Преобразователь напряжения на микросхеме ir2153

Преобразователь напряжения на микросхеме ir2153

9zip.ru Ламповый звук hi-end и ретро электроника Импульсный анодно-накальный преобразователь на IR2153 для лампового усилителя

Материал этой статьи требует обязательного допиливания. И твоя помощь в этом нужна очень сильно.

После фейла с обратноходовым анодным преобразователем мы обратились к прямоходовым. Изучив вопрос и проведя эксперименты, стало понятно, что оптимальным вариантом здесь является двухтактный преобразователь. Если использовать полумостовую топологию, то не требуется первичная обмотка силового трансформатора со средней точкой. А если на выходе не экономить диоды и поставить полноценный мостик, то и во вторичке тоже не требуется средняя точка. И фазировку соблюдать не нужно, мотай, как хочешь. И количество выходных напряжений можно делать любым: как вторички намотаешь, столько напряжений и будет. Таким образом, можно получить:

  • высокое анодное напряжение — 250..450В 0,2А
  • напряжение накала — 6,3В 3А
  • напряжение для цифрового показометра

Проще всего реализовать такой преобразователь можно на популярной микросхеме IR2153 по типовой схеме включения. При её использовании не нужна дополнительная обмотка на трансформаторе для самопитания. Единственным неудобством является отсутствие режима «мягкого» старта у данной микросхемы. С этим придётся смириться, ведь если реализовывать что-то подобное, то теряется важное преимущество — простота схемы, и, как следствие — компактность печатной платы. А ещё здесь можно наконец-то применить 200-вольтовые электролитические конденсаторы, которых, наверное, у каждого накопилось с полведра.

Ещё одной особенностью является отсутствие стабилизации выходных напряжений: при изменении напряжения сети, они также будут плавать. Оно и неудивительно, ведь IR2153 — это не ШИМ-контроллер, а всего лишь что-то вроде таймера NE555 с выходным каскадом. Реализовать тут стабилизацию непросто. Но ради справедливости стоит напомнить, что обычные источники анодного и накального напряжений на «железном» трансформаторе ведут себя в таких случаях аналогично.

Раз уж мы упомянули «железные» трансформаторы, то стоит заметить, что импульсные анодно-накальные преобразователи почему-то непопулярны. По-крайней мере, нам не удалось найти таких конструкции в интернете. Есть правда несколько примеров построения подобных блоков питания на основе электронных балластов. Считается, что импульсное питание в ламповых конструкциях — это «не труъ». Хотя, на фотографиях законченных усилителей «на продажу» иногда видно, что некоторые товарищи успешно применяют импульсные блоки питания в своих конструкциях.


нажми для увеличения
Кратко пройдёмся по схеме блока питания. Резистор R4 предназначен для запуска микросхемы. Во время работы он нагревается, поэтому мощность должна быть не менее 2Вт. Цепочка R5C9 — времязадающая, определяет частоту работы микросхемы. В данном случае — это 30кГц. Чем выше эта частота, тем выше требования к ферриту трансформатора и силовым транзисторам. Стабилитроны в затворах этих транзисторов защищают, во-первых, сами затворы от выбросов напряжения, которые, как говорят, бывают у IR2153 во время работы, а, во-вторых, — защитят саму микросхему в случае пробоя транзисторов.

Расчёт силового трансформатора проведён для магнитопровода ER 42/22/15 N87 без зазора и диодов с падением напряжения 1 вольт:

  • первичная обмотка: 31 виток проводом диаметром 0,6мм
  • вторичная обмотка анодного напряжения на 250В 80. 200мА: 55 витков проводом диаметром 0,25мм
  • накальная обмотка: 2 витка диаметром 1мм

И тут начинается интересное: расчётное количество витков накальной обмотки — 1,79, т.к. нецелое. Намотать такое невозможно, поэтому программа округлила это число до 2. При этом номинальное напряжение получается 7,3 вольта.

По этой причине пришлось увеличить количество витков в первичке с 31 до 40, тогда при двух витках накальной обмотки получились как раз нужные 6,3 вольта. Первичку можно сделать и с отводами, а печатную плату спроектировать так, чтобы перемычками можно было выбирать нужное количество витков.

Выбор нужного анодного напряжения выбиратеся аналогично: вторичка сделана с отводами, нужный отвод подключается при помощи джампера.

Следует заметить, что у данного блока питания напряжения на холостом ходу выше, чем под нагрузкой. Поэтому стоит выбирать электролитические конденсаторы с запасом по напряжению. И проводить замеры, разумеется, также следует под нагрузкой. В простейшем случае анодной нагрузкой может служить лампочка накаливания на 220В 25Вт, а накальной — «цементный» резистор на 2,2-4,7 Ом.

Выходной каскад у IR2153 весьма слабый, силовые транзисторы нужно тщательно выбирать. Общепринято ставить сюда IRF740, но их ещё надо поискать. Помимо таких очевидных параметров, как напряжение и ток, следует выбирать транзисторы с малым зарядом затвора. В нашем случае подошли китайские FQPF13N50 с Aliexpress. Честно говоря, особых надежд на них не было, т.к. они куплены за копейки и имеют признаки перемаркировки. Однако, в данной схеме заработали даже без нагрева.

