Расчет гасящего конденсатора для светодиода

Расчет конденсатора для светодиодов

Необходимость подключить светодиод к сети – частая ситуация. Это и индикатор включения приборов, и выключатель с подсветкой, и даже диодная лампа.

Существует множество схем подключения маломощных индикаторных LED через резисторный ограничитель тока, но такая схема подключения имеет определённые недостатки. При необходимости подключить диод, с номинальным током 100-150мА, потребуется очень мощный резистор, размеры которого будут значительно больше самого диода.

Вот так бы выглядела схема подключения настольной светодиодной лампы. А мощные десяти ваттные резисторы при низкой температуре в помещении можно было бы использовать в качестве дополнительного источника отопления.

Применение в качестве ограничителя тока конде-ров позволяет значительно уменьшить габариты такой схемы. Так выглядит блок питания диодной лампы мощностью 10-15 Вт.

Принцип работы схем на балластном конденсаторе

В этой схеме конде-р является фильтром тока. Напряжение на нагрузку поступает только до момента полного заряда конде-ра, время которого зависит от его ёмкости. При этом никакого тепловыделения не происходит, что снимает ограничения с мощности нагрузки.

Чтобы понять, как работает эта схема и принцип подбора балластного элемента для LED, напомню, что напряжение – скорость движения электронов по проводнику, сила тока – плотность электронов.

Для диода абсолютно безразлично, с какой скоростью через него будут «пролетать» электроны. Расчет конде-ра основан на ограничении тока в цепи. Мы можем подать хоть десять киловольт, но если сила тока составит несколько микр оампер, количества электронов, проходящих через светоизлучающий кристалл, хватит для возбуждения лишь крохотной части светоизлучателя и свечения мы не увидим.

В то же время при напряжении несколько вольт и силе тока десятки ампер плотность потока электронов значительно превысит пропускную способность матрицы диода, преобразовав излишки в тепловую энергию, и наш LED элемент попросту испарится в облачке дыма.

Расчет гасящего конденсатора для светодиода

Разберем подробный расчет, ниже сможете найти форму онлайн калькулятора.

Расчет емкости конденсатора для светодиода:

С(мкФ) = 3200 * Iсд) / √(Uвх² — Uвых²)

С мкФ – ёмкость конде-ра. Он должен быть рассчитан на 400-500В;
Iсд – номинальный ток диода (смотрим в паспортных данных);
Uвх – амплитудное напряжение сети — 320В;
Uвых – номинальное напряжение питания LED.

Можно встретить еще такую формулу:

C = (4,45 * I) / (U — Uд)

Она используется для маломощных нагрузок до 100 мА и до 5В.

Расчет конденсатора для светодиода (калькулятор онлайн):

Для наглядности проведём расчёт нескольких схем подключения.

Подключение одного светодиода

Для расчета емкости конде-ра нам понадобится:

  • Максимальный ток диода – 0,15А;
  • напряжение питания диода – 3,5В;
  • амплитудное напряжение сети — 320В.

Для таких условий параметры конде-ра: 1,5мкФ, 400В.

Подключение нескольких светодиодов

При расчете конденсатора для светодиодной лампы необходимо учитывать, что диоды в ней соединены группами.

  • Напряжение питания для последовательной цепочки – Uсд * количество LED в цепи;
  • сила тока – Iсд * количество параллельных цепочек.

Для примера возьмём модель с шестью параллельными линиями из четырёх последовательных диодов.

Напряжение питания – 4 * 3,5В = 14В;
Сила тока цепи – 0,15А * 6 = 0,9А;

Для этой схемы параметры конде-ра: 9мкФ, 400В.

Простая схема блока питания светодиодов с конденсатором

Разберём устройство без трансформаторного блока питания для светодиодов на примере фабричного драйвера LED ламы.

  • R1 – резистор на 1Вт, который уменьшает значимость перепадов напряжения в сети;
  • R2,C2 – конде-р служит в качестве токоограничителя, а резистор для его разрядки после отключения от сети;
  • C3 – сглаживающий конде-р, для уменьшения пульсации света;
  • R3 – служит для ограничения перепадов напряжения после преобразования, но более целесообразно вместо него установить стабилитрон.

Какой конденсатор можно использовать для балласта?

В качестве гасящих конденсаторов для светодиодов используются керамические элементы рассчитанные на 400-500В. Использование электролитических (полярных) конденсаторов недопустимо.

