагружая элемент, можно построить график зависимости выходной мощности от напряжения, получив нечто подобное изображенному на рис.2

Пиковая мощность соответствует напряжению около 0,47 В. Таким образом, чтобы правильно оценить качество солнечного элемента, а также ради сравнения элементов между собой в одинаковых условиях, необходимо

нагрузить его так, чтобы выходное напряжение равнялось 0,47 В. После того, как солнечные элементы подобраны для работы, необходимо их спаять. Серийные элементы снабжены токосъемными сетками, которые предназначены для припайки к ним проводников.

Батареи можно составлять в любой желаемой комбинации. Простейшей батареей является цепочка из последовательно включенных элементов. Можно также соединить параллельно цепочки, получив так называемое последовательно-параллельное соединение.

Важным моментом работы солнечных элементов является их температурный режим. При нагреве элемента на один градус свыше 25 о С он теряет в напряжении 0,002 В, т.е. 0,4 %/градус. На рис.3 приведено семейство кривых ВАХ для температур 25 о С и 60 о С.

В яркий солнечный день элементы нагреваются до 60-70 о С теряя 0,07-0,09 В каждый. Это и является основной причиной снижения КПД солнечных элементов, приводя к падению напряжения, генерируемого элементом.

КПД обычного солнечного элемента в настоящее время колеблется в пределах 10-16 %. Это значит, что элемент размером 100100 мм при стандартных условиях может генерировать 1-1,6 Вт.

Все фотоэлектрические системы можно разделить на два типа: автономные и соединенные с электрической сетью. Станции второго типа отдают излишки энергии в сеть, которая служит резервом в случае возникновения внутреннего дефицита энергии.

Автономная система в общем случае состоит из набора солнечных модулей, размещенных на опорной конструкции или на крыше, аккумуляторной батареи (АКБ), контроллера разряда — заряда аккумулятора, соединительных кабелей. Солнечные модули являются основным компонентом для построения фотоэлектрических систем . Они могут быть изготовлены с любым выходным напряжением.

После того как солнечные элементы подобраны — их необходимо спаять. Серийные элементы снабжены токосъемными сетками для припайки к ним проводников. Батареи можно составлять в любой комбинации.

Простейшей батареей является цепочка из последовательно соединенных элементов.

Можно соединить эти цепочки параллельно, получив так называемое последовательно-параллельное соединение. Параллельно можно соединять лишь цепочки (линейки) с идентичным напряжением, при этом их токи согласно закону Кирхгофа суммируются.

При наземном использовании они обычно используются для зарядки аккумуляторных батарей (АКБ) с номинальным напряжением 12 В. В этом случае, как правило, 36 солнечных элементов соединяются последовательно и герметизируются посредством ламинации на стекле, текстолите, алюминии. Элементы при этом находятся между двумя слоями герметизирующей пленки, без воздушного зазора. Технология вакуумной ламинации позволяет выполнить это требование. В случае воздушной прослойки между защитным стеклом и элементом, потери на отражение и поглощение достигли бы 20-30 % по сравнению с 12 % — без воздушной прослойки.

Электрические параметры солнечного элемента представляются как и отдельного солнечного элемента в виде вольтамперной кривой при стандартных условиях ( Standart Test Conditions), т.е., при солнечной радиации 1000 Вт/м 2 , температуре — 25 о С и солнечном спектре на широте 45 о (АМ1,5).

Точка пересечения кривой с осью напряжений называется напряжением холостого хода — Uxx, точка пересечения с осью токов – током короткого замыкания Iкз.

Максимальная мощность модуля определяется как наибольшая мощность при STC (Standart Test Conditions).

Напряжение, соответствующее максимальной мощности, называется напряжением максимальной мощности (рабочим напряжением — Up ), а соответствующий ток — током максимальной мощности (рабочим током — Ip ).

Значение рабочего напряжения для модуля, состоящего из 36 элементов, таким образом, будет около 16…17 В (0,45….0,47 В на элемент) при 25 о С.

Такой запас по напряжению по сравнению с напряжением полного заряда АКБ (14,4 В) необходим для того, чтобы компенсировать потери в контроллере заряда-разряда АКБ (о нем речь пойдет позже), а в основном — снижение рабочего напряжения модуля при нагреве модуля излучением : температурный коэффициент для кремния составляет около минус 0,4 %/градус (0,002 В/градус для одного элемента).

Следует заметить, что напряжение холостого хода модуля мало зависит от освещенности, в то время как ток короткого замыкания, а соответственно и рабочий ток, прямо пропорциональны освещенности.

