Последовательное соединение элементов Пельтье

blek127 › Блог › Расчеты для проектирования холодильника на пельтье

Замутить холодильник на элементах пельтье очень просто, но эффективность такого холодильника будет очень низка. Здесь я приведу пример примерных расчетов.

И так первое, это расчет тепловых потерь через теплоизолятор.
Я использовал пенополистирол, он прочный, дешевый и его теплопроводность 0,03(чем меньше это число тем лучше). Например в бауцентре на их сайте указаны характеристики теплоизоляторов. Далее, допустим я захотел сделать что то типа куба, объем примерно 25 литров, площадь поверхности у меня получилась 0.5 квадратного метра. Допустим температура внутри моего контейнера будет на 20 градусов меньше наружной. Тогда теплопотери считаются так: Q=X*S*dT/h Q= 0.03*0.5*20/0.05=6ват
X — теплопроводность 0.03
S — площадь поверхности 0.5 (я брал среднюю между внутренней и внешней)
dT — разница температур между то что внутри и снаружи 20.
h — толщина изолятора, (пусть будет 5см или 0.05м)
Q — энергия теплопотерь
Получилось 6 ват, если изолятор был бы 1см, а не 5, то потери стали бы 30 ватт.
Что касается разницы температур, то 20 градусов это минимум, например если снаружи +30 градусов, то внутри будет +10, а если снаружи +40 то внутри уже +20.

Проверить реальные потери термоконтейнера можно с помощью льда. Например килограмм льда дает 350 кдж холода, при потерях 6 ват это 350 000/6 = 58333 секунд или чуть больше 16 часов, если лед не растаял раньше значит все правильно. Единственно это то что температура в контейнере со льдом должна быть на 20 градусов меньше окружающей. В противном случае нужно сделать перерасчет теплопотерь под ту температуру что получилась со льдом.

Измерения производительности пельтье.
В своих опытах я использовал элементы TEC1 12706 — 6 ампер и TEC1 12704 — 4 ампера, и мультиметр с термопарой.

Далее я попытался определить производительность элементов, для этого я соединял их последовательно, верхний я использовал как нагреватель(потому что у них одинаковая площадь поверхности), а нижний пытался охолодить верхний, подсовывая термопару между ними я измерял температуру до которой нижнему элементу удавалось холодить верхний.
Метод так себе, я мог измерять только температуру между ними только по периметр, а не в середине. В процессе измерения заметил что качество контакта играет очень большую роль. Например измеряя температуру по периметру я замечал что она не одинакова, это из-за не полного контакта с термопастой. Более тщательная притирка решила эту проблему.
Результат получился следующий, оба элемента при разности температур 20 градусов и напряжении 13.5 вольта давали производительность по холоду около 1/3 от потребляемой мощности.Точность измерения не высока, я мерил температуру сбоку, это не очень точный метод, но лучше чем ничего.
В итоге если мощность элемента 4А*13.5V=54 ват, то холода он даст только на 18 ват при разности температур 20 градусов.
Но все не так здорово, 20 градусов это разности температур между поверхностями, а еще это тепло нужно передать воздуху. Продолжаем эксперимент. Максимальная разность температур у этих элементов 40 — 45 градусов(проверял при напряжении 13.5 вольта), хотя заявлено было 60 — 65. Тут следует учесть что холодная сторона элемента брала часть тепла (я думаю не больше 1 ватта) от воздуха даже без радиатора, а вот если бы ее полностью теплоизолировать и напряжение поднять то может и будет разность температур 60 градусов, а может китайцы специально завысили возможности своих элементов в описании.

Тест производительности радиаторов.