Меры предосторожности

Безтрансформаторные схемы не имеют гальванической развязки. Сила тока цепи при появлении дополнительного сопротивления, например прикосновение рукой с оголённому контакту в цепи, может значительно увеличится, став причиной электротравмы.

Как рассчитать и подобрать гасящий конденсатор

В самом начале темы, относительно подбора гасящего конденсатора, рассмотрим цепь, состоящую из резистора и конденсатора, последовательно подключенных к сети. Полное сопротивление такой цепи будет равно:

Эффективная величина тока, соответственно, находится по закону Ома, напряжение сети делить на полное сопротивление цепи:

В результате для тока нагрузки и входного и выходного напряжений получим следующее соотношение:

А если напряжение на выходе достаточно мало, то мы имеем право считать эффективное значение тока приблизительно равным:

Однако давайте рассмотрим с практической точки зрения вопрос подбора гасящего конденсатора для включения в сеть переменного тока нагрузки, рассчитанной на напряжение меньшее стандартного сетевого.

Допустим, у нас есть лампа накаливания мощностью 100 Вт, рассчитанная на напряжение 36 вольт, и нам по какой-то невероятной причине необходимо запитать ее от бытовой сети 220 вольт. Лампе необходим эффективный ток, равный:

Тогда емкость необходимого гасящего конденсатора окажется равна:

Имея такой конденсатор, мы обретаем надежду получить нормальное свечение лампы, рассчитываем, что она по крайней мере не перегорит. Такой подход, когда мы исходим из эффективного значения тока, приемлем для активных нагрузок, таких как лампа или обогреватель.

Но что делать, если нагрузка нелинейна и включена через диодный мост? Допустим, необходимо зарядить свинцово-кислотный аккумулятор. Что тогда? Тогда зарядный ток окажется для батареи пульсирующим, и его значение будет меньше эффективного значения:

Иногда радиолюбителю может быть полезным источник питания, в котором гасящий конденсатор включен последовательно с диодным мостом, на выходе которого имеется в свою очередь конденсатор фильтра значительной емкости, к которому присоединена нагрузка постоянного тока. Получается своеобразный бестрансформаторный источник питания с конденсатором вместо понижающего трансформатора:

Здесь нагрузка в целом будет нелинейной, а ток станет уже далеко не синусоидальным, и вести расчеты необходимо будет несколько иначе. Дело в том, что сглаживающий конденсатор с диодным мостом и нагрузкой внешне проявят себя как симметричный стабилитрон, ведь пульсации при значительной емкости фильтра станут пренебрежимо малыми.

Когда напряжение на конденсаторе будет меньше какого-то значения — мост будет закрыт, а если выше — ток пойдет, но напряжение на выходе моста расти не будет. Рассмотрим процесс более подробно с графиками:

В момент времени t1 напряжение сети достигло амплитуды, конденсатор C1 также заряжен в этот момент до максимально возможного значения минус падение напряжения на мосте, которое будет равно приблизительно выходному напряжению. Ток через конденсатор C1 равен в этот момент нулю. Далее напряжение в сети стало уменьшаться, напряжение на мосте — тоже, а на конденсаторе C1 оно пока не изменяется, да и ток через конденсатор C1 пока что нулевой.

Далее напряжение на мосте меняет знак, стремясь уменьшиться до минус Uвх, и в тот момент через конденсатор C1 и через диодный мост устремляется ток. Далее напряжение на выходе моста не меняется, а ток в последовательной цепочке зависит от скорости изменения питающего напряжения, словно к сети подключен только конденсатор C1.

Читайте также  Кабель для света в квартире

По достижении сетевой синусоидой противоположной амплитуды, ток через C1 опять становится равным нулю и процесс пойдет по кругу, повторяясь каждые пол периода. Очевидно, что ток течет через диодный мост только в промежутке между t2 и t3, и величину среднего тока можно вычислить, определив площадь закрашенной фигуры под синусоидой, которая будет равна:

Если выходное напряжение схемы достаточно мало, то данная формула приближается к полученной ранее. Если же выходной ток положить равным нулю, то получим:

То есть при обрыве нагрузки выходное напряжение станет равно амплитуде сетевого. Значит следует применять такие компоненты в схеме, чтобы каждый из них выдержал бы амплитуду напряжения питания.

