Получение контактных соединений пайкой

Соединение контактов и проводов пайкой

Пайка — процесс соединения металлов в твердом состоянии припоями, которые при расплавлении затекают в зазор, смачивают спаиваемые поверхности, а при охлаждении, застывая, образуют паяный шов.

Пайка выполняется при температуре ниже температуры плавления материалов соединяемых деталей. Вместе с тем температура припоя, с помощью которого осуществляется пайка, должна быть несколько выше точки его плавления, а температура соединяемых деталей должна быть близка к температуре плавления припоя. Соблюдение этого условия необходимо для получения такой подвижности припоя, которая обеспечивает заполнение зазоров в швах между контактными элементами и обтекание их поверхностей.

Хорошее качество соединения пайкой может быть выполнено лишь в том случае, если припой смачивает контактные поверхности соединяемых элементов, а также обладает высокими капиллярными свойствами и обеспечивает заполняемость зазоров между соединяемыми элементами.

Металлургический метод соединения деталей с использованием припоя, имеющего температуру плавления ниже 450°С, называют мягкой пайкой. Сцепление припоя с металлом происходит благодаря адгезии припоя к металлу. Следует заметить, что температура плавления припоя для мягкой пайки 450°С принята условно.

Выполнение контактных соединений с использованием припоя, имеющего температуру плавления выше 450°С, называют твердой пайкой. Соединение припоя с металлом в этом случае обусловливается как адгезией, так и диффузией припоя в металл.

При пайке почти не происходит расплавления соединяемых элементов, поэтому паяные соединения легче ремонтировать.

Пайкой выполняются соединения практически между любыми одинаковыми металлами или сочетаниями разных металлов.

К числу металлов, которые легко паяются, относится медь. Однако добавление к меди легирующих элементов затрудняет процесс пайки, так как наличие в меди примесей изменяет свойства окисных пленок, являющихся препятствием для образования надежного соединения. Наряду с этим примеси в сплавах меди реагируют в процессе пайки и образуют хрупкие соединения. В этой связи при выполнении контактных соединений следует тщательно выбирать флюсы и припои.

Пайка алюминия связана с двумя основными трудностями. Во-первых, на алюминии имеется тугоплавкая окисная пленка, во-вторых, алюминий обладает высокой теплопроводностью при сравнительно низкой теплоемкости и большим коэффициентом линейного расширения. Поэтому в процессе пайки алюминиевых контактных элементов нагрев должен быть локализован, выбор флюса следует производить в зависимости от легирующих присадок, введенных в металл.

Особенности различных соединяемых металлов или их сочетаний предопределяют как технологический процесс пайки, так и припои, флюсы, оборудование, применяемое при пайке.

Структура паяных контактных соединений

Пайка имеет много общего со сваркой плавлением но между ними имеются и принципиальные различия. Если при сварке основной и присадочный металлы находятся в сварочной ванне в расплавленном состоянии то при пайке основной металл не плавится.

Соединение пайкой в общем случае представляет собой комплекс металлургического и физико-химического процессов, протекающих на границе основного твердого металла с жидким металлом — припоем. В зависимости от физико-химических свойств основного материала и припоя, а также условий и режима пайки спай, образующийся между ними, имеет различное строение. Условием соединения основного металла с припоем, как известно, является адгезия. При смачивании чистой металлической поверхности припоем и последующем его затвердевании протекают следующие процессы.

Если компоненты, входящие в состав припоя, не взаимодействуют с основным металлом до растворения в нем, то между припоем и этим металлом возникают межкристаллитные связи. Прочность сцепления затвердевшего припоя с основным металлом близка к прочности собственного припоя. Это определяется тем, что припой заполняет все неровности и микроуглубления, образующие развитую поверхность сцепления, значительно превышающую кажущуюся поверхность контакта.

В том случае, когда при температуре пайки или при более низких температурах возможно растворение одного металла в другом, помимо межкристаллитных связей происходит диффузия атомов припоя в паяемый металл и наоборот. Взаимная диффузия припоя и паяемого металла чрезвычайно чувствительна к температуре. Поэтому развитие этого процесса зависит от температуры пайки и продолжительности нагрева. При определенных температурах паяемый металл и компоненты припоя образуют на границе соединения интерметаллические прослойки.

