Последовательное соединение стабилитронов для увеличения напряжения

Стабилитрон | Принцип работы и маркировка стабилитронов

Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.

Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т.п.

Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.

Главное преимущество стабилитронов – их малая стоимость и габариты, поэтому они до сих пор не могут вытисниться интегральными стабилизаторами напряжения типа LM7805 или 78L05 и т.п.

Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.

Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.

Принцип работы стабилитрона

Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.

Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.

Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.

Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.

Вольт-амперная характеристика стабилитрона

Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную. Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом. Поэтому стабилитрон называю опорным диодом, а источник питания с данным полупроводниковым элементом называют опорным источником напряжения. Такой терминологий будем пользоваться и мы.

На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки 1, то он не сможет выполнять свои функции (не откроется). В случае превышения тока выше точки 3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2. Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).

Встречное, параллельное, последовательное соединение стабилитронов

Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.

Параллельное соединение применяется с целью повышения тока и мощности.

Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.

В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.

Маркировка стабилитронов

Маркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.

Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.

Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.

Маркировка SMD стабилитронов

Наибольшее распространение получили опорные диоды в стеклянном корпусе и в пластмассовом корпусе с тремя выводами. Маркировка SMD стабилитрона в стеклянном корпусе состоит из цветного кольца, цвет которого обозначает параметры данного полупроводникового прибора.

Если вам встретился SMD стабилитрон с тремя выводами, то следует знать, что один вывод – это «пустышка», то есть он не задействован и применяется лишь для надежной фиксации элемента на печатной плате после пайки. Анод и катод такого экземпляра проще всего определить с помощью мультиметра.

Мощность рассеивания стабилитрона

Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения и :

Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.

Как проверить стабилитрон

Проверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода. Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе. Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.

Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.

Если в обеих случаях мультиметр покажет единицу или будет звенеть, то стабилитрон непригоден.

Последовательное соединение стабилитронов.

При выпрямлении более высоких напряжений приходится соединять стабилитроны последовательно с тем, чтобы обратное напряжение на каждом стабилитроне не превышало предельного. Но вследствие разброса обратных сопротивлений у различных экземпляров стабилитронов одного и того же типа на отдельных диодах обратное напряжение может оказаться выше предельного, что повлечет пробой диодов.

Для того чтобы обратное напряжение распределялось равномерно между стабилитронами независимо от их обратных сопротивлений, применяют шунтирование стабилитронов резисторами (рисунок 3). Сопротивления Rш резисторов должны быть одинаковы и значительно меньше наименьшего из обратных сопротивлений стабилитронов. Однако Rш не должно быть слишком малым, чтобы чрезмерно не возрос ток при обратном напряжении, т. е. чтобы не ухудшилось выпрямление.

Параллельное соединение стабилитронов применяют в том случае, когда нужно получить прямой ток, больший предельного тока одного стабилитрона. Но если стабилитроны одного типа просто соединить параллельно, то вследствие неодинаковости вольт-амперных характеристик они окажутся различно нагруженными и в некоторых ток будет больше предельного. Различие в прямом токе у однотипных стабилитронов может составлять десятки процентов.(дорисовать палочку в диоде чтобы получился стабилитрон)

Однополупериодный выпрямитель

Когда на диод со вторичной обмотки трансформатора поступает напряжение положительной полярности («+» приложен к аноду диода), диод открывается, и через нагрузку протекает ток, определяемый напряжением на обмотке и сопротивлением нагрузки. Падение напряжения на кремниевом диоде (около 1 В) обычно мало по сравнению с питающим. Напряжение на выходе выпрямителя имеет вид однополярных импульсов, форма которых практически повторяет форму положительной полуволны переменного напряжения.

Среднее значение выпрямленного напряжения равно:

Среднее значение выпрямленного тока:

Действующее значение тока нагрузки:

Коэффициент пульсаций р (отношение амплитуды первой гармоники к выпрямленному напряжению):

Недостатки однополупериодного выпрямителя:

-большой коэффициент пульсаций;

-малые значения выпрямленного тока и напряжения;

-низкий КПД, т.к. ток нагрузки имеет постоянную составляющую, которая вызывает подмагничивание сердечника трансформатора и уменьшение его магнитной проницаемости.

Рабочий режим ПД

Режим диода с нагрузкой называется рабочим режимом. Если бы диод обладал линейным сопротивлением, то расчет тока в подобной схеме не пред­ставлял бы затруднений, так как общее сопротивление цепи равно сумме сопро­тивления диода постоянному току Ro и сопротивления нагрузочного резистора Rн. Но диод обладает нелинейным сопротивлением, и значение Ro у него из­меняется при изменении тока. Поэтому расчет тока делают графически. Задача состоит в следующем: известны значения Е, Rн и характеристика диода, требуется определить ток в цепи и напряжение на диоде.