Кстати, при снижении тока нагрузки на 10%, выражение в скобках уменьшится на 10%, то есть напряжение на выходе увеличится примерно на 30 вольт, если изначально имеем дело, скажем, с 220 вольтами на входе и с 10 вольтами на выходе. Таким образом, использование стабилитрона параллельно нагрузке строго обязательно.

А что если выпрямитель однополупериодный? Тогда ток необходимо рассчитывать по такой формуле:

При небольших значениях выходного напряжения ток нагрузки станет вдвое меньшим, чем при выпрямлении полным мостом. А напряжение на выходе без нагрузки окажется вдвое большим, так как здесь мы имеем дело с удвоителем напряжения.

Итак, источник питания с гасящим конденсатором рассчитывается в следующем порядке:

Первым делом выбирают, каким будет выходное напряжение.

Затем определяют максимальный и минимальный токи нагрузки.

Далее определяют максимум и минимум напряжения питания.

Если ток нагрузки предполагается непостоянный, стабилитрон параллельно нагрузке обязателен!

Наконец, вычисляют емкость гасящего конденсатора.

Для схемы с двухполупериодным выпрямлением, для сетевой частоты 50 Гц, емкость находится по следующей формуле:

Полученный по формуле результат округляют в сторону емкости большего номинала (желательно не более 10%).

Следующим шагом находят ток стабилизации стабилитрона для максимального напряжения питания и минимального тока потребления:

Для однополупериодной схемы выпрямления гасящий конденсатор и максимальный ток стабилитрона вычисляют по следующим формулам:

Выбирая гасящий конденсатор, лучше ориентироваться на пленочные и металлобумажные конденсаторы. Конденсаторы пленочные небольшой емкости — до 2,2 мкф на рабочее напряжение от 250 вольт хорошо работают в данных схемах при питании от сети 220 вольт. Если же вам нужна большая емкость (более 10 мкф) — лучше выбрать конденсатор на рабочее напряжение от 500 вольт.

Как рассчитать емкость гасящего конденсатора простого блока питания

Блок питания с гасящим конденсатором представляет собой простейший вариант запитать какое нибудь маломощное устройство.

При всей своей простоте он имеет и два минуса:
1. Он гальванически связан с сетью! потому такие БП используются там, где нет вероятности прикосновения к контактам.
2. Такой Бп имеет не очень большой выходной ток. При увеличении выходного тока надо увеличивать емкость гасящего конденсатора и его габариты становятся существенными.

Внимание, будьте очень аккуратны, не прикасайтесь к контактам этого БП когда он включен.

Простейшая схема данного БП выглядит так:

Как можно увидеть из схемы, последовательно с сетью стоит конденсатор. Он то и является балластом,, на котором гасится часть напряжения.
Конденсатор не пропускает постоянный ток, но так как в сети переменный и конденсатор в итоге постоянно перезаряжется, то и получается, что в таком случае ток на выходе есть. Причем сила тока напрямую зависит от емкости конденсатора.

Собственно потому для расчета емкости конденсатора необходимо знать как минимум выходной ток нашего будущего БП, причем надо учесть и потребление стабилизатора, обычно это несколько мА.

И так. Есть две формулы, сложная и простая.
Сложная — подходит для расчета при произвольном выходном напряжении.
Простая — подходит в ситуациях, когда выходное напряжение не более 10% от входного.
I — выходной ток нашего БП
Uвх — напряжение сети, например 220 Вольт
Uвых — напряжение на выходе БП (или до стабилизаторе если такой есть), например 12 Вольт.
С — собственно искомая емкость.

Например я хочу сделать БП с выходным током до 150мА. Пример схемы приведен выше, вариант применения — радиопульт с питанием 5 Вольт + реле на 12 Вольт.
Подставляем наши 0.15 Ампера и получаем емкость 2.18мкФ, можно взять ближайший номинал из стандартных — 2,2мкФ, ну или «по импортному» — 225.

Все как бы вроде хорошо, схема простая, но есть несколько минусов, которые надо исключить:
1. Бросок тока при включении может сжечь диодный мост.
2. При выходе из строя конденсатора может быть КЗ
3. Если оставить как есть, то вполне можно получить разряд от входного конденсатора, так как на нем может долго присутствовать напряжение даже после отключения БП от сети.
4. При снятии нагрузки напряжение на конденсаторе до стабилизатора поднимется до довольно большого значения.