Мы нашли готовую разводку печатной платы в интернете и взяли от неё высоковольтную часть. Эта идея оказалась не самой лучшей, потому что разведена эта плата под какие-то специфические плёночные конденсаторы в фильтре питания — ни один из имеющихся туда не влез. Поэтому пришлось собирать блок питания пока без них.


Так как печатная плата для преобразователя достаточно компактная, она не позволяет установить электролитические конденсаторы большой суммарной ёмкости как на входе, так и на выходе. По этой причине пульсации с частотой 100Гц всё равно будут присутствовать в выходном напряжении. Для лампового усилителя это очень критично, и наращивание сглаживающих ёмкостей здесь — не лучшее решение в виду габаритов и дороговизны.

Для устранения пульсаций предлагается использовать так называемый «электронный дроссель», который полностью их убирает.

При работе на упомянутую выше нагрузку, преобразователь показал хорошую работу. А наличие джамперов выбора анодного напряжения делает его унинверсальным для применения практически в любом ламповом усилителе.

Импульсный источник питания для TDA7294 на IR2153

Приспичило как-то мне собрать усилитель на TDA7294. Причем собрать нужно было как можно скорее. День рождения был на носу, и планировалось отметить его на открытом воздухе, под звуки, испускаемые моими раритетными колонками Радиотехника S30.

Усилитель собран был незамедлительно. Кому интересно, читайте статью «Усилитель НЧ на TDA7294«. Пришло время сборки импульсного источника питания. Крайне важны были малые габариты источника.

Была выбрана наипростейшая схема импульсного источника питания на ir2153.

В интернете полно аналогичных схем чуть-чуть отличающихся друг от друга. Схемы не все рабочие, что в сети. Это я тоже не сразу понял, поэтому, немного намучился. Приведенная мною схема полностью рабочая. Соблюдая все номиналы данной схемы, и используя мою печатную плату, сэкономите время на исправлении своих и чужих ошибок.

Более сложный аналог данной схемы описан в статье «Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт«. Эту схему отличает наличие блока защиты от перегрузок и плавный запуск.

Простота схемы ИИП для TDA7294 на ir2153 позволяет новичкам с легкостью повторить её. Еще один плюс, это габариты. Плата импульсного источника питания имеет размеры 80мм в ширину и 80мм в высоту.

Принцип работы схемы.
Как работает блок питания на ir2153 описано в статье “Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт”.

На принципиальной схеме не нарисован варистор, но в печатной плате он есть. В принципе его можно не ставить, так как роли почти не играет, он служит защитой от скачков напряжения в сети (никаких перемычек не нужно впаивать, просто не ставим варистор и все).

Термистор NTC при первом включении ограничивает скачок тока, при зарядке сетевых и выходных электролитов, через некоторое время он нагревается и его сопротивление уменьшается. Простая, но не совсем надежная защита. При повторном включении, когда термистор нагретый, защита уже не эффективна. Но как показала практика, блок питания надежен и не выходит из строя, как пишут некоторые люди в комментариях.

Времязадающие элементы R2 и C3 выбраны таким образом, чтобы драйвер обеспечивал генерацию импульсов с частотой около 70 кГц. Программа для расчета R2 и C3 находится под статьей, можете рассчитать под нужную вам частоту.

Элементы.

ОБОЗНАЧЕНИЕ ТИП НОМИНАЛ КОЛИЧЕСТВО КОММЕНТАРИЙ
Драйвер питания IR2153 1
VT1,VT2 MOSFET — транзистор IRF740 2
VDS1 Диодный мост RS607 1 6А 1000В
VDR1 Варистор MYG14-431 1 Можно не ставить
NTC Термистор 5D-9 1 Или другой на 5Ом
R1 Резистор 2Вт 18кОм 1
R2 Резистор 0,25Вт HER108 10кОм
R3,R4 Резистор 0,25Вт 33 Ом 2
C1,C2 Электролит 220мкФ 220В 2
C3 Конденсатор неполярный 1нФ 1 Керамика любое напряж.
C4 Конденсатор неполярный 0,1 мкФ 1 Керамика любое напряж.
C5 Электролит 220мкФ 16В 1
C6 Конденсатор неполярный 0,33 мкФ 1 Керамика любое напряж.
C7 Конденсатор неполярный 1мкФ 400В 1 Пленка
C8-C9 Электролит 470 мкФ 50В 2
C10-C11 Конденсатор неполярный 0,1 мкФ 2 Пленка
VD1 Диод HER108 1
VD2 Импульсный диод FR107,FR157 1 Любой другой импульсный
VD3-VD6 Диод Шоттки КД213А 4

Список компонентов в PDF формате СКАЧАТЬ

Трансформатор.
Самым трудным этапом сборки является расчёт и напитка импульсного трансформатора. Подробно рассказывать про технологию расчёта и намотки транса я не буду, так как уже рассказывал ранее, читайте статью ”Расчет и намотка импульсного трансформатора”. Также рекомендую прочесть статью «Как перемотать трансформатор из блока питания ПК«

На этом этапе поделюсь немного опытом. В статье, ссылка на которую расположена чуть выше, описан метод намотки вторички с отводом от середины, сдвоенным проводом (если по расчетам вторичка имеет одну жилу) а потом соединении их в среднюю точку. Это дает синхронность, то есть, в обоих плечах будет одинаковое напряжение. Вторичная обмотка трансформатора для этого устройства должна иметь две жилы диаметром 0,85 мм, чтобы обеспечить нужную нам мощность (по моим расчетам, у вас может иметь и одну жилу).