Характеристику диода следует рас­сматривать как график некоторого урав­нения, связывающего величины i и и. А для сопротивления RH подобным

уравнением является закон Ома: i = uR/RH = (Е — u)/Rн. Итак, имеются два уравнения с дву­мя неизвестными i и и, причем одно из уравнений дано графически. Для реше­ния такой системы уравнений надо по­строить график второго уравнения и найти координаты точки пересечения двух графиков.

ВАХПД.

Вольт-амперная характеристика (ВАХ) – это зависимость тока, протекающего через электронный прибор, от приложенного напряжения. Вольт-амперной характеристикой называют также и график этой зависимости.

Приборы, принцип действия которых подчиняется закону Ома, а ВАХ имеет вид прямой линии, проходящей через начало координат, называют линейными. Приборы, для которых ВАХ не является прямой линий, проходящей через начало координат называются нелинейными. Диод представляет собой пассивный нелинейный электронный прибор.

Вольт-амперная характеристика диода описывается выражением I=I[exp(UД/jT)-1], где I – тепловой ток (обратный ток, образованный за счет неосновных носителей; UД – напряжение на p-n-переходе; jT – тепловой потенциал, равный контактной разности потенциалов на границе на p-n-перехода при отсутствии внешнего напряжения (при T=300 K, jT=0.025 В).

При отрицательных значениях напряжения менее 0,1 В в выражении (1) пренебрегают единицей, и обратный ток диода определяется значением теплового тока. По мере возрастания положительного напряжения на p-n-переходе прямой ток резко возрастает по экспоненте. Поэтому ВАХ, имеет вид, приведенный на рисунке 3

Рассмотренная характеристика является теоретической ВАХ диода. Она не учитывает рекомбинационно-генерационных процессов, происходящий в объеме и на поверхности p-n-перехода, считая его бесконечно тонким и длинным. ВАХ реального диода, имеет вид, приведенный на рисунке 3 (сплошная линия).

Характеристика для прямого тока вначале имеет значительную нелинейность, т. к. при увеличении напряжения сопротивление запирающего слоя уменьшается. Поэтому кривая идет вверх со все большой крутизной. Но при некотором значении напряжения запирающий слой практически исчезает и остается только сопротивление n- и p-областей, которое приближенно можно считать постоянным. Поэтому далее характеристика становиться почти линейной.Обратный ток при увеличении обратного напряжения сначала быстро возрастает. Это вызвано тем, что уже при небольшом обратном напряжении за счет повышения потенциального барьера в переходе резко снижается диффузионный ток, который направлен навстречу току проводимости. Следовательно, полный ток резко увеличивается. Однако при дальнейшем повышении обратного напряжения ток растет незначительно.

Читайте также  Классификация светодиодов по яркости

Переход метал-ПП.

В современных полупроводниковых приборах помимо контактов с электронно-дырочным переходом применяют­ся также контакты между металлом и полупроводником. Процессы в таких переходах зависят от так называемой заботы выхода электронов, т. е. от той энергии, которую должен затратить электрон, чтобы выйти из металла или полупроводника. Чем меньше работа выхода, тем больше электронов мо­жет выйти из данного тела.

Если в контакте металла с полу­проводником п-типа (рис. 2.5, а) работа выхода электронов из металла Ам мень­ше, чем работа выхода из полупровод­ника Ат то будет преобладать выход электронов из металла в полупроводник. Поэтому в слое полупроводника около границы накапливаются основные но­сители (электроны), и этот слой стано­вится обогащенным, т. е. в нем увели­чивается концентрация электронов. Со­противление этого слоя будет малым при любой полярности приложенного напря­жения, и, следова­тельно, такой переход

не обладает выпрямляющими свойства­ми. Его называют невыпрямляющим (омическим) контактом. Подобный же невыпрямляющий переход получается в контакте металла с полупроводником р-типа (рис. 2.5,6), если работа выхода электронов из полупроводника меньше, чем из металла п

Радиолюбитель

Последние комментарии

  • Алексей на Расчет фильтров нижних и верхних частот
  • ДЕМЬЯН на Регулируемый блок питания 0-12 В на транзисторах
  • ДЕМЬЯН на Регулируемый блок питания 0-12 В на транзисторах
  • Pit на Компьютер – осциллограф, генератор, анализатор спектра
  • Владислав на Новогодние схемы

Радиодетали – почтой

Параллельный параметрический и последовательный стабилизаторы напряжения

Параллельный параметрический и последовательный стабилизаторы напряжения

Параллельный параметрический стабилизатор, последовательный стабилизатор на биполярном транзисторе. Практические расчеты.

Доброго дня уважаемые Радиолюбители!
Сегодня на сайте “Радиолюбитель“, в разделе “Практикум начинающего радиолюбителя“, мы продолжим рассмотрение статьи “Источники питания радиолюбительских устройств“. Напомню, что в прошлый раз, изучая схему источника питания радиолюбительских устройств, мы остановились на назначении и расчете сглаживающего фильтра:

Сегодня мы рассмотрим последний элемент – стабилизатор напряжения.