Решения:
1. Резистор R1 последовательно с конденсатором
2. Предохранитель 0.5 Ампера.
3. Резистор R2 параллельно конденсатору.
4. Супрессор на 12 Вольт параллельно конденсатору после диодного моста. Я не рекомендую здесь использовать стабилитроны, супрессоры рассчитаны на большую мощность рассеивания и схема будет работать надежнее.

На схеме красным цветом я выделил новые компоненты, синим — небольшое дополнение в виде светодиода.

Но гасящие конденсаторы используют часто и в дешевых светодиодных лампах. Это плохо, так как у таких ламп меньше надежность и часто высокие пульсации света.
Ниже упрощенный вариант схемы такой лампы.

Попробуем рассчитать емкость для такого применения, но так как напряжение на выходе будет явно больше чем 1/10 от входного, то применим первую формулу.
В качестве выходного напряжения я заложил 48 Вольт, 16 светодиодов по 3 Вольта на каждом. Конечно это все условно, но близко к реальности.
Ток — 20мА, типичный максимальный ток для большинства индикаторных светодиодов.

У меня вышло, что необходим конденсатор емкостью 0.298 мкФ. Ближайший из распространенных номиналов — 0.27 или 0.33мкФ. Первый встречается гораздо реже, а второй уже будет давать превышение тока, потому можно составить конденсатор из двух параллельных, например по 0.15мкФ. При параллельном включении емкость складывается.

С емкостью разобрались, осталось еще пара моментов:
1. Напряжение конденсатора
2. Тип конденсатора.

С напряжением все просто, можно применить конденсатор на 400 Вольт, но надежнее на 630, хоть они и имеют больше размер.

С типом чуть сложнее. Для такого применения лучше использовать конденсаторы, которые изначально предназначены для такого использования, например К73-17, CL21, X2
На фото конденсатор CL21

А это более надежный вариант, не смотрите что на нем указано 280 Вольт, у него это значение переменного действующего напряжения и он будет работать надежнее, чем К73-17 или CL21.

Такие конденсаторы могут выглядеть и так

А вот теперь можно еще раз внимательно посмотреть, что надо для того, чтобы собрать такой «простой» блок питания и решить, нужен ли он.
В некоторых ситуациях да, он поможет, но он имеет кучу минусов, потому на мой взгляд лучше применить просто небольшой импульсный блок питания, который уже имеет стабилизированное выходное напряжение, гальваническую изоляцию и больший выходной ток.
Как пример таких блоков питания я могу дать ссылку на подробный обзор четырех вариантов, с тестами, схемами и осмотров.

Читайте также  Запуск лампы дневного света без дросселя

Но можно поступить еще лучше. Сейчас получили распространение монолитные блоки питания. По сути кубик, в котором находится миниатюрный БП
Например HLK-PM01 производства Hi-link, стоимостью около двух долларов за штуку.

Или их китайский аналог TSP-05 производства Tenstar robot. Они немного дешевле, 1.93 доллара за штуку.
Практика показала, что качество у них сопоставимое.

Как я писал выше, они представляют из себя импульсный Бп в модульном исполнении. БП в пластмассовом корпусе залитый эпоксидной смолой.
Выпускаются на разные напряжения и способны поддерживать его на довольно стабильном уровне.

Внутренности поближе, на фото вариант от Hi-link

На этом вроде все. Надеюсь, что статья была полезна, постараюсь и в будущем находить интересные темы. Также интересны пожелания, что хотелось бы видеть в рубрике — Начинающим.

Falconist. Мемуары

Ещё один конденсаторный балласт для LED-ламп

Запись опубликована Falconist · 18 сентября 2018

6 598 просмотров

Описываемое ниже техническое решение, в принципе, составляет предмет изобретения, т.к. его аналоги мне не встречались. Однако, по зрелому размышлению, поскольку оно не устраняет всех недостатков конденсаторных балластов для светодиодных ламп, то и не заслуживает оформления в виде отдельной статьи. В то же время, сам принцип представляется достаточно оригинальным и может быть основой для дальнейших разработок в этом направлении.