Поэтому, если мотать методом из статьи выше, то пришлось бы мотать сразу 4-мя проводами, это крайне неудобно.

Читайте также  Нагрузочный резистор для светодиода в автомобиль

Я решил мотать двумя проводами, то есть, сначала мотал одно плечо двумя проводами, потом изоляция и далее второе плечо двумя проводами.

Таким способом советуют не мотать, из-за не синхронной намотки будет разное напряжение. У меня же получилось совсем одинаковое напряжение, и мотать мне было легче, бублик маленький.

Ниже я приведу некоторые намоточные данные.

Диаметр провода и первичной и вторичной обмотки 0,85 мм. Магнитопровод склеен из двух колец размером 28мм*16мм*9мм и магнитной проницаемостью 2000НМ.

Первичная обмотка содержит 39 витков, хотя по расчетам было сорок с копейками, ноне влезли они. Вследствие чего, пришлось уменьшить количество витков вторичной обмотки, относительно расчетов.

Итак, вторичная обмотка содержит 8 + 8 витков. Это значит 8 витков, далее отвод (это будет средняя точка), изоляция, потом еще 8 витков.

Вторичная обмотка мотается двумя жилами диаметром 0,85 мм.

(мотаем 8 витков вторички)

(соединяем конец 8-го витка с проводом, чтобы сделать отвод, и мотаем еще 8 витков в ту же сторону)

Изоляцию берем по вкусу (тряпочную изоленту, киперную или ФУМ ленту, лавсановую пленку или скотч). Я использую лавсановую пленку из обрезков витой пары.

Все обмотки должны мотаться в одном выбранном вами направлении.

Охлаждение.

Радиатором для ключей у меня является передняя панелька усилителя. Исполнена она из дюрали, высота 47мм, ширина 92мм, толщина 7мм. При испытаниях и дальнейшей эксплуатации одного канала TDA7294, ключи теплые, не горячие.

Ключи установлены на радиатор через силиконовые прокладки и диэлектрические втулки.

Шоттки без радиаторов. Греются не сильно, опять же при эксплуатации одного канала, трансформатор не горячий.

Сборка данной схемы на трансформаторе от блока питания персонального компьютера описана в статье «Самый простой двухполярный ИИП«.

Список компонентов для ИИП на IR2153 СКАЧАТЬ

Печатная плата ИИП на IR2153 СКАЧАТЬ

Калькулятор расчета времязадающих элементов IR2153 СКАЧАТЬ

Схемы импульсных блоков питания на микросхемах IR2153
с устройством мягкого пуска и защитой от токовых перегрузок и КЗ. Двуполярный ИБП для питания усилителей, а так же лабораторный с регулируемым выходным напряжением.

— Интересно, а что можно увидеть, если низе́нько пролететь над глухим бурятским селением тарбагатайского района, вооружившись комплексом радиолокационного наблюдения?
— Что, что? Узкораспахнутые глаза нескольких офонаревших финно-угров, а так же электромагнитную мешанину помех в полосе частот 1. 100 МГц.
Железный конь пришёл на смену крестьянской лошадке! Энергосберегающие лампы, телевизоры, компьютеры, зарядные устройства и прочий хай-тек с импульсными источниками питания — на смену лампочке Ильича!
Вот и приходится бедолаге-радиолюбителю уживаться с разномастными ИБП, излучающими в эфир интенсивный высокочастотный шлак во всех КВ-диапазонах.
А что тут попишешь? Прогресс как-никак. технологичность, блин. массогабариты, мать их за ногу.

И чтобы не застрять на обочине инновационного пути, поклонимся и припадём к импульсным блокам питания и мы. А начнём с двуполярного импульсного источника для мощного усилителя мощности.

Что нужно правильному ИПБ для комфортного выполнения своих непосредственных обязанностей?

1. Мягкий, он же плавный, пуск при включении импульсного блока питания, предотвращающий превышение допустимых токов полупроводников от работы на фактически короткозамкнутую нагрузку, образующуюся вследствие мгновенного заряда ёмкостей выпрямителя.
Часто используемые для этих целей термисторы не так уж и хороши, в силу инерционной зависимости изменения сопротивления от температуры. Результат — кирдык блоку питания из-за того, что просто выключили и тут же включили БП тумблером.

2. Правильная и быстрая защита ИБП от токовых перегрузок и КЗ, полностью отключающая устройство от сети при возникновении нештатных ситуаций.
Распространённое шунтирование на землю точки питания микросхемы-драйвера, управляющего ключевыми транзисторами, может выручить далеко не во всех ситуациях. Слабым звеном здесь оказывается наличие электролитического конденсатора в цепи питания, приводящего к существенной задержке такого обесточивания микросхемы со всеми вытекающими невесёлыми последствиями.

3. Наличие входных и выходных LC-фильтров для предотвращения проникновения импульсных помех в сеть и нагрузку.

4. Компактность, надёжность и радующая глаз простота исполнения.

Тезисы оформлены без нарушений требований, переходим к схеме электрической принципиальной импульсного блока питания.