Я измерял температуру между поверхность элемента TEC1 12706 (сверху его нагревал TEC1 12704 мощность 18 ват) и окружающим воздухом. Использовал радиатор от видеокарты процессора и от водянки.
Результаты следующие. У водяники разница температур между водой и поверхностью элемента 6 градусов. Водяной насос качал воду быстро, в радиаторе она нагреваться не успевала, то есть до и после температура воды была примерно одинакова, я использовал тазик для охлаждения воды, в реальных условиях будет что то более компактное и тогда надо будет еще учитывать разницу температур между воздухом и водой. Далее радиатор видеокарты. Разница между поверхностью пельтье и воздухом 13 — 14 градусов. Радиатор от процессора — 18 градусов. В итоге получается что элемент пельтье дает разницу температур в 20 между своими поверхностями и от этих 20 градусов еще нужно отнять потери на радиаторе. Например в помещении +30, температура поверхности элемента охлаждаемого радиатором карты будет 30 + 13 = 43 градуса, температура холодной стороны элемента будет 43-20=23 градуса. это при мощности холода 18 ват, меньше холода больше разница температур, однако из предыдущих опытов видно что при разности в 40 градусов производительность по холоду меньше 1 вата.
Теперь производительность радиатора который будет морозить. Радиатор с теплотрубками не подходит, как показала практика при температуре меньше +30 их производительность резко падает. Я использовал радиатор от старого процессора без теплотруб, пришлось извратиться закрепить термопару к холодной поверхности затем закрыть свой контейнер, и подождать пока охладиться, затем измерил так же температуру воздуха внутри, получилась разница 2 — 3 градуса.

Последовательное соединение элементов.
Если взять 2 элемента и соединить последовательно то разность температур которую они создают сложиться. Наибольшая эффективность у этих элементов получилась при разности 20 градусов, складываем 2 и получаем разность 40 градусов, вот только условие таково что разность мощности элементов должна быть 1 к 3, то есть если TEC1 12706 дает только 18 ватт холода, то элемент на нем должен иметь мощность не больше 18 ват при 13.5 вольта, это где то 2 ампера, попытка ограничить ток TEC1 12704 до 2 ампер немного снижает его эффективность, то есть при 2 амперах он не даст разницы температур 20 и 6 ват холода. Элементы на 2 ампера имеют меньшую площадь, в результате возникает проблема как тепло от маленького элемента равномерно распределить по площади большого. Дополнительная пластина создаст дополнительные теплопотери внутри себя и на термопасте. Решил оставить TEC1 12704 и ограничить его ток резистором, на мой взгляд снижение эффективность от снижения тока меньше чем дополнительные потери на пластине между элементами.

Производительность сборки элементов.
И так, реальная производительность холода моей сборки.
напряжение у меня 13.5 вольт при этом TEC1 12706 потреблял 4А, мощность 54 вата, мощность холода 54/3=18 ват — примерно. Мощность TEC1 12704 учитывая ограничивающий резистор 2А*9V = 18 ват
Эксперименты это подтвердили, максимальная эффективность была именно на 2 А.
Производительность холода элемента TEC1 12704 18/3= 6 ват.

Из расчета теплоизолятора контейнера видно что 6 ват это теплопотери при разницы температур 20 градусов и 5 см стенок из пенополистирола.
Сам контейнер выглядит так.

Внутреннюю поверхность дополнительно обклеил 0.5см изолятором для прочности, пенополистирол легко протыкается. Снаружи так же для прочности оргстекло.

Реальные тесты готового холодильника.
Напряжение 13.5 вольта, потребление 7.2А из этого 1А потребляют вентиляторы.
По расчетам разность температур должна быть 40 градусов, отнимает потери 14 градусов горячего радиатора и 3 градуса холодного, получаем 23, это уже разность температур между воздухом внутри и снаружи. Тут нужно учесть что элемент TEC1 12704 недонагружен, эффективность снижена.
По факту разность получилась 20 градусов. 7.2А*13.5=97.2 ватт потребление и 6ватт холода.