Балласты для светодиодных ламп на гасящем конденсаторе, имеют существенный недостаток, перечеркивающий их положительные качества (простота и дешевизна). Он заключается в протекании экстра-токов через нагрузку (светодиоды) при подаче питающего напряжения в произвольный момент сетевой синусоиды. Результатом этого является сгорание светодиодов и выход лампы из строя. Типичная схема такого балласта приведена ниже:

Известны способы коррекции этой проблемы путем встраивания стабилизатора тока между гасящим конденсатором и светодиодами ( http://forum.cxem.net/index.php?/topic/144027-модернизация-светодиодной-лампы/ ; http://kazus.ru/forums/showthread.php?t=107959 ). Решение само по себе неплохое, поэтому по сути своей критике не подвергается, а вместо него предлагается альтернативный вариант, заключающийся в принципиальном устранении возможности подачи напряжения питания в любой другой момент сетевой синусоиды, кроме момента ее перехода через ноль.

Обеспечивается это применением оптоизолятора серии MOC30xx со встроенным детектором нуля сетевого напряжения. Схема приведена ниже:

При сравнении ее с приведенной выше «типичной» схемой, видно, что добавлены три детали: оптоизолятор U1, резистор R4 и конденсатор C3.

Работает эта схема следующим образом. Сразу же после подачи напряжения питания оптосимистор оптрона (выводы 4-6) закрыт и конденсатор С2 начитает заряжаться через дополнительный конденсатор С3 относительно малой емкости. Когда напряжение на нем достигнет порога открывания светодиода оптрона (выводы 1-2), оптотиристор откроется в начале следующей полуволны сетевого напряжения и напряжение питания начнет поступать на нагрузку (светодиоды) через «основной» конденсатор С1.

Для данной схемы совершенно спокойно подходят также оптроны MOC3043 и MOC3083. Важно только, чтобы в конце маркировки стояла «тройка», означающая, что для полного открывания достаточно всего 5 мА тока через светодиод. Хотя в настоящее время оптроны MOC304х, позиционируются, как для применения при напряжении питания 120. 127 В, но в начале 2000-х предназначались для сетей с напряжением 220. 240 В. А оптроны MOC308х, очевидно, избыточны. Аналогично дело обстоит и с оптронами MOC302х В сценических осветителях для галогенных ламп 500 Вт моей разработки уже почти 15 лет успешно работают оптроны MOC3023 без единого «вылета».

Схема апробирована «в железе» на подопытной «кошке» — светодиодной лампе «кукуруза» с вышедшим из строя и перемкнутым одним светодиодом (фото выполнено в процессе переделки):

Запитывалась она от сетевого напряжения через реле, управляемое импульсным коммутатором, работающим с частотой около 0,5 Гц, в течение всего воскресного дня (около 10 часов). По поводу мигания на балконе пришлось выдержать войнушку с женой , но консенсус (помещение в светонепроницаемую коробку) был достигнут и эксперимент завершился успешно, а именно, лампа выдержала более 15000 включений/выключений, не выйдя при этом из строя. Что и требовалось доказать.

Я прекрасно понимаю недостатки этой схемы, а именно, повышенный уровень пульсаций светового потока (с конденсатором С2 емкостью 10 мкф):

а также недостаточную защиту от импульсных помех, накладывающихся на сетевую синусоиду. В то же время, дребезг сухих контактов для нее не страшен — оптосимистор при прекращении протекания тока через него запирается и открывается снова только в начале следующего полупериода.

Естественно, лампы с подобным уровнем пульсаций светового потока крайне не рекомендую для применения в жилых и рабочих помещениях, если важны здоровые глаза (жилые комнаты, кухня, рабочий стол и т.п.), однако, вполне приемлемы в подсобных помещениях (прихожая, туалет, ванная, лестничная клетка и т.п.).

Схема подключения светодиода к сети 220 вольт

Светоиндикация – это неотъемлемая часть электроники, с помощью которой человек легко понимает текущее состояние прибора. В бытовых электронных устройствах роль индикации, выполняет светодиод, установленный во вторичной цепи питания, на выходе трансформатора или стабилизатора. Однако в быту используется и множество простых электронных конструкций, неимеющих преобразователя, индикатор в которых был бы нелишним дополнением. Например, вмонтированный в клавишу настенного выключателя светодиод, стал бы отличным ориентиром расположения выключателя ночью. А светодиод в корпусе удлинителя с розетками будет сигнализировать о наличии его включения в электросеть 220 В.

Ниже представлено несколько простых схем, с помощью которых даже человек с минимальным запасом знаний электротехники сможет подключить светодиод к сети переменного тока.