Рис.1

Начнём со схемы (Рис.1), обеспечивающей мягкий и плавный пуск ИБП. Она же является устройством защиты импульсного блока питания от токовых перегрузок и КЗ, она же содержит элементы, предотвращающие проникновение импульсных помех в питающую сеть, она же формирует необходимые постоянные напряжения, необходимые для работы драйвера и ключевых транзисторов.

— Так, а что там, собственно-то, осталось? С гулькин хрен! Надо ж было сразу всё рисовать, а не размножать всякие писульки! — резонно зафиксирует мысль подготовленный радиолюбитель.

Торопиться не надо!
Во-первых, приведённая схема сгодится не только для преобразователей, собранных на IR2153, но и для любых других устройств, независимо от используемой элементной базы. Низковольтное напряжение (15В) может быть выбрано любой величины, посредством замены D2 на стабилитрон с соответствующим напряжением пробоя.

Во-вторых, даже при изготовлении источника питания на заявленной в заголовке микросхеме IR2153, имеет серьёзный резон сначала собрать приблуду, приведённую на Рис.1, десяток раз проверить соответствие принципиальной схеме, прозвонить тестером на отсутствие КЗ между дорожками платы, далее, подключившись к сети, убедиться в наличии работоспособности, а затем уже продолжать все дальнейшие манипуляции.
Настройки схема не требует, при отсутствии ошибок сразу запашет как зверь!

А вот теперь можно повеселиться по полной программе! Любые дефективные двигания шаловливыми ручонками при сборке преобразователя, ключевых транзисторов и импульсного трансформатора будут моментально зафиксированы устройством защиты и не приведут к каким-либо серьёзным последствиям для элементов схемы. Ручонки могут пострадать, элементы — вряд ли!

Как это всё работает?

Переключатель S1 — это тумблер без фиксации, алгоритм работы (on)-off-(on), количество контактных групп — 2.
В момент перевода тумблера в состояние «вкл» через сопротивление R1 и двухполупериодный выпрямитель Br1 начинается заряд входного сглаживающего конденсатора C3.
Номинал резистора выбран такой величины, чтобы максимальный импульсный ток, протекающий через элементы в начальный момент включения, не превышал 10А.

По мере заряда конденсатора увеличивается и ток через последовательную цепочку R2, LED1, Ref1, D2. Через несколько десятков миллисекунд этот ток достигает значения, достаточного для включения реле Ref1. После включения реле, его контакты К1 замыкают и R1, и контакты тумблера. Всё — плавный пуск импульсного блока питания завершён, светодиод горит, можно отпускать пипку переключателя.

Выключение блока питания у нас завязано на схеме защиты, реализованной на транзисторах Т1, Т2, включённых по схеме эквивалента тиристора. Какой должна быть эта схема для предотвращения ложных срабатываний, мы подробно рассмотрели на странице Ссылка на страницу .

Схема обладает небольшим и предсказуемым током включения (около 100мкА), что позволяет отказаться от построечных резисторов при выборе необходимого порога срабатывания. Величина сопротивления R=R6IIR7 выбирается исходя из формулы R=0,77/Iср, т.е. в нашем случае Iср=0,77/0,5=1,54А.

Механизмы выключения ИБП — что при нажатии кнопки S1 в положение «выкл», что при срабатывании защиты абсолютно идентичны. Под воздействием напряжения, превышающем пороговый уровень на переходе база-эмиттер транзистора Т1, аналог тиристора переходит в проводящее состояние, верхний вывод реле замыкается на нулевую точку, реле отщёлкивается, блок питания от сети полностью отключается.

П-образный фильтр С1, Др1, С2 служит для предотвращения проникновения импульсных помех в сеть. Я использовал готовый 2х2.2мГн, 2A фирмы Epcos, позволяющий работать с мощностями до 600Вт. Если не влом заняться самообразованием, то можно намотать и самостоятельно на Amidon-овских кольцах их карбонильного железа марок: 26, 38, 40, 45, 52. Всю необходимую информацию можно найти на сайте производителя.

Диодный мост должен быть рассчитан на постоянное обратное напряжение не менее 400В, у меня под рукой оказалась радиодеталь с большим запасом по мощности — BR1004 на 10А.

Реле должно выдерживать необходимый максимальный коммутируемый ток и не гнушаться работой с сетевым напряжением. Ток срабатывания не должен превышать 20мА, как правило в документации такие реле называются — High Sensitive. У меня выбор пал на NRP05-A-12D, 12V / 5A, 250VAC.

Ограничений по максимальной мощности импульсного блока питания у приведённой схемы защиты и плавного пуска — нет. Естественным образом следует озаботиться выбором элементов Др1 и Br1, соответствующих максимальным токам, гуляющим по высоковольтным цепях устройства.

Принято считать, что минимальная величина ёмкости электролитического конденсатора С3 должна составлять 100МкФ на каждые 100Вт мощности. Увеличение этого значения в 1,5 — 2 раза, пойдёт только на пользу характеристикам ИБП, хотя и излишний фанатизм не приветствуется во избежание чрезмерного увеличения массогабаритных характеристик.

Стабилитрон D1 я пририсовал на схеме на всякий пожарный уже в процессе написания статьи для исключения возможного включения реле обратным напряжением, накопленным на С4 в момент срабатывания транзисторной защёлки. В оригинале всё прекрасно работает и без него!