Если вентилятор холодно радиатора выключить то радиатор замерзает до -20. Пассивное охлаждение в моей конструкции не предусмотрено, холодный радиатор без принудительного обдува не получает тепла поэтому так замерзает. Чем быстрее вращается вентилятор холодного радиатора тем меньше разность температур между поверхностью элемента и воздуха внутри, однако на больших оборотах вентилятор выделяет много тепла. В моем случае оптимально получилось если обороты вентилятора немного снизить. На полных оборотах разница температур была 19 градусов. Поднять разницу выше 20 градусов не удалось.

ОБОРУДОВАНИЕ
ТЕХНОЛОГИИ
РАЗРАБОТКИ

Блог технической поддержки моих разработок

Элемент Пельтье TEC1-12706. Характеристики, применение, условия эксплуатации

Элемент Пельтье это термоэлектрический преобразователь, который создает разность температур на своих поверхностях при протекании электрического тока. Принцип действия основан на эффекте Пельтье – возникновении разности температур в месте контакта проводников под действием электрического тока.

Устройство и принцип действия элемента Пельтье.

Думаю, что только знатоки физики могут понять, как на самом деле работает элемент Пельтье. Для практиков главное, что существует минимальная единица модуля – термопара, представляющая из себя два соединенных проводника p и n типа.

При пропускании через термопару тока, происходит поглощение тепла на контакте n-p и выделение тепла на p-n контакте. В результате, участок полупроводника, примыкающий к n-p переходу, будет охлаждаться, а противоположный участок – нагреваться. Если поменять полярность тока, то на оборот, n-p участок будет нагреваться, а противоположный – охлаждаться.

Существует и обратный эффект. При нагревании одной из сторон термопары, вырабатывается электрический ток.

Для практического применения энергии поглощения тепла одной термопары недостаточно. В термоэлектрическом модуле используется много термопар. Электрически их соединяют последовательно. А конструктивно – так, что охлаждающие и нагревающие переходы расположены на разных сторонах модуля.

Термопары установлены между двух керамических пластин. Соединяются они медными шинами. Количество термопар может доходить до нескольких сотен. От их количества зависит мощность модуля.

Читайте также  Инфракрасный светодиод 12 вольт

Разность температур между горячей и холодной стороной модуля Пельтье может достигать 70 °C.

Надо понимать, что термоэлектрический модуль Пельтье снижает температуру одной стороны, относительно другой. Т.е. чтобы холодная сторона имела низкую температуру, необходимо отводить тепло от горячей поверхности, снижая ее температуру.

Для увеличения перепада температур, возможно последовательное (каскадное) соединение модулей.

Применение.

Термоэлектрические модули Пельтье применяются:

  • в небольших бытовых и автомобильных холодильниках;
  • в охладителях воды;
  • в системах охлаждения электронных приборов;
  • в термоэлектрических генераторах.

Я, используя элемент Пельтье, сделал холодильник для вина.

Достоинства и недостатки модулей Пельтье.

Как-то неправильно сравнивать элементы Пельтье с компрессорными охлаждающими установками. Совсем разные устройства – большая механическая система с компрессором, газом, жидкостью и маленький полупроводниковый компонент. А больше сравнивать не с чем. Поэтому достоинства и недостатки модулей Пельтье весьма условное понятие. Есть области, в которых они не заменимы, а в других случаях их применение совершенно нецелесообразно.

К достоинству элементов Пельтье можно отнести:

  • отсутствие механически движущихся частей, газов, жидкостей;
  • бесшумная работа;
  • небольшие размеры;
  • возможность обеспечивать как охлаждение, так и нагревание;
  • возможность плавного регулирования мощности охлаждения.
  • низкий кпд;
  • необходимость в источнике питания;
  • ограниченное число старт-стопов ;
  • высокая стоимость мощных модулей.

Параметры элементов Пельтье.