Схемы подключения

Светодиод – это разновидность полупроводниковых диодов с напряжением и током питания намного меньшим, чем в бытовой электросети. При прямом подключении в сеть 220 вольт, он мгновенно выйдет из строя. Поэтому светоизлучающий диод обязательно подключается только через токоограничивающий элемент. Наиболее дешевыми и простыми в сборке является схемы с понижающим элементом в виде резистора или конденсатора.

Важный момент, на который нужно обратить внимание при подключении светодиода в сеть переменного тока – это ограничение обратного напряжения. С этой задачей легко справляется любой кремниевый диод, рассчитанный на ток не менее того, что течет в цепи. Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду.

Существует мнение, что можно обойтись без ограничения обратного напряжения, так как электрический пробой не вызывает повреждения светоизлучающего диода. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода.

Вместо кремниевого диода можно использовать второй светоизлучающий диод с аналогичным прямым током, который подключается обратной полярностью параллельно первому светодиоду.

Отрицательной стороной схем с токоограничивающим резистором является необходимость в рассеивании большой мощности. Эта проблема становится особо актуальной, в случае подключения нагрузки с большим потребляемым током. Решается данная проблема путем замены резистора на неполярный конденсатор, который в подобных схемах называют балластным или гасящим.

Включенный в сеть переменного тока неполярный конденсатор, ведет себя как сопротивление, но не рассеивает потребляемую мощность в виде тепла.

В данных схемах, при выключении питания, конденсатор остается не разряженным, что создает угрозу поражения электрическим током. Данная проблема легко решается путем подключения к конденсатору шунтирующего резистора мощностью 0,5 ватт с сопротивлением не менее 240 кОм.

Читайте также  Как рассчитать силу тока при известной мощности?

Расчет резистора для светодиода

Во всех выше представленных схемах с токоограничивающим резистором расчет сопротивления производится согласно закону Ома: R = U/I, где U – это напряжение питания, I – рабочий ток светодиода. Рассеиваемая резистором мощность равна P = U * I. Эти данные можно рассчитать при помощи онлайн калькулятора.

Важно. Если планируется использовать схему в корпусе с низкой конвекцией, рекомендуется увеличить максимальное значение рассеиваемой резистором мощности на 30%.

Расчет гасящего конденсатора для светодиода

Расчёт ёмкости гасящего конденсатора (в мкФ) производится по следующей формуле: C = 3200*I/U, где I – это ток нагрузки, U – напряжение питания. Данная формула является упрощенной, но ее точности достаточно для последовательного подключения 1-5 слаботочных светодиодов.

Важно. Для защиты схемы от перепадов напряжения и импульсных помех, гасящий конденсатор нужно выбирать с рабочим напряжением не менее 400 В.

Конденсатор лучше использовать керамический типа К73–17 с рабочим напряжением более 400 В или его импортный аналог. Нельзя использовать электролитические (полярные) конденсаторы.

Это нужно знать

Главное – это помнить о технике безопасности. Представленные схемы питаются от 220 В сети переменного тока, поэтому требуют во время сборки особого внимания.

Подключение светодиода в сеть должно осуществляться в четком соответствии с принципиальной схемой. Отклонение от схемы или небрежность может привести к короткому замыканию или выходу из строя отдельных деталей.

При первом включении, сборки рекомендуется дать поработать некоторое время, чтобы убедиться в ее стабильности и отсутствии сильного нагрева элементов.

Для повышения надёжности устройства рекомендуется использовать заранее проверенные детали с запасом по предельно допустимым значениям напряжения и мощности.

Собирать бестрансформаторные источники питания следует внимательно и помнить, что они не имеют гальванической развязки с сетью. Готовая схема должна быть надёжно изолирована от соседних металлических деталей и защищена от случайного прикосновения. Демонтировать её можно только с отключенным напряжением питания.

Небольшой эксперимент

Чтобы немного разбавить скучные схемы, предлагаем ознакомится с небольшим экспериментом, который будет интересен как начинающим радиолюбителям, так и опытным мастерам.

Светлый угол — светодиоды

. форум о светодиодах и свете

  • Список форумовСВЕТОДИОДЫ — практическое применениеПитание и подключение светодиодов
  • Изменить размер шрифта
  • Для печати
  • FAQ
  • Регистрация
  • Вход

Схема с гасящим конденсатором, расчет.