Что-то, как-то слишком многословно получилось.
«Краткость есть душа ума. ». Ну да ладно, продолжим разговор на следующей странице.

Поделки своими руками для автолюбителей

Простой, импульсный блок питания на IR2153

Сегодня поговорим и рассмотрим распространённую схему импульсного источника питания построенную на микросхеме IR2153.

Итак, мы имеем схему импульсного источника питания, которая запитывается от 220 вольт и скажем на выходе у неё появляется некоторое напряжение для запитки чего-либо, то есть, какой-то усилитель, либо какая-то другая конструкция.

По входу у нас 220 переменки, идёт на фильтр L1 с плёночными С1 и С2 конденсаторами, но этот дроссель можно убрать из схемы и просто заменить перемычками, всё прекрасно будет работать и без него.

Дальше напряжение поступает на полноценный двухполупериодный диодный мост, я использовал не готовую диодную сборку, а обычные диоды 1N4007, 4 диода собрал из них диодный мост, на диодном мосту напряжение выпрямляется, но выпрямляется не до конца, потому что там, всё равно остается какая-то полуволна, этот синус поступает на сглаживающий конденсатор, в данном случае здесь 100 микрофарад 400 вольт.

Читайте также  Как рассчитать блок питания для светодиодной ленты?

Сглаживающий конденсатор, если когда поступает на него напряжение мультиметром сделать замер, напряжение будет чуть больше, чем скажем 220 вольт, может быть 250-280 вольт. С чем это связано? — это конденсатор заряжается до своего амплитудного значения, дальше после сглаживающего конденсатора напряжение поступает на схему.

Минус диодного моста у нас получается общий, то есть для запитки всей схемы силовой части и для микросхемы это IR2153, то есть для генератора.

Питание микросхемы осуществляется — плюс на первый вывод, минус на четвертый вывод. Микросхема запитывается через цепочку, R1, VD3, сглаживающий конденсатор С4, который сглаживает помехи от резистора и всей этой цепочки, чтобы микросхема нормально работала.

При подключении и сборки всей схемы необходимым мультиметром проверить выводы на микросхеме 1 + и 4 нога минус напряжение должно быть в районе 15 вольт, тогда микросхема будет нормально работать и генерировать импульсы.

Дальше у нас между 8 и 6 ногой микросхемы стоит пленочный конденсатор (С6) на 220 нанофарад, вообще емкость этого конденсатора подбирается исходя из частоты генератора, то есть в данном случае частота генератора в районе 47- 48 килогерц, конденсатор может быть и 0,2 микрофарад и 0,47 и 0,68 даже один микрофарад, то есть, тут этот конденсатор особо не критичен.

Данная микросхема работает на частоте 47-48 килогерц, цепочка которая обеспечивает данную частоту это резистор R2 — 15К и пленочный или керамический конденсатор (С5) один нанофарад или можно поставить 820 пикофарад.

5 вывод и 7 вывод микросхемы генерируют прямоугольные, управляющие импульсы, которые через резисторы R4 и R3 поступают на затворы мощных, полевых транзисторов, то есть эти резисторы нужны, чтобы не спалить случайно транзисторы.

Например импульс поступает на затвор мощного полевого транзистора, далее через балластный конденсатор (С7) на 220 нанофарад 400 вольт на первичную обмотку трансформатора Т1.

Что касаемо трансформатора, трансформатор был взят с компьютерного блока питания.

Его нужно немного доработать, то есть выпаять, разобрать, опустить в кипяток, чтобы расплавить клей, которым склеен феррит или нагреть паяльный феном, одеваем какие-то перчатки, чтобы не обжечь руки и потихонечку располовиниваем и сматываем все обмотки этого трансформатора.

Из расчета того, что мне на выходе нужно было получить в районе 25 вольт, первичная обмотка проводом 0,6 миллиметров в две жилы наматывается целиком 38 витков. Каждый слой изолировал скотчем, то есть слой обмотки, слой изоляции, потом сверху вниз опять все мотаем в одну сторону, изолируем всё и мотаем вторичную обмотку.

Вторичная обмотка — 7 жил, тем же проводам 0,6 миллиметров и мотаем в ту же сторону — это очень важно, те кто начинает разбираться в импульсных источниках питания, всё мотаем в одну и ту же сторону.

Всего 7 или 8 витков вторичной обмотки и потом всё это дело обратно склеиваем и собираем весь феррит на место.

Транзисторы установлена на небольшой теплоотвод, этого вполне достаточно при нагрузке где-то в районе 100 ватт. Два транзистора закреплены через теплопроводящие прокладки и термопасту.

Сейчас мы всё это включим в сеть, возьмём мультиметр и померяем напряжение на выходе.

Но есть еще такой момент, перед запуском блока питания всё делаем последовательно, то есть берём лампочку на 100 ватт 220 вольт и через лампочку подключаем наш блок питания, если лампочка не загорелась или там слегка вспыхнула спираль, значит конденсатор зарядился и как бы всё нормально, можно аккуратно проверять на выходе наше напряжение.

Если допустим лампочка горит, то уже в схеме есть какие-то косяки, либо где-то не пропаяно, либо где-то сопли на плате или какой-то компонент неисправен. Так что, перед сборкой берите исправные детали.