  • Qmax (Вт) – холодопроизводительность, при максимально-допустимом токе и разности температур между горячей и холодной сторонами равной 0. Считается, что вся тепловая энергия поступающая на холодную поверхность, мгновенно, без потерь передается на горячую.
  • Delta Tmax (град) — максимальная разность температур между поверхностями модуля при идеальных условиях: температура горячей стороны – 27 °C и холодная сторона с нулевой отдачей тепла.
  • Imax (А) – ток, обеспечивающий перепад температур delta Tmax.
  • Umax (В) – напряжение, при токе Imax и разности температур delta Tmax.
  • Resistance (Ом) – сопротивление модуля постоянному току.
  • COP (Сoefficient Of Рerformance) – коэффициент, отношение мощности охлаждения к электрической мощности, потребляемой модулем. Т.е. подобие кпд. Обычно 0.3-0.5.

Эксплуатационные требования к элементам Пельтье.

Модули Пельтье – капризные устройства. Их применение сопряжено с рядом требований, не выполнение которых приводит: к деградации модуля или выходу из строя, снижению эффективности системы.

  • Модули выделяют значительное количество тепла. Для отвода тепла должен быть установлен соответствующий радиатор. Иначе:
    • Невозможно достичь нужной температуры холодной стороны, т.к. элемент Пельтье снижает температуру относительно горячей поверхности.
    • Допустимый нагрев горячей стороны как правило + 80 °C ( в высокотемпературных до 150 °C). Т.е. модуль может просто выйти из строя.
    • При высоких температурах кристаллы модуля деградируют, т.е. снижается эффективность и срок службы модуля.
  • Важен надежный тепловой контакт модуля с радиатором охлаждения.
  • Источник питания для модуля должен обеспечивать ток с пульсациями не более 5%. При более высоком уровне пульсаций эффективность модуля снизится, по некоторым данным на 30-40%.
  • Не допустимо, для управления элементом Пельтье, использовать релейные регуляторы. Это приведет к быстрой деградации модуля. Каждое включение – выключение вызывает деградацию полупроводниковых термопар. Из-за резких изменений температуры между пластинами модуля возникают механические напряжения в местах спайки с полупроводниками. Производители элементов Пельтье нормируют количество циклов старт-стопов модуля. Для бытовых модулей это порядка 5000 циклов. Релейный регулятор выведет из строя модуль Пельтье за 1-2 месяца.
  • К тому же элемент Пельтье обладает высокой теплопроводностью между поверхностями. При выключении, тепло радиатора горячей стороны, через модуль будет передаваться на холодную сторону.
  • Недопустимо, для регулирования мощности на элементе Пельтье, использовать ШИМ модуляцию.
  • Чем надо питать элемент Пельтье источником тока или напряжения? Обычно используют источник напряжения. Он проще в реализации. Но вольт-амперная характеристика модуля Пельтье нелинейная и крутая. Т.е. при небольшом изменении напряжения ток меняется значительно. И вдобавок, характеристика меняется при изменении температуры поверхностей модуля. Надо стабилизировать мощность, т.е. произведение тока через модуль на напряжение на нем. Охлаждающая способность элемента Пельтье напрямую связана с электрической мощностью. Конечно, для этого необходим достаточно сложный регулятор.
  • Напряжение модуля зависит от количества термопар в нем. Чаще всего это 127 термопар, что соответствует напряжению 16 В. Разработчики элементов рекомендуют подавать до 12 В, или 75% Umax. При таком напряжении обеспечивается оптимальная эффективность модулей.
  • Модули имеют герметичное исполнение, их можно использовать даже в воде.
  • Полярность модуля отмечена цветами проводов – черный и красный. Как правило, красный (положительный) провод расположен справа, относительно холодной стороны.

Мною был разработан контроллер элемента Пельтье для холодильника, удовлетворяющим всем этим требованиям. Он:

  • Вырабатывает питание для элемента Пельтье с пульсациями не более 2%.
  • Стабилизирует на модуле электрическую мощность, т.е. произведение тока на напряжение.
  • Обеспечивает плавное включение модуля.
  • Регулировка температуры происходит по принципу аналогового регулирования, т.е. плавного изменения мощности на элементе пельтье.
  • Контроллер разработан для холодильника, поэтому математика регуляторов учитывает инерционность охлаждения воздуха в камере.
  • Обеспечивает контроль температуры горячей стороны модуля и управление вентилятором.
  • Имеет высокий кпд, широкие функциональные возможности.