Re: Схема с гасящим конденсатором, расчет.

mikes357 » 19 янв 2015, 19:56

Re: Схема с гасящим конденсатором, расчет.

AlexS » 20 янв 2015, 01:52

Re: Схема с гасящим конденсатором, расчет.

sasaa » 20 янв 2015, 14:17

Re: Схема с гасящим конденсатором, расчет.

deputat » 24 янв 2015, 15:35


Как я понял, это наиболее удачный вариант питания последовательно соединенных 60-70 светодиодов 0,02А.
Имеется в наличии несколько сотен мягко-белых светодиодов 0,02А 3,2-3,6V.
Вот таких:

По расчету ТС у меня выходит 60 диодов при С1=0,68мкФ или 70 диодов при С1=1мкФ. Рассчитываю, принимая падение напряжения на диоде 3,2В
При увеличении емкости С1 и соответственно количества диодов, растет разброс по току.

Вопрос1: по какому напряжению лучше рассчитывать к-во диодов, 3,2 3,4 или 3,6?

Вопрос2: как в этой схеме рассчитать параллельное подключение 2-3 цепочек светодиодов по 60шт?

Re: Схема с гасящим конденсатором, расчет.

Invisible_Light » 24 янв 2015, 17:20

Re: Схема с гасящим конденсатором, расчет.

deputat » 24 янв 2015, 20:12

Спасибо, понял. Еще вопрос: На что принципиально влияют номиналы резисторов R1,R2? В смысле, допустим ли разброс параметров R1 20-30 Ом и R2 300-600k ?
R3 я так понял не обязателен?

По освещенности этими диодами.
Я использую в качестве аварийного 12V освещения вот такие блины на 48 диодов из CD и крышки от мороженного 1кг (подходит идеально)

Свет достаточно рассеянный и ровный.

На кухне 7 кв.м. четыре точечных светильника по углам по 30 диодов в каждом светят вполне достаточно.
Я заменил в заводских холодные на теплые диоды. Схема питания аналогичная, гасящий кондер 0,47мкФ на 30 диодов.

На кухне еще круглая таблетка с матовым рефлектором, туда и собираю 60шт в помощь угловым светильникам. А может и 120 понадобится.
Поэтому интересно, как рассчитать параллельное включение 2-х цепочек по 60шт?

Кукурузины планирую в эту люстру (комната 17 кв.м.) вместо экономок.

Если есть опыт установки, подскажите, как лучше разместить эти диоды? БОльшую часть по стенке боченка, или на верхнюю плоскость в потолок?

Re: Схема с гасящим конденсатором, расчет.

Invisible_Light » 24 янв 2015, 20:32

Re: Схема с гасящим конденсатором, расчет.

deputat » 24 янв 2015, 20:42

По формуле топикстартера не рассчитывается. Если по формуле 0,68мкФ на 60 диодов, означает ли это, что для параллельного подключения двух цепочек надо запараллелить два C1 по 0,68мкФ?

И по резисторам R1 R2 я вопрос задавал. подскажете?

Re: Схема с гасящим конденсатором, расчет.

молодой дед » 24 янв 2015, 21:08

По формуле топикстартера не рассчитывается. Если по формуле 0,68мкФ на 60 диодов, означает ли это, что для параллельного подключения двух цепочек надо запараллелить два C1 по 0,68мкФ?

И по резисторам R1 R2 я вопрос задавал. подскажете?

Лично я расчет делаю по формуле: вложенный файл
R2 может быть в диапазоне 500 к-1Мом, R1- 10-30 ом на токи больше 100ма, на токи до 40ма ставлю 150-200ом.

Re: Схема с гасящим конденсатором, расчет.

Invisible_Light » 24 янв 2015, 21:09

Re: Схема с гасящим конденсатором, расчет.

молодой дед » 24 янв 2015, 21:20

Re: Схема с гасящим конденсатором, расчет.

deputat » 25 янв 2015, 01:28

Всем спасибо, сделал, работает.

Формулу вывел в Exel, для удобства.

Re: Схема с гасящим конденсатором, расчет.

молодой дед » 25 янв 2015, 02:04

Re: Схема с гасящим конденсатором, расчет.

ВикНик » 25 янв 2015, 02:07

Re: Схема с гасящим конденсатором, расчет.

молодой дед » 25 янв 2015, 02:16