Включаем мультиметр в режим измерения постоянного напряжения 200 вольт и измеряем на выходе наше напряжение у меня выдаёт 29 вольт

Хотелось бы сказать, что это моя первая конструкция, то есть я собирал также, как и начинающий радиолюбитель, которые побаиваются собирать свои первые и импульсные источники питания, и больше прибегают к сетевым трансформатором.

Простой, самодельный импульсный блок питания на IR2153 своими руками

  1. Схема, необходимые компоненты
  2. Сборка своими руками
  3. Тестирование импульсного блока питания
  4. Видео о создании импульсного блока питания

Недавно мы говорили о создании лабораторного блока питания своими руками. Сегодня мы рассмотрим пошагово, как создать универсальный импульсный блок питания на микросхеме IR2153. В интернете полно схем БП на IR2153, но каждая из них имеет свои недостатки, а вот представленная схема — универсальная.

Схема импульсного блока питания на IR2153, необходимые компоненты

Первое, что бросается в глаза, это использование двух высоковольтных конденсаторов вместо одного на 400В. Таким образом можно сразу убить двух зайцев. Эти конденсаторы можно достать из старых блоков питания от компьютера, не тратя на них деньги.

Если блока нет, то цены на пару таких конденсаторов ниже, чем на один высоковольтный. Емкость конденсаторов одинаковая и должна быть из расчета 1 мкФ на 1 Вт выходной мощности. Это означает, что для 300 Вт выходной мощности вам потребуется пара конденсаторов по 330 мкФ каждый.

Важно также учитывать следующее соответствие:

  • 150 Вт = 2х120 мкФ
  • 300 Вт = 2х330 мкФ
  • 500 Вт = 2х470 мкФ

Также, если использовать такую топологию, отпадает потребность во втором конденсаторе развязки, что сэкономит место. Кроме того, напряжение конденсатора развязки уже должно быть не 600 В, а всего лишь 250 В. Сейчас вы можете видеть размеры конденсаторов на 250В и на 600В.

Следующая особенность схемы — запитка для IR2153. Все, кто строил блоки на ней, сталкивались с сильным нагревом питающих резисторов.

Даже если их ставить от переменки, выделяется очень много тепла. Чтобы этого избежать, вместо резистора используем конденсатор. Это предотвратит нагрев элемента по питанию.

Также плата оснащена защитой, но в первоначальном варианте схемы ее не было.

После тестов на макете выяснилось, что для установки трансформатора слишком мало места и поэтому схему пришлось увеличить на 1 см, это дало лишнее пространство, на которое нужно установить защиту. Если она не нужна, можно просто поставить перемычки вместо шунта и не устанавливать компоненты, отмеченные красным цветом.

Ток защиты регулируется с помощью подстроечного резистора:

Номиналы резисторов шунта изменяются в зависимости от максимальной выходной мощности. Чем она больше, тем меньше нужно сопротивление. Например, для мощности до 150 Вт нужны резисторы на 0,3 Ом. Если мощность 300 Вт, то лучше использовать резисторы на 0,2 Ом. При 500 Вт и выше ставим резисторы с сопротивлением 0,1 Ом. Данный блок не стоит собирать мощностью выше 600 Вт.

Также нужно сказать пару слов про работу защиты. Она тут икающая. Частота запусков составляет 50 Гц. Это происходит потому, что питание взято от переменки, следовательно, сброс защелки происходит с частотой сети.

Если вам нужен защелкивающийся вариант, то в таком случае питание микросхемы IR2153 нужно брать постоянное, а точнее — от высоковольтных конденсаторов. Выходное напряжение данной схемы будет сниматься с двухполупериодного выпрямителя.

Основным диодом будет диод Шоттки в корпусе ТО-247, ток выбираете под ваш трансформатор.

Если нет желания брать большой корпус, то в программе Layout его легко поменять на ТО-220. По выходу стоит конденсатор на 1000 мкФ, его с головой хватает для любых токов, так как при больших частотах емкость можно ставить меньше чем для 50-ти герцового выпрямителя.

Также необходимо отметить и использование некоторых вспомогательных элементов в обвязке трансформатора:

Кроме того, не забываем об Y-конденсаторе между землями высокой и низкой стороны, который гасит помехи на выходной обмотке блока питания.

Нельзя пропускать и частотозадающую часть схемы.

Это конденсатор на 1 нФ, его номинал автор не советует менять, а вот резистор задающей части он поставил подстроечный, на это были свои причины. Первая из них, это точный подбор нужного резистора, а вторая — это небольшая корректировка выходного напряжения с помощью частоты. А сейчас небольшой пример, допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26В, а вам нужно 24В. Меняя частоту можно найти такое значение, при котором на выходе будут требуемые 24В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и вращая ручку резистора, добиваемся нужного сопротивления.

Это конденсатор на 1 нФ, его номинал менять не советуем, а вот резистор задающей части можно установить подстроечный, на это есть свои причины. Первая из них — это точный подбор нужного резистора, а вторая — это небольшая корректировка выходного напряжения с помощью частоты.

Небольшой пример: допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26 В, а вам нужно 24 В. Меняя частоту, можно найти такое значение, при котором на выходе будут требуемые 24 В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и, вращая ручку резистора, добиваемся нужного сопротивления.