Стабилизатор напряжения — преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при колебаниях входного напряжения и сопротивления нагрузки

Сегодня мы рассмотрим два простейших стабилизатора напряжения:
— параллельный параметрический стабилизатор напряжения на стабилитроне;
– последовательный стабилизатор напряжения на биполярном транзисторе.

Параллельный параметрический стабилизатор напряжения на стабилитроне

Один из внешних видов и обозначение стабилитрона:

Как работает стабилитрон

Напряжение на стабилитрон (в отличие от диода) подают в обратной полярности (анод соединяют с минусом а катод с плюсом источника питания – Uобр). При таком включении через стабилитрон течет обратный ток – Iобр.
При увеличении напряжения обратный ток растет очень медленно (на схеме, почти параллельно оси Uобр), но при некотором напряжении Uобр переход стабилитрона пробивается (но разрушение стабилитрона в этот момент не происходит) и через него начинает идти обратный ток значительно большего значения. В этот момент вольтамперная характеристика стабилитрона (ВАХ) резко идет вниз (почти параллельно оси Iобр) – наступает режим стабилизации, основные параметры которого – напряжение стабилизации минимальное (Uст min) и ток стабилизации минимальный (Iст min).
При дальнейшем увеличении Uобр ВАХ стабилитрона опять меняет свое направление – заканчивается режим стабилизации, основные параметры которого – напряжение стабилизации максимальное (Uст max) и ток стабилизации максимальный (Iст max). С этого момента стабилитрон теряет свои свойства, начинает разогреваться, что может привести к тепловому пробою перехода стабилитрона и соответственно к его выходу из строя.

Режим стабилизации стабилитрона может быть в широких пределах, поэтому в документации на стабилитроны указывают допустимые минимальные и максимальные значения токов (Iст min и Iст max) и напряжений стабилизации (Uст min и Uст max). Внутри этих диапазонов лежат выбранные производителем номинальные значенияIст и Uст. Номинальный ток стабилизации обычно устанавливается производителями на уровне 25%-35% от максимального, а номинальное значение напряжения стабилизации как среднее от максимального и минимального.

Для примера можно воспользоваться программой “TBFEdit” – справочник по радиодеталям“ и воочию посмотреть какие характеристики приводятся в справочниках по стабилитронам:

К примеру стабилитрон Д814Г:
— номинальный ток стабилизации (Iст)= 5 мА;
– номинальное напряжение стабилизации (Uст)= (от 10 до 12 вольт)= 11 вольт;
– максимальный ток стабилизации (Iст max)= 29 мА.
Эти данные нам будут необходимы при расчетах простейшего стабилизатора напряжения.

Если вы не смогли найти нужный наш родной, советский, стабилитрон, то можно используя, к примеру программу, Color And Code, подобрать по нужным параметрам буржуйский аналог:

Как видите, стабилитрон Д814Г легко можно заменить аналогом – BZX55C11 (у которого характеристики даже немного получше)

Ну а теперь рассмотрим параллельный параметрический стабилизатор напряжения на стабилитроне.

Параллельный параметрический стабилизатор напряжения на стабилитроне применяется в слаботочных устройствах (несколько миллиампер) и представляет собой делитель напряжения (на резисторе R – балластный резистор и стабилитроне VD – который выполняет роль второго резистора) на вход которого подается нестабильное напряжение а выходное напряжение снимается с нижнего плеча делителя. При повышении (понижении) входного напряжения внутреннее сопротивление стабилитрона уменьшается (увеличивается), что позволяет удерживать выходное напряжение на заданном уровне. На балластном резисторе падает разница между входным напряжением питания и напряжением стабилизации стабилитрона.

Рассмотрим схему данного (самого простейшего) стабилизатора напряжения:

Как рассчитать параметры такого стабилизатора. Первое и самое главное, что нужно запомнить:

Расчет параллельного параметрического стабилизатора напряжения на стабилитроне

Дано:
Uвх – входное напряжение = 15 вольт
Uвых – выходное напряжение (напряжение стабилизации) = 11 вольт

Расчет:
1. По справочнику, приведенному выше, определяем, что для наших целей подходит стабилитрон Д814Г:
Uст (10-12в)= 11 вольт
Iст max= 29 мА
Iст номинальный = 5 мА
Исходя из сказанного выше, определяемся, что ток нагрузки не должен превышать Iст номинального – 5 мА
2. Определяем напряжение падения на балластном резисторе (R) как разность входного и выходного стабилизированного напряжения:
Uпад=Uвх – Uвых=15-11= 4 вольта
3. Используя закон Ома, определяем номинал балластного сопротивления R, деля напряжение падения Uпад на Iст стабилитрона:
R= Uпад/Iст= 4/0,005= 800 Ом
Так как резисторов номиналом 800 Ом нет, берем ближайший больший номинал – R=1000 Ом= 1 кОм
4. Определяем мощность балластного резистора R:
Pрез= Uпад*Iст= 4*0,005= 0,02 ватта
Так как через резистор протекает не только ток стабилизации стабилитрона но и ток потребляемый нагрузкой, то полученное значение увеличиваем минимум в 2 раза:
Pрез= 0,004*2= 0,008 ват, что соответствует ближайшему номиналу = 0,125 ватт.