Термоэлектрический модуль Пельтье TEC1-12706.

Это самый распространенный тип элемента Пельтье. Используется во многих бытовых приборах. Не дорогой, с неплохими параметрами. Хороший вариант для изготовления маломощных холодильников, охладителей воды и т.п.

Характеристики модуля TEC1-12706 привожу в переводе на русский из документации TEC1-12706.pdf компании производителя – HB Corporation.

Технические параметры TEC1-12706.

Обозначение Параметр Значение, при температуре горячей стороны
25 °C 50 °C
Qmax Холодопроизводительность 50 Вт 57 Вт
Delta Tmax Разность температур 66 °C 75 °C
Imax Максимальный ток 6.4 А 6.4 А
Umax Максимальное напряжение 14.4 В 16.4 В
Resistance Сопротивление 1.98 Ом 2.3 Ом

Графические характеристики.

Габаритный чертеж модуля TEC1-12706.

Обозначение Размер
A 40 мм
B 40 мм
C 3.8 мм

Рекомендации по эксплуатации.

  • Максимально – допустимая температура 138 °C.
  • Не допустимо превышение значения параметров Imax и Umax.
  • Срок службы 200 000 часов.
  • Параметр частота отказов основан на длительных испытаниях с выборкой 0.2%.
  • Производитель — HB Corporation.

Пример разработки на элементе Пельтье — холодильник для вина.

Элементы Пельтье или мой путь к криогенным температурам

Многие слышали про «магические» элементы Пельтье — при прохождении тока через них одна сторона охлаждается, а другая — нагревается. Это работает и в обратную сторону — если одну сторону нагревать, а другую охлаждать — вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей — есть точка максимальной мощности, и если работать далеко от неё — КПД генерации сильно снижается).

В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями, так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…

Краткая теория

Классические «китайские» элементы Пельтье — это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В — то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).

Нужно помнить, что элемент Пельтье — это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В — у нас может не получится 6 ампер (для 6-и амперного элемента) — ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.

Количество перенесенного тепла пропорционально току. Но помимо этого есть паразитный нагрев от протекания тока, и паразитная теплопроводность — все это делает элемент Пельтье хоть сколько-то эффективным в очень узких условиях.

Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С — перенос тепла стремится к 0, а при нулевой разнице — 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию — нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).

Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С — так что если элемент случайно останется без охлаждения и перегреется — то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие — как керамика, так и сами охлаждающие элементы — я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:

Пробуем


Итак, маленький элемент — 5В*2А, большой — 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…

Идея — вынести все на морозный воздух, но есть проблема — кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам — к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях — добавим килограммовую медную пластину — тепловой аккумулятор.

Читайте также  Установка датчика света на авто


Результат шокирующий — те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха — -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.

Выкатываем тяжелую артиллерию

Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда — подключаем ток — на 12В температура моментально начинает расти, при 5В — падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты…

Выводы и видео на сладкое

Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах — я пробовал элементы разных моделей от 3-х разных продавцов — поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).

Ну а с оставшимся сухим льдом можно поступить следующим образом:

PS. А если смешать сухой лед с изопропиловым спиртом — получится жидкий азот для «бедных» — в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей — получить обморожение существенно легче.