Печатную плату для импульсного блока питания на IR2153 можно скачать ниже:

Импульсный блок питания на IR2153 — сборка своими руками

Сейчас вы можете видеть 2 макетные платы, на которых производились испытания. Они очень похожи, но плата с защитой немного больше.

Макетки сделаны для того, чтобы можно было заказать изготовление данной платы в Китае.

Читайте также  Как рассчитать зарядный ток аккумулятора?

Вот плата уже готова. Выглядит все таким образом. Сейчас быстренько пройдемся по основным элементам ранее не упомянутым. В первую очередь это предохранители. Их тут 2, по высокой и низкой стороне.

Далее видим конденсаторы фильтра.

Их можно достать из старого блока питания компьютера. Дроссель наматываем на кольце т-9052, 10 витков проводом сечением 0,8 мм 2 жилы. Однако можно применить дроссель из того же компьютерного блока питания. Диодный мост — любой, с током не меньше 10 А.

Еще на плате имеются 2 резистора для разрядки емкости, один по высокой стороне, другой — по низкой.

Ну и остается дроссель по низкой стороне, его мотаем 8–10 витков на таком же сердечнике, что и сетевой. Как видим, данная плата рассчитана под тороидальные сердечники, так как они при одинаковых размерах с Ш-образными, имеют большую габаритную мощность.

Тестирование самодельного импульсного блока питания на IR2153

Настало время протестировать устройство. Пока основным советом является производить первое включение через лампочку на 40 Вт.

Если все работает в штатном режиме, то лампу можно откинуть. Проверяем схему на работу. Как видим, выходное напряжение присутствует. Проверим как реагирует защита. Скрестив пальцы и закрыв глаза, коротим выводы вторички.

Как видим, защита сработала, все хорошо. Теперь можно сильнее нагрузить блок. Для этого воспользуемся нашей электронной нагрузкой. Подключим 2 мультиметра, чтоб мониторить ток и напряжение. Начинаем плавно поднимать ток.

Как видим при нагрузке в 2А, напряжение просело незначительно. Если поставить мощнее трансформатор, то просадка уменьшится, но все равно будет, так как этот блок не имеет обратной связи, поэтому его предпочтительнее использовать для менее капризных схем.

  • Смотрите также, как создать 6-вольтный БП на BQ24450

Итак, где использовать универсальный импульсный блок питания на IR2153? В блоках для DC-DC, для усилителей, паяльников, ламп, двигателей.

Видео о создании импульсного блока питания на IR2153 своими руками:

Инвертор 12-220 100 ватт для автомобиля

Среди многочисленных инверторов 12-220 Вольт, хочу представить конструкцию довольно мощного и компактного инвертора, который может питаться от бортовой сети автомобиля. Инвертор способен отдавать 100 ватт выходной мощности, но и это не предел, с добавлением пар силовых транзисторов, можно построить инвертор с мощностью вплоть до 400 ватт, без дополнительных драйверов, для усиления сигнала с микросхемы.

Генератор построен на одной микросхеме IR2153 – это самотактируемый полумостовой драйвер, который нашел широкое применение в электронных балластах для питания газоразрядных ламп. Драйвер также применяется в качестве задающего генератор в сетевых полумостовых инверторах, довольно популярная микросхема в кругах радиолюбителей. Диапазон питающих напряжений очень широкий, микросхема имеет довольно мощный выходной каскад, что позволяет качать 2-3 пары силовых транзисторов.

В обвязке имеем всего несколько компонентов. Силовые транзисторы я взял IRFZ44, но при желании можно использовать IRF3205 , IRL3705 или из линейки IRFZ40/46/48 или же любые N-канальные транзисторы с током не менее 40А и с рабочим напряжением 50-60 Вольт. При выборе транзисторов, следует обратить внимание на сопротивление открытого перехода, чем оно меньше, тем лучше.

Трансформатор – тоже не критичен, сердечник можно взять марки 1500/2000/3000 НМ – чашки, кольца или Ш-образной формы – не принципиально. Можно ничего не мотать и взять готовый трансформатор от компьютерного блока питания, как в моем случае.

При самостоятельной намотки трансформатора следует использовать следующие параметры намотки.
первичная обмотка содержит 2 х 5 витков, провод с диаметром 0,8 мм в 4 жилы.
Вторичная мотается поверх первички, предварительно нужно изолировать обмотки друг от друга. Обмотка состоит из 70 витков провода 0,8 мм , межслойные изоляции ставить не надо.

Подстройка рабочей частоты генератора делается изменением номиналов частотно-задающего конденсатора и резистора.
Данную схему повторил множество раз, при этом не пользовался никакими программами для расчета трансформаторов, схема всегда работала без нареканий.

Силовые транзисторы обязательно нужно установить на теплоотводы, при этом их нужно изолировать с помощью прокладок.

Напряжение на выход можно выпрямить, для этого можно использовать мост из быстрых диодов с током не менее 1 Ампер, и поставить сглаживающий конденсатор на 400 Вольт 10-100 мкФ.

Автор; АКА КАСЬЯН

Что значит 2х5 витков?