Что делать если вы не нашли стабилитрон с нужным напряжением стабилизации.
В этом случае можно применить последовательное соединение стабилитронов. К примеру, если мы соединим последовательно два стабилитрона Д814Г, то напряжение стабилизации составит 22 вольта (11+11). Если соединим Д814Г и Д810 то получим напряжение стабилизации 20 вольт (11+10).
Допускается любое число последовательного соединения стабилитронов одной серии (как в примере – Д8**).
Последовательное соединение стабилитронов разной серии допускается только в том случае, если рабочие токи последовательной цепочки укладываются в паспортные диапазоны токов стабилизации каждой использованной серии.

Что делать, если в приведеном выше примере, ток нагрузки составляет к примеру не 5 а 25 мА?
Можно конечно все так и оставить, так как максимальный ток стабилизации (Iст max) Д814Г равен 29 мА, единственное придется пересчитать мощность балластного резистора. Но в этом случае стабилитрон будет работать на пределе своих возможностей и у вас не будет никаких гарантий, что он не выйдет из строя.
А что делать если ток нагрузки составляет, к примеру, 50 мА?

Последовательный стабилизатор напряжения на биполярном транзисторе

Последовательный стабилизатор напряжения на биполярном транзисторе – это по сути параллельный параметрический стабилизатор на стабилитроне, подключенный ко входу эммитерного повторителя.

Его выходное напряжение меньше напряжения стабилизации стабилитрона за счет падения напряжения на переходе база-эммитер транзистора (для кремниевых транзисторов – около 0,6 вольт, для германиевы – окло 0,25 вольт), что нужно учитывать при выборе стабилитрона.
Эммитерный повторитель (он же – усилитель тока) позволяет увеличить максимальный ток стабилизатора напряжения по сравнению с параллельным параметрическим стабилизатором на стабилитроне в β (h21э) раз (где β (h21э) – коэффициент усиления по току данного транзистора, берется наименьшее значение).

Схема последовательного стабилизатора на биполярном транзисторе :

Так-как данный стабилизатор состоит из двух частей – источник опорного напряжения (он же параллельный параметрический стабилизатор на стабилитроне) и усилителя тока на транзисторе (он же эммитерный повторитель), то расчет такого стабилизатора производится аналогично выше приведенному примеру.
Единственное отличие:
— к примеру нам надо получить ток нагрузки 50 мА, тогда выбираем транзистор с коэффициентом усиления β (h21э) не менее 10 (β (h21э)=Iнагрузки/Iст=50/5=10
– мощность балластного резистора рассчитываем по формуле: Ррез=Uпад*(Iст+Iнагрузки)

Ток нагрузки можно увеличить еще в несколько раз, если применить схему с составным тразистором (два транзистора, включенные по схеме Дарлингтона или Шиклаи):

Вот, в принципе, и все.

Параллельное включение стабилитронов для увеличения мощности

Немного теории

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.
Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Особенности трассировки печатной платы

На рисунке 11 показан типичный пример размещения дорожек на печатной плате для четырех параллельно соединенных ИС MAX40200. Как видно, цепи VDD и OUT на плате имеют медные площадки большого размера для уменьшения сопротивления и плотности тока. Обе цепи – VDD и OUT – размещены на верхней стороне платы без использования межслойных перемычек. Поскольку физический механизм, обеспечивающий разделение тока нагрузки, является тепловым, параллельно соединенные идеальные диоды должны располагаться как можно ближе друг к другу. Учитывая вероятность повышенных токов или отсутствия параллельно подключенных компонентов, следует использовать печатную плату с наиболее толстым слоем меди. Это помогает лучше рассеивать выделяющееся тепло и уменьшает падение напряжения при высоких токах. Обратите внимание, что корпус WLP оптимален для параллельного соединения нескольких устройств – этому способствуют его небольшие размеры и хорошая теплопроводность.

Читать также: Какой бренд холодильника лучше выбрать

Рис. 11. Пример компоновки печатной платы

Как показано на рисунке 12, отдельные компоненты размещены с зазором в 12 мм, что гарантирует термическую равноценность всех ИС MAX40200. Параллельно соединенные ИС следует защитить от повышенного теплового воздействия внешних источников тепла. В противном случае все работающие при высокой температуре устройства будут иметь повышенное RON. Неравномерное распределение температуры на плате под установленными ИС приводит к неравному разделению тока. Не рекомендуется использовать переходные отверстия на основных проводящих участках платы (VDD или OUT), так как они добавляют паразитную индуктивность и увеличивают эффективное RON в основной цепи, таким образом повышая прямое падение напряжения (VFWD).