Таким образом, при нагреве в реальных условиях работы, модули разогреваются до температуры 60-70 о С, что соответствует смещению точки рабочего напряжения, к примеру, для модуля с рабочим напряжением 17 В — со значения 17 В до 13,7-14,4 В (0,38-0,4 В на элемент).

Исходя из всего выше сказанного и надо подходить к расчету числа последовательно соединенных элементов модуля.

Если потребителю необходимо иметь переменное напряжение, то к этому комплекту добавляется инвертор-преобразователь постоянного напряжения в переменное.

Под расчетом ФЭС понимается определение номинальной мощности модулей, их количества, схемы соединения; выбор типа, условий эксплуатации и емкости АКБ; мощностей инвертора и контроллера заряда-разряда; определение параметров соединительных кабелей.

Прежде всего, надо определить суммарную мощность всех потребителей, подключаемых одновременно. Мощность каждого из них измеряется в ваттах и указана в паспортах изделий. На этом этапе уже можно выбрать мощность инвертора, которая должна быть не менее, чем в 1,25 раза больше расчетной. Следует иметь в виду, что такой хитрый прибор как компрессорный холодильник в момент запуска потребляет мощность в 7 раз больше паспортной. Номинальный ряд инверторов 150, 300, 500, 800, 1500, 2500, 5000 Вт. Для мощных станций (более 1кВт) напряжение станции выбирается не менее 48 В, т.к. на больших мощностях инверторы лучше работают с более высоких исходных напряжений.

Следующий этап — это определение емкости АКБ. Емкость АКБ выбирается из стандартного ряда емкостей с округлением в сторону, большую расчетной. А расчетная емкость получается простым делением суммарной мощности потребителей на произведение напряжения АКБ на значение глубины разряда аккумулятора в долях.

Например, если суммарная мощность потребителей 1000 Втч в сутки, а допустимая глубина разряда АКБ 12 В — 50 %, то расчетная емкость составит:

1000 / (12 0,5) = 167 Ач

При расчете емкости АКБ в полностью автономном режиме необходимо принимать во внимание и наличие в природе пасмурных дней в течении которых аккумулятор должен обеспечивать работу потребителей.

Последний этап — это определение суммарной мощности и количества солнечных модулей. Для расчета потребуется значение солнечной радиации, которое берется в период работы станции, когда солнечная радиация минимальна. В случае круглогодичного использования — это декабрь.

В разделе “метеорология” даны месячные и суммарные годовые значения солнечной радиации для основных регионов России, а также с градацией по различным ориентациям световоспринимающей плоскости.

Взяв оттуда значение солнечной радиации за интересующий нас период и разделив его на 1000, получим так называемое количество пикочасов, т.е., условное время, в течении которого солнце светит как бы с интенсивностью 1000 Вт/м 2 .

Например, для широты Москвы и месяца-июля значение солнечной радиации составляет 167 кВтч/м 2 при ориентации площадки на юг под углом 40 о к горизонту. Это значит, что среднестатистически солнце светит в июле 167 часов (5,5 часов в день) с интенсивностью 1000 Вт/м 2 , хотя максимальная освещенность в полдень на площадке, ориентированной перпендикулярно световому потоку, не превышает 700-750 Вт/м 2 .

Модуль мощностью Рw в течении выбранного периода выработает следующее количество энергии :

W = k Pw E / 1000, где Е — значение инсоляции за выбранный период, k- коэффициент равный 0,5 летом и 0,7 в зимний период.

Этот коэффициента делает поправку на потерю мощности солнечных элементов при нагреве на солнце, а также учитывает наклонное падение лучей на поверхность модулей в течении дня.

Разница в его значении зимой и летом обусловлена меньшим нагревом элементов в зимний период.

Исходя из суммарной мощности потребляемой энергии и приведенной выше формулы — легко рассчитать суммарную мощность модулей. А зная ее, простым делением ее на мощность одного модуля, получим количество модулей.

При создании ФЭС настоятельно рекомендуется максимально снизить мощность потребителей. Например, в качестве осветителей использовать (по возможности) только люминесцентные лампы. Такие светильники, при потреблении в 5 раз меньшем, обеспечивают световой поток, эквивалентный световому потоку лампы накаливания.

Для небольших ФЭС целесообразно устанавливать ее модули на поворотном кронштейне для оптимального разворота относительно падающий лучей. Это позволит увеличить мощность станции на 20-30 %.

Андреев С.В. Солнечные электростанции- М.:Наука 2002

Рубан С.С. Нетрадиционные источники энергии-М.:Энергия, 2003

Стребков Д.С. Сельскохозяйственные энергетические системы и экология. Альтернативные источники энергии: эффективность и управление. 1990

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.