Форумы Modlabs.net: Опыты с элементами пельтье и сделанные выводы — Форумы Modlabs.net

  • Обсуждения
  • Team MXS
  • Пользователи
  • Календарь
  • Форумы Modlabs.net
  • >Тематические форумы
  • >Охлаждение
  • >Phase-change & экстрим
  • Просмотр новых публикаций
  • (10 Страниц)
  • « Первая
  • 3
  • 4
  • 5
  • 6
  • 7
  • Последняя »
  • Вы не можете создать новую тему
  • Вы не можете ответить в тему

Опыты с элементами пельтье и сделанные выводы

#71 root

  • Member

  • Группа: Пользователи
  • Сообщений: 367
  • Регистрация: 05 Апрель 04

#72 PSIX

  • Advanced Member

  • Группа: Пользователи
  • Сообщений: 2 930
  • Регистрация: 06 Декабрь 03

#73 N!ck

  • Advanced Member

  • Группа: Пользователи
  • Сообщений: 566
  • Регистрация: 02 Январь 04

#74 Гость__*

  • Группа: Гости

#75 root

  • Member

  • Группа: Пользователи
  • Сообщений: 367
  • Регистрация: 05 Апрель 04

#76 Гость__*

  • Группа: Гости

#77 BlackAlex

  • Advanced Member

  • Группа: Пользователи
  • Сообщений: 1 458
  • Регистрация: 18 Апрель 03

БП с подстройкой, а зачем. Учти, схема будет не дешевая, кренкой тут не обойдешся — ток в 4-5 А она не выдержит. Разве что ставить ее как опору для управляющего транзистора. НО! при выхордном напряжении 30В ( два по 15) при повышени входного напряжения до 250В на выходе будет 34В, кратковременно пельтье выдержит, можно поставить варисторы по входу, или стабилитрон на выходе, но тут сказывается ток — стабилитрон надо ставить мощный, с радиатором и прочим. Вполне достаточно будет транса , диодного моста — вот его надо брать с запасом, и в мет. корпусе, благо есть такие, сажаем на радиатор, кондеры на выходе порядка 4700 мкф. и то, только для успокоения души, сгладить при таком потреблении они сильно не сгладят, да и не надо для пельте супер стабильность. Болтанка в 5-10% эффективности думаю не будет столь существенна. Тем более если делаете ватерчил — вода сгладит своей инерционностью.

Последовательное соединение элементов пельтье

Модуль пельтье принцип работы

Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. Thermoelectric Cooler — термоэлектрический охладитель).

Эффект, обратный эффекту Пельтье, называется эффектом Зеебека.

Принцип действия [ править | править код ]

В основе работы элементов Пельтье лежит контакт двух полупроводниковых материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используется контакт двух полупроводников.

Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре (обычно теллурида висмута Bi2Te3 и твёрдого раствора SiGe), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой.

Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу – противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот.

Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 °C.

Достоинства и недостатки [ править | править код ]

Достоинством элемента Пельтье являются небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание — это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования. Также достоинством является отсутствие шума.

Недостатком элемента Пельтье является более низкий коэффициент полезного действия, чем у компрессорных холодильных установок на фреоне, что ведёт к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, ведутся разработки по повышению теплового КПД, а элементы Пельтье нашли широкое применение в технике, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.

Основной проблемой в построении элементов Пельтье с высоким КПД является то, что свободные электроны в веществе являются одновременно переносчиками и электрического тока, и тепла. Материал для элемента Пельтье же должен одновременно обладать двумя взаимоисключающими свойствами — хорошо проводить электрический ток, но плохо проводить тепло.

В батареях элементов Пельтье [1] возможно достижение большей разницы температур, но мощность охлаждения будет ниже. Для стабилизации температуры лучше использовать импульсный источник питания, так как это позволит повысить эффективность системы. При этом желательно сглаживать пульсации тока – это увеличит эффективность работы Пельтье и, возможно, продлит срок его службы. Также, работа элемента Пельтье будет неэффективной, если пытаться стабилизировать температуру с использованием широтно-импульсной модуляции тока.