Читайте также  Как рассчитать мощность для трехфазной сети?

Рис. 12. Расстояние между размещенными рядом MAX40200

На рисунке 13 показана разница температур окружающей среды и платы с параллельно соединенными MAX40200. Обратите внимание что разность температур прямо пропорциональна прямому току нагрузки, проходящему через эти устройства. Данный результат был получен на плате, изображенной на рисунке 12.

Рис. 13. Температура печатной платы, изменяющаяся в зависимости от температуры окружающей среды

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так:

Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод.

Стабилитроны выглядят также, как и диоды. На фото ниже, слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза

Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.

Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику.

Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.

Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:

где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения. Здесь все элементарно и просто:

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл

Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем блок питания, а справа замеряем мультиметром полученное напряжение:

Теперь внимательно следим за показаниями мультиметра и блока питания:

Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.

Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!

Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.

Параллельное подключение

При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).

Очевидно, что такого неравномерного распределения мощностей нужно избегать.

Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:

Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.

Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.

В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:

Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.

Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.

Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):

Uпит ILED
5 мА 10 мА 20 мА 30 мА 50 мА 70 мА 100 мА 200 мА 300 мА
5 вольт 340 Ом 170 Ом 85 Ом 57 Ом 34 Ом 24 Ом 17 Ом 8.5 Ом 5.7 Ом
12 вольт 1.74 кОм 870 Ом 435 Ом 290 Ом 174 Ом 124 Ом 87 Ом 43 Ом 29 Ом
24 вольта 4.14 кОм 2.07 кОм 1.06 кОм 690 Ом 414 Ом 296 Ом 207 Ом 103 Ом 69 Ом

При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

Стабилитрон. Особенности практического применения.

Рассказано о назначении и применении стабилитронов, как проверить их исправность и основные параметры, чем и как можно заменить.

Сердцем практически любого стабилизатора напряжения является стабилитрон. Его основная функция поддерживать постоянное напряжение на выходе при изменении напряжения на входе. Информации на эту тему очень много. Я постараюсь ее систематизировать и подать максимально коротко, только то, что нужно для практики.

На схемах обозначаются так:

Выглядят, в основном, вот так:

Стабилитрон — специально изготовленный диод с особой воль-амперной характеристикой. Показать ее и пояснить нужно обязательно, для понимания принципа работы. Вот как она выглядит для обычного стабилитрона, например, Д814:

Когда на анод подают плюс, а на катод минус, то стабилитрон ведет себя как обычный диод. На рисунке прямая ветвь. При возрастании напряжения ток растет. Когда плюс подают на катод, а минус на анод, т.е. включают в обратном направлении, то характеристика стабилитрона, зависимость тока через него от приложенного напряжения, тоже кардинально меняется. Это хорошо видно по форме обратной ветви характеристики. Когда напряжение на стабилитроне достигает напряжения пробоя, cтабилитрон пробивается, но не перегорает, так как ток через него ограничен резистором. Этот резистор называется балластным. Если не будет этого резистора, или его номинал подобран не правильно, то стабилитрон выйдет из строя. Величина сопротивления этого резистора подбирается таким образом, чтобы в диапазоне изменения входных напряжений ток через стабилитрон не выходил за допустимые для данного стабилитрона пределы Iст min Iст max. При этом напряжение на стабилитроне остается постоянным и равно напряжению стабилизации. Его величина для каждого типа стабилитрона своя. У двуханодных стабилитронов прямая ветвь такая же как и обратная только расположена справа вверху. В схемах двуханодный стабилитрон можно включать независимо от полярности входного напряжения. Это удобно для ограничения переменного напряжения по амплитуде.

Типовая схема включения стабилитрона на конкретном примере:

Параметры стабилитрона КС182 указаны в справочнике:

Напряжение стабилизации стабилитрона 8,2В. При этом ток стабилизации может изменяться от 3мА до 17мА.

Как правило, в расчетах рекомендуют брать минимальное напряжение на входе в 1,5 раза выше напряжения стабилизации. Получаем 12,3 В. Максимальное примем исходя из допустимого разброса напряжения сети 20%. Получаем 14,73 В. Номинал резистора по закону Ома можно посчитать вручную, но в интернете много онлайн калькуляторов для решения таких задач, например, вот этот:

При таких заданных параметрах получим ток в нагрузке от 0 до 12 мА, что соответствует максимальной мощности 0,1 Вт.

Сопротивление балластного резистора 340 Ом, его мощность 0,125 Вт.

Мощность стабилитрона 0,156 Вт.

Мощность, рассеиваемая на резисторе и стабилитроне, составляет в сумме 0,28 Вт. При этом мощность в нагрузке 0,1 Вт. КПД получается 36%. При больших мощностях это не рационально.