10 витков с отводом от середины

Здравствуйте можно ли к схеме подключить строчник т/в чтобы получить высокое напряжение.
На какой частоте работает схема?
И еще вопрос можно ли поставить мосфеты IFR640 илиIFR630?
Спасибо.

указанные вами транзисторы слабоваты, да можно и строчник. ТП зависит от многих факторов – используемых транзисторов, трансика и т.п, в моем случае порядка 10-11А – максимум

Здравствуйте! Можно ли на выход генератора подключить строчник для получения высокого напряжения? И какая частота генератора? И ток потребления.

Я правильно посчитал частоту этой схемы? 14.36 кГц? Такую частоту штатный блок питания какого-нибудь ноутбука например выпрямит без проблем?

А где у вас диод между 1 и 8 ножкой?

вроде по дашиту ir2153D не нужен именно и индексом D !!
А что может быть такое когда использую нагрузку лампочку 60ватт , лампочка не светит трансформатор начинает трещать(на слух) , без нагрузки показывает 100 вольт , трансформатор взял из БП АТХ E33 ?

почему не держит нагрузку. цука

не держит нагрузку потому что скважность на выходе микросхемы равна 2, а частота не меняется. схема может работать только на оптимальную нагрузку.

затворные сопротивления какие были поставил?как долго эта схема будет работать если ток управления полевиками будет через такие резисторы под 0.5 А. а у микрухи 2153 каждый из каналов держит не более 200ма.и то я бы рекомендовал 50-100ма.для этого резисторы надо ставить ом 100-150.и еще-питание микрухи не стабильно.прео сгорит за секунды.не собирайте фуфло.удачи

ни одного кондера по питанию не вижу….ГДЕЕ.

Дунук автор. Двухтактный преобразователь а на выходе однополупериодный выпрямитель, фу хватит такой позор выкладывать

похоже автору доплачивают чтобы интузиасты покупали ключи килограммами. я лино набрал акумуляторов до 240 вольт и на выходе ввинтил мультик на 50 герц с двумя ключами от сварочного апарата. незнаю какая там мощность но включал печку все камфорки и дужовку,холодильник и перфаратор до кучи. хоть бы чтонибудь нагрелось

а Вы умеете по шутить

какие нагрузки можно подключать

Вот читаю коменты и офигиваю от “очень умных” людей которые только утюг могут в розетку тыкать, ну или сами вместо утюга.Схема 2х тактная потому, что первичная обмотка разделена на две с отводом от середины и управляется по очередно ключами меняя магнитное поле в магнитопроводе. А какой выпрямитель стоит на выходе сути не меняет как был 2х тактный преобразователь таким и остался, влияет только на нагрузучную способность, если один диод нагрузка будет на 1ну из обмоток первички транса и транзистора, а если диодный мост или умножитель то на оба плеча и на оба транзистора. Что касается диода в микросхеме с маркировкой D микррсхемы данного типа обычно используются там где силовые ключи работают с высоким напряжением а транзисторы подключены полу мостом или H мостом, там диод нужен чтоб не пробило микруху когда открывается транзистор верхнего полумоста или моста. Почему был треск у кого-то, Потому что 1 мощнаяя нагрузка 2 использовался один выпрямительный диод 3 недостаточный силы источник питания(вторичка трансформатора от БП компа толстая которая используется как первичка) Поэтому если будет слабый источник схема будет трещать так как при включение “ключа” напряжение просядет очень низко от чего микруха выключается или работает некоректно, 4 Если источник питания мощный а провода от него тонкие к примеру 0.5-1мм а сечение обмотки транса в два раза больше то тут тоже одну из двух треск при работе а второе дым от проводов по питанию. Что же касается того кто аккумуляторов набрал на 240 вольт тот врет даже если он бы взял необслуживаемые всеравно они выдиляют водарод так можно задохнутся или взорваться да и высокольтные ключи дороже чем низковольтные, да и как их он зарежает с балансиром или каждый по 3 часа по отдельности.
P.S. Да эта схема не идеальна но она рабочая, а почему Автор не отвечает на некоторые коментарии так потому что некоторые пишут такую чушь как к примеру скважнлсть ирки2153 всего 2 это чушь скважность ее 50%. Да и еще те кто пишут поучительные коменты Автору или хамят я их называю франкинштеинами так как они всегда делают не так как надо и уверен на 100% у них часто взрываются горят схемы и они от злости что руки в попе портят людям настроения.Кому богом дан дар он делает как хочет, а кому не дан дар делать должен как показано!Я вот буду делать аналогичную схему только Ватт на 700 – 1000 с небольшими изменениями таке-каке на даче нет электричество а нужна болгарка, и попробуют те с пеной изо рта меня убедить что работать схема не будет……

Root, я с тобой полностью согласен, иной раз читаешь комменты, как будто нарочно ахинею несут.С автором приходилось общаться, у него много всяких схем, благодаря ему я узнал что такое мосфет и с чем его едят.Сначала собрал пн на 100 ватт(пробный), получилось, теперь собираю на 600 ватт, проблема с трансом,такая заморочка, мотаю на железе,подключал транс на феррите не работает, хотя и частоту менял, может всплески напряжения,попробую поставить снаберную цепь RCD или RC,а может просто стабилитрон в цепи питания.

Вот читаю коменты и понимаю что пишут люди не понимающие в электронике