Структура контактного соединения, выполненного пайкой, представляет собой зону, состоящую из слоя литого припоя, равного зазору между соединяемыми элементами и окруженного с обеих сторон продуктами взаимодействия припоя с основными металлами — прослойками интерметаллического типа различного состава — и областями взаимной диффузии.

Структура паяного соединения: 1— соединяемые проводники; 2 — области коррозии; 3 — интерметаллические прослойки; 4 — припой; 5 — область диффузии

Пайка алюминиевых проводов

Соединение и ответвление однопроволочных проводов сечением 2,5 — 10 мм2 пайкой выполняются после того, когда концы жил предварительно соединены двойной скруткой так, чтобы в месте касания жил образовался желобок. Место соединения нагревают пламенем пропан-бутановой горелки или бензиновой лампой до температуры начала плавления припоя. Затем с усилием натирают поверхности соединения палочкой припоя, введенной в пламя. В результате трения желобок очищается от загрязнений и облуживается по мере прогрева соединения. Таким образом запаивается все соединение.

Соединение и ответвление однопроволочных проводов пайкой

Соединение, оконцевание и ответвление изолированных алюминиевых многопроволочных проводов пайкой производят после ступенчатой разделки контактных участков алюминиевых жил и предварительного их облуживания. Концы жил вставляют в специальные формы, располагая их в середине и по центру трубчатой части таким образом, чтобы они касались друг друга. На жилы надевают защитные экраны для предохранения изоляции соединяемых жил от действия пламени. При больших сечениях жил дополнительно используют охладители. Внутренние поверхности форм предварительно окрашивают кокильной краской или натирают мелом. Места ввода жил в форму уплотняют листовым или шнуровым асбестом для предотвращения вытекания припоя.

Перед пайкой направленным пламенем нагревают среднюю часть формы, затем в пламя через литниковое отверстие вводят пруток припоя, который, расплавляясь, заполняет форму до верха литникового отверстия.

На рисунке показано соединение, подготовленное к пайке. Разработан и используется способ пайки поливом припоя. При этом способе подготовленные жилы со скосами под углом 55° укладывают в. форму, оставляя зазор между ними примерно 2 мм, остальные операции подготовки жил к соединению аналогичны выполняемым при соединении сплавлением.

В тигле расплавляется и нагревается примерно до 600°С (во избежание быстрого охлаждения) 7—8 кг припоя. Между тиглем и местом заливки припоя устанавливают лоток для стекания припоя, который крепят к голым частям жил. Припой заливается в форму через литниковое отверстие до тех пор, пока не произойдет сплавление торцов жил и заполнение формы. Припой рекомендуется помешивать и счищать окисную пленку с торцов жил скребком. Длительность пайки не превышает 1 — 1,5 мин.

Многопроволочные жилы с установленными на них формами, подготовленные к пайке: 1 — изоляция жилы, 2 — защитный экран, 3 — форма, 4 — жила, разделенная ступенчато, 5 — асбестовое уплотнение.

Соединение алюминиевых жил кабеля пайкой поливом расплавленного припоя: а — общий вид процесса пайки, б — шаблон для оформления концов жил; в — готовое соединение, 1 — припой, 2 — места пайки

Пайка медных проводников

Технология соединения и оконцевания медных жил пайкой одинакова. Пайка жил сечением 1,5 — 10 мм2 производится паяльником, а сечением 16 — 240 мм2 — пропан-бутановой горелкой или паяльной лампой; процесс пайки заключается в погружении в расплавленный припой или поливе места пайки расплавленным припоем.

Соединение и ответвление медных жил сечением до 10 мм2 пайкой выполняется после подготовки их контактных концов. Жилы скручиваются, покрываются канифолью, место пайки подогревается паяльником с расплавлением припоя в месте пайки или путем погружения соединения в ванночку с припоем. После того как место соединения смочено припоем и им заполнены зазоры между спаиваемыми концами, подогрев соединения прекращается.

Соединение и ответвление медных жил сечением 4 — 240 мм2 пайкой с применением контактной арматуры выполняется способом полива. Для этого припой в графитовых или стальных тиглях разогревают в электрической или газовой печи до температуры 550—600 о С.