Теперь основные моменты из практики.

  1. Как проверить исправность стабилитрона? Обычный стабилитрон проверяется как диод, т.е. прозванивается мультиметром и должен обладать односторонне проводимостью. Другое дело, стабилитрон двухстронний (или двуханодный) или стабилитрон с защитным диодом. Их прозвонить как диод не удастся. Они показывают обрыв в обе стороны. Проверяются только по методике, указанной в следующем пункте.
  2. Проверка напряжения стабилизации. Перед проверкой нужно определиться с мощностью стабилитрона. Это можно сделать по внешнему виду. Если стабилитрон малых размеров и выводы тонкие, то это малая мощность с током стабилизации от 3 до 20 мА. Если корпус чуть больше и выводы толще, то это средняя мощность и ток стабилизации до 90 мА. Ну а мощный стабилитрон имеет большие размеры и возможность установки на радиатор. У него ток стабилизации до ампера и выше.

Есть еще одна особенность. Чем выше напряжение стабилизации стабилитрона, тем меньше ток стабилизации, так как определяющей в этом случае является рассеиваемая стабилитроном мощность. Так что для стабилитронов малой и средней мощности при проверке достаточно тока 10 мА, для большой мощности 20-30мА. Поэтому для большинства проверок стабилитронов с напряжением стабилизации до 30В берем резистор 1-2 кОм и через него подключаем катод стабилитрона к плюсу регулируемого блока питания, анод соответственно к минусу.

Читайте также  Диодная лампа мигает при включенном свете

Параллельно стабилитрону подключаем вольтметр. От нуля плавно повышаем напряжение и следим за показаниями вольтметра. Как только они перестали расти при увеличении напряжения блока питания снимаем показания вольтметра. Если напряжение перестало расти при значениях около 1В, значит перепутан анод и катод стабилитрона. Нужно их поменять местами и повторить процедуру. Значение напряжения, при котором прекратились увеличиваться показания вольтметра, и есть напряжение стабилизации. У двуханодных оно будет одинаковым при смене полярности подключения. У стабилитрона с диодом напряжение стабилизации при неправильном включении будет достаточно высоким, на практике выше напряжения блока питания. Теоретически оно будет равно обратному напряжению диода. Можно применять для проверки и нерегулируемый блок питания напряжением выше предполагаемого напряжения стабилизации стабилитрона. При подключении, как на схеме, измеренное напряжение на стабилитроне будет равно напряжению стабилизации стабилитрона. Если показания вольтметра равны напряжению блока питания, значит стабилитрон включен наоборот или имеет напряжение стабилизации выше напряжения блока питания.

  1. В некоторых случаях очень важным параметром является температурный коэффициент напряжения стабилизации. Например, в автомобильном реле-регуляторе, которое управляет величиной напряжения в бортсети автомобиля. Если оно будет сильно изменяться в зависимости от температуры в моторном отсек, то выйдет из строя электрооборудование автомобиля. Следующий наглядный пример. В телевизорах и радиоприемниках в блоке формирования напряжения настройки на частоту принимаемого сигнала также недопустима зависимость напряжения от температуры, иначе сигнал будет плавать и пропадать. Именно поэтому в реле-регуляторах применяют стабилитроны типа Д818Е, а в блоках настройки телевизоров КС531. У первых температурный коэффициент составляет +0,001 %/град, у вторых ±0,005%/град. В то время, как у других, например, КС182 о которых упоминалось в начале статьи, температурный коэффициент составляет около 0,1 %/град. Это почти в 100 раз хуже. как правило, стабилитроны с хорошим температурным коэффициентом содержат внутренний диод, катод которого соединен с катодом стабилитрона. Температурный коэффициент этого диода имеет знак противоположный температурному коэффициенту самого стабилитрона. Таким образом достигается высокая температурная стабильность напряжения стабилизации.

Пока проверяемый стабилитрон подключен для проверки напряжения стабилизации по схеме п.2 этой статьи, можно его выводы подогреть паяльником, немного, градусов до 60-70 и понаблюдать за изменением напряжения на вольтметре. Разница между термостабильным стабилитроном и обычным будет очень заметна.

  1. То, что основное назначение стабилитрона поддерживать постоянное напряжение на нагрузке при изменении входного напряжения и тока нагрузки уже понятно. Но тут есть особенность. Для эффективного выполнения этих задач, мощность нагрузки реально не должна превышать 30% от мощности, рассеиваемой на балластном резисторе и стабилитроне. Об этом уже было сказано в начале статьи. Для увеличения КПД и тока в нагрузке применяют транзисторы. Наиболее простая схема:

Если ток стабилитрона 10мА, а коэффициент усиления транзистора по току 100 раз, то ток в нагрузке будет 10х100=1000мА. Установив параллельно стабилитрону переменный резистор можно напряжение стабилизации в нагрузке изменять от нуля почти до максимального значения напряжения стабилизации стабилитрона.