Применение [ править | править код ]

Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температур или энергетическая эффективность охладителя не важна. Например, элементы Пельтье применяются в ПЦР-амплификаторах, маленьких автомобильных холодильниках, охлаждаемых банкетных тележках, применяемых в общественном питании, так как применение компрессора в этом случае невозможно из-за ограниченных размеров, и, кроме того, требуемая мощность охлаждения невелика.

Кроме того, элементы Пельтье применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счёт этого достигается заметное уменьшение теплового шума при длительных экспозициях (например в астрофотографии). Многоступенчатые элементы Пельтье применяются для охлаждения приёмников излучения в инфракрасных сенсорах.

Также элементы Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с тем, чтобы стабилизировать длину волны излучения.

Элементы Пельтье или мой путь к криогенным температурам

Многие слышали про «магические» элементы Пельтье — при прохождении тока через них одна сторона охлаждается, а другая — нагревается. Это работает и в обратную сторону — если одну сторону нагревать, а другую охлаждать — вырабатывается электричество.

Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей — есть точка максимальной мощности, и если работать далеко от неё — КПД генерации сильно снижается).

В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями, так что эксперименты с ними уже не отнимают слишком много денег.

Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…

Читайте также  Измеритель силы света

Краткая теория

Классические «китайские» элементы Пельтье — это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В — то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).

Нужно помнить, что элемент Пельтье — это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В — у нас может не получится 6 ампер (для 6-и амперного элемента) — ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше. Количество перенесенного тепла пропорционально току. Но помимо этого есть паразитный нагрев от протекания тока, и паразитная теплопроводность — все это делает элемент Пельтье хоть сколько-то эффективным в очень узких условиях.

Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С — перенос тепла стремится к 0, а при нулевой разнице — 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию — нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).

Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С — так что если элемент случайно останется без охлаждения и перегреется — то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие — как керамика, так и сами охлаждающие элементы — я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:

Пробуем

Итак, маленький элемент — 5В*2А, большой — 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19… Идея — вынести все на морозный воздух, но есть проблема — кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки.

В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам — к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях — добавим килограммовую медную пластину — тепловой аккумулятор. Результат шокирующий — те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха — -10. Т.е.

с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.

Выкатываем тяжелую артиллерию

Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда — подключаем ток — на 12В температура моментально начинает расти, при 5В — падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты…

Выводы и видео на сладкое

Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах — я пробовал элементы разных моделей от 3-х разных продавцов — поведение одно и то же.

Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента). Ну а с оставшимся сухим льдом можно поступить следующим образом:

PS. А если смешать сухой лед с изопропиловым спиртом — получится жидкий азот для «бедных» — в нем так же весело замораживаются и разбиваются цветы и проч.

Вот только из-за того что спирт не кипит при контакте с кожей — получить обморожение существенно легче.

  • Peltier Пельтье Охлаждение
  • 3 апреля 2019 в 11:00
  • 6 марта 2019 в 10:00
  • 31 октября 2018 в 18:32

Элемент Пельтье — как устроен и работает, как проверить и подключить

Принцип действия элемента Пельтье основан на эффекте Пельтье, который заключается в том, что при пропускании постоянного электрического тока через спай двух разнородных проводников, происходит перенос энергии от одного проводника спая — к другому, при этом в месте спая выделяется или поглощается тепло.

Количество выделенного или поглощенного в ходе данного процесса тепла, будет пропорционально току, времени его протекания, а также коэффициенту Пельтье, характерному для данной пары спаянных проводников. Коэффициент Пельтье, в свою очередь, равен коэффициенту термо-эдс пары, умноженному на абсолютную температуру спая в текущий момент.

И поскольку эффект Пельтье наиболее выразителен у полупроводников, то данное их свойство и используется в популярных и доступных полупроводниковых элементах Пельтье. С одной стороны элемента Пельтье тепло поглощается, с другой — выделяется. Далее мы рассмотрим это явление более внимательно.