  1. Чем можно заменить стабилитрон или изменить напряжение стабилизации?

Обычный кремниевый диод включенный в прямом направлении может выполнять функции стабилитрона напряжением около 0,7 В. Для увеличения напряжения диоды можно включать последовательно с такими же диодами или стабилитроном, напряжение которого нужно немного увеличить. Германиевый диод, при прямом включении, стабилизирует напряжение около 0,5 В, светодиод, в зависимости от типа 2…3,2 В.

Примеры показаны ниже на фото:

Кремниевые транзисторы в диодном включении также могут выполнять функции стабилитрона напряжением 5…6 В. Причем можно использовать последовательное подключение транзистора с диодами, нескольких транзисторов, как показано ниже:

Если есть маломощный стабилитрон на нужное напряжение, а нужен более мощный, то можно использовать такую аналогию ( где VD1 маломощный стабилитрон):

R2 – балластный резистор. Напряжение стабилизации схемы равно напряжению стабилизации стабилитрона плюс напряжение б-э транзистора (0,7В у кремниевых и 0,5В у германиевых). Максимальный ток стабилизации схемы равен току стабилитрона, умноженному на коэффициент усиления транзистора по току (h21). Используя такие схемы нельзя допускать превышения значений параметров применяемых элементов.

Если нужны высоковольтные стабилитроны на напряжения 120…180В (КС620А, КС630А, КС650А, КС680А), то можно использовать такие схемы:

Как источник стабильного тока используют германиевые диоды Д220, Д220А, Д219А которые имеют низкое дифференциальное сопротивление при обратном включении и обратном токе 0,1…10 мА. Понятно, что напряжение применяемого транзистора должно быть выше 180 В.

Материал статьи продублирован на видео:

2.2.5 Стабилитроны

Как было показано в пункте 1.3.5 вольт-амперная характеристика полупроводниковых диодов в области электрического пробоя имеет участок, который может быть использован для стабилизации напряжения. Такой участок у кремниевых плоскостных диодов соответствует изменениям обратного тока в широких пределах. При этом до наступления пробоя обратный ток очень мал, а в режиме пробоя, т. е. в режиме стабилизации, он становится такого же порядка, как и прямой ток. В настоящее время выпускаются исключительно кремниевые стабилитроны многих типов. Их также называют опорными диодами, так как получаемое от них стабильное напряжение в ряде случаев используется в качестве эталонного. На рисунке 2.28 дана типичная вольт-амперная характе­ристика стабилитрона при обратном токе, показывающая, что в режиме ста­билизации напряжение меняется мало. Характеристика для прямого тока стабилитрона такая же, как у обычных диодов.

Рисунок 2.28 — Вольтамперная характе­ристика стабилитрона при обратном токе

Кремниевые стабилитроны могут быть изготовлены на малые’ напряжения (единицы вольт), а именно такие нужны для питания многих транзисторных устройств.

Напряже­ние стабилизации Uст может быть примерно от 3 до 200 В. изменение тока стабилитрона от Imin до Imax составляет десятки и даже сотни миллиампер. Максимальная допустимая мощность Рmах, рассеиваемая в стабилитроне, от сотен милливатт до единиц ватт. Дифференциальное сопротивление Rд = Δu/Δi в режиме стабилизации может быть от десятых долей Ома для низковольтных мощных стабилитронов до 200 Ом для стабилитронов на более высокие напря­жения. Низковольтные стабилитроны небольшой мощности имеют сопротивле­ние Rд от единиц до десятков Ом. Чем меньше Rд, тем лучше стабилизация. При идеальной стабилизации было бы Rд = 0. Так как Rд является сопротивлением переменному току, то его не следует путать со статическим сопротивлением, т. е. сопротивлением постоянному току R = и/i. Сопротивление Rо всегда во много раз больше Rд.Влияние температуры оценивается температурным коэффициентом напряжения стабилизации ТКН, который характеризует изменение напряжения и„ при изменении температуры на один градус, т. е.

Температурный коэффициент напряжения может быть от 10 -5 до 10 -3 К -1 . Значение Uст и знак ТКН зависят от удельного сопротивления основного по­лупроводника. Стабилитроны на напряжения до 7 В изготовляются из кремния с малым удельным сопротивлением, т. е. с большой концентрацией примесей. В этих стабилитронах п — р-переход имеет малую толщину, в нем действует поле с высокой напряженностью и пробой происходит главным образом за счет туннельного эффекта. При этом ТКН получается отрицательным. Если же применен кремний с меньшей концентрацией примесей, то n-р-переход будет толще. Его пробой возникает при более высоких напряжениях и является лавинным. Для таких стабилитронов характерен положительный ТКН.