Непосредственно физический эффект Пельтье был открыт в 1834 году французским физиком Жаном Пельтье, а спустя четыре года суть данного явления исследовал русский физик Эмилий Ленц, показавший, что если стержни из висмута и сурьмы привести в плотный контакт, на место контакта капнуть воды, а затем пропустить через спай постоянный ток определенного направления, то если при первоначальном направлении тока вода превратится в лед, значит если направление тока изменить на противоположное, то этот лед быстро растает.

В своем эксперименте Ленц наглядно продемонстрировал, что тепло Пельтье поглощается или выделяется в зависимости от направления тока через спай.

Ниже приведена таблица коэффициентов Пельтье для трех популярных пар металлов. Кстати, эффект, обратный эффекту Пельтье, называется эффектом Зеебека (когда при нагревании или охлаждении спаев замкнутой цепи, в этой цепи возникает электрический ток).

Так почему же возникает эффект Пельтье? Причина в том, что в месте контакта двух веществ имеется контактная разность потенциалов, которая порождает контактное электрическое поле между ними.

Если теперь через контакт пропустить электрический ток, то это поле будет либо помогать прохождению тока, либо препятствовать ему. Поэтому, если ток направлен против вектора напряженности контактного поля, то источник прикладываемой ЭДС должен совершить работу, и энергия источника как раз выделяется в месте контакта, это приведёт к его нагреву.

Если же ток источника будет направлен по контактному полю, то он как-бы дополнительно поддержится этим внутренним электрическим полем, и теперь поле совершит дополнительную работу по перемещению зарядов. Эта энергия отбирается теперь у вещества, что в действительности и приводит к охлаждению места спая.

Итак, поскольку мы знаем, что в элементах Пельтье используются спаи пар полупроводников, то что за процесс реализован в полупроводниках?

Все просто. Полупроводники эти отличаются уровнями энергий электронов в зоне проводимости. При прохождении электрона через место контакта данных материалов, электрон приобретает энергию, чтобы суметь перейти в более высокоэнергетическую зону проводимости другого полупроводника пары.

При поглощении электроном этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному джоулеву теплу. Если бы вместо полупроводников в элементах Пельтье использовались чистые металлы, то тепловой эффект оказался бы настолько мал, что омический нагрев значительно превзошел бы его.

В реальном преобразователе Пельтье, таком например как TEC1-12706, между двумя керамическими подложками установлены несколько параллелепипедов из теллурида висмута и твердого раствора кремния и германия, спаянных между собой в последовательную цепочку. Эти пары полупроводников n- и p-типа соединены проводящими перемычками, которые и контактируют с керамическими подложками.

Каждая пара маленьких полупроводниковых параллелепипедов образует контакт для прохождения тока от полупроводника n-типа – к полупроводнику p-типа — с одной стороны преобразователя Пельтье, и от полупроводника p-типа — к полупроводнику n-типа — с другой стороны преобразователя.

Когда ток проходит через все эти последовательно соединенные параллелепипеды, то с одной стороны все контакты только охлаждаются, а с другой — все только нагреваются. Если полярность источника изменить, то стороны поменяются ролями.

По такому принципу и работает элемент Пельтье или, как его еще называют, термоэлектрический преобразователь Пельтье, где тепло отбирается от одной стороны изделия, и переносится на противоположную его сторону, при этом создается разность температур с двух сторон элемента.

Можно даже дополнительно охлаждать нагревающуюся сторону элемента Пельтье при помощи радиатора с вентилятором, тогда температура холодной стороны станет ещё ниже. В широко доступных элементах Пельтье разность температур может достигать около 69 °C.

Для того, чтобы проверить исправность элемента Пельтье, достаточно пальчиковой батарейки. Красный провод элемента присоединяется к положительной клемме источника питания, черный — к отрицательной. Если элемент исправен, то с одной стороны будет происходить нагрев, с другой — охлаждение, вы сможете почувствовать это пальцами рук. Сопротивление обычного элемента Пельтье находится в районе пары-тройки Ом.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!