Простейшая схема применения стабилитрона показана на рисунке 2.29. Нагрузка (потребитель) включена параллельно стабилитрону. Поэтому в режиме стабилизации, когда напряжение на стабилитроне почти постоянно, такое же напряжение будет и на нагрузке. Все изменения напряжения источника Е при его нестабильности почти полностью поглощаются ограничительным резистором Rогр.

Наиболее часто стабилитрон работает в таком режиме, когда напряже­ние источника нестабильно, а сопротивление нагрузки Rн постоянно. Для уста­новления и поддержания правильного режима стабилизации в этом случае сопротивление Rогр должно иметь определенное значение. Обычно Rогр рас­считывают для средней точки Т характеристики стабилитрона. Если напряже­ние Е меняется от Еmin до Еmax, то можно Rогр найти по следующей формуле:

где Еср = 0,5 (Еmin — Еmax) — среднее напряжение источника; Iср = 0,5 (Imin + Imax) — средний ток стабилитрона; Iн = Uст / Rн — ток нагрузки.

Если напряжение Е станет изменяться в ту или другую сторону, то будет изменяться ток стабилитрона, но напряжение на нем, а следовательно, и на нагрузке будет почти постоянным.

Рисунок 2.29 — Схема включения стабилитрона

Поскольку все изменения напряжения источника должны поглощаться ограничительным резистором, то наибольшее изменение этого напряжения, равное Еmax Еmin, должно соответствовать наибольшему возможному изменению тока, при котором ещё сохраняется стабилизация, т. е. Imax Imin. Отсюда следует, что если значение Е изменяется на ΔЕ, то стабилизация будет осуществляться только при соблюдении условия

Стабилизация в более широком диапазоне изменения Е возможна при увеличении Rогр. Но из формулы (2.5) следует, что большее Rогр получается при меньшем Iн, т. е. при большем Rн. Повышение Еср также дает увеличение Rогр.

Иногда необходимо получить стабильное напряжение более низкое, чем дает стабилитрон. Тогда последовательно с нагрузкой включают добавочный резистор, сопротивление которого легко рассчитать по закону Ома (рисунок 2.30).

Рисунок 2.30 — Включение добавочного резистора для понижения стабильного напряжения на нагрузке

Второй возможный режим стабилизации применяется в том случае, когда Е= const, а Rн изменяется в пределах от Rн min до Rн max. Для такого режима Rогр можно определить по средним значениям токов по формуле

Работу схемы в данном режиме можно объяснить так. Поскольку Rогр постоянно и падение напряжения на нем, равное Е — Uст, также постоянно, то и ток в Rогр, равный Iср+ Iн ср должен быть постоянным. Но последнее возможно только в том случае, если ток стабилитрона I и ток Iн изменяются в одинаковой степени, но в противоположные стороны. Например, если Iн увеличивается, то ток I на столько же уменьшается, а их сумма остается неизменной.

Для получения более высоких стабильных напряжений применяется последовательное соединение стабилитронов, рассчитанных на одинаковые токи (рисунок 2.31). Вследствие разброса характеристик и параметров у отдельных экземпляров стабилитронов данного типа их параллельное соединение с целью получения больших токов не рекомендуется. Оно допускается только при условии, что суммарная мощность, рассеиваемая на всех стабилитронах, не превышает предельной мощности одного стабилитрона.

Рисунок 2.31 — Последовательное включение стабилитронов

Для повышения стабильности напряжения может применяться схема каскадного соединения стабилитронов (рисунок 2.32) в которой стабилитрон VD1 должен иметь более высокое напряжение Uст, нежели стабилитрон VD2.

Рисунок 2.32 — Каскадное включение стабилитронов

Эффективность стабилизации напряжения характеризуется коэффициентом стабилизации кст, который показывает, во сколько раз относительное изменение напряжения на выходе схемы стабилизации меньше, чем относительное изменение напряжения на входе. Для простейшей схемы по рисунку 2.29 можно написать

. (2.7)

Практически полупроводниковый стабилитрон может обеспечить кст, равный нескольким десяткам. А при каскадном соединении (рисунок 2.32) общий коэффициент стабилизации равен произведению коэффициентов стабилизации отдельных звеньев (ячеек):

и уже при двух звеньях достигает нескольких сотен.

Недостаток рассматриваемых схем стабилизации состоит в том, что потери мощности в самом стабилитроне и на Rогр велики, особенно в схеме каскадного соединения.

Следует еще отметить, что если имеют место пульсации напряжения Е, то стабилитрон значительно сглаживает их. Это объясняется тем, что стабили­трон обладает малым сопротивлением переменному току. Оно обычно во много раз меньше Rогр. Поэтому большая часть напряжения пульсаций поглощается в Rогр, а на стабилитроне и на нагрузке будет лишь малая часть этого напряжения.

Конструкция стабилитронов очень незначительно отличается от конструкций выпрямительных диодов.