Подготовленные к соединению или оконцеванию жилы предварительно облуживаются, а потом вставляются в гильзу или наконечник. Стык жил проводов располагается в середине гильзы. При оконцевании жила вставляется в наконечник таким образом, чтобы ее конец находился заподлицо с торцом трубчатой части наконечника. Во избежание вытекания припоя на жилу между концом гильзы (наконечника) и краем изоляции подматывают асбест. Соединение при пайке располагается горизонтально. Полив припоя продолжают до заполнения объема между жилой и наконечником, но не более 1,5 мин. По окончании пайки следует немедленно (пока не остыл припой) протереть гильзу тканью, смоченной паяльной мазью, сгоняя и разглаживая при этом подтеки припоя.

Соединение проводников из разнородных металлов пайкой производится по той же технологии, что и соединение двух алюминиевых жил. При подготовке концов алюминиевых жил для пайки выполняется скос их концов под углом 55 о либо ступенчатая разделка, после чего концы облуживаются. Пайка ведется непосредственным сплавлением в форме или поливом предварительно расплавленным припоем. Соединение и ответвление алюминиевых многопроволочных и однопроволочных жил может выполняться и в медных луженых гильзах.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Соединение деталей пайкой

Соединение деталей пайкой – неразъемное соединение, заключающееся в том, что неразъемное соединение материалов получают с помощью расплавленного промежуточного металла (припоя), плавящегося при более низкой температуре, чем соединяемые детали.

Соединение материалов происходит в результате диффузии припоя и основного материала путем смачивания, растекания и заполнения зазора между ними расплавленным припоем и сцепления их при кристаллизации шва (рис. 1).

Рис. 1. Паяные соединения: а – встык; б – внахлестку; в – встык со скошенными кромками; г, д – внакладку; е, ж – припаивание фланцев; з – в шпунт

В зависимости от температуры в контакте соединяемых материалов пайка подразделяется на низкотемпературную – 450° С и высокотемпературную – выше 450° С. Нагрев может производиться паяльником, токами высокой частоты, в печах, в пламени газовой горелки и т. д.

Припои характеризуются температурой начала и конца плавления (рис. 2).

Рис. 2. Классификация и виды припоев по температуре плавления

В качестве припоев используются цветные металлы и их сплавы, которые в зависимости от температуры плавления подразделяются на мягкие и твердые.

Мягкие припои, имеющие температуру плавления не выше 400-450° С, обладают невысокой механической прочностью, твердые припои – температура плавления свыше 450° С – имеют высокую механическую прочность.

В качестве мягких (легкоплавких) припоев применяют оловянно-свинцовые, висмутовые, кадмиевые и другие сплавы. Наиболее низкотемпературные припои содержат индий, висмут и кадмий с температурой плавления 70-145° С.

Основные материалы мягких припоев – сплавы олова и свинца. Их обозначение (например, ПОС 61) расшифровывается так: П – припой, ОС – оловянно-свинцовый, 61 – содержание олова в процентах. Основные характеристики мягких припоев и область их применения приведены в табл. 1 — 3.

Таблица 1. Свойства и назначение олова

Читайте также  Соединение проводов с разным сечением

Таблица 2. Припои оловянно-свинцовые (ГОСТ 21930-76)

Таблица 3. Области применения оловянно-свинцовых припоев

в кабельной промышленности, электро-

пайка радиаторных трубок, холодильных агрегатов,

Твердые припои выполняют на серебряной основе (например, ПСр 72, где 72 – содержание серебра, %) или на меднолатунной и медно-никелевой основах. Серебряные припои применяют для пайки черных и цветных металлов, кроме сплавов алюминия и магния, а припои на медной основе – для пайки углеродистых и легированных сталей, никеля и его сплавов. Основные свойства твердых припоев приведены в табл. 4. В качестве твердых (тугоплавких) припоев применяют в основном три вида припоев: медно-цинковые ПМЦ и латунь Л-62, серебряные ПСР и медно-фосфористые марки ПМФ, обладающие хорошей жидкотекучестью и обеспечивающие высокое качество пайки.

Таблица 4. Свойства серебряных припоев (ГОСТ 19738-74)

Флюсы применяют для повышения качества пайки. Флюсом называют химически активное вещество, которое обладает способностью очищать в месте пайки соединяемые поверхности деталей и припоя от оксидов, предотвращения образования оксидов в процессе пайки, снижения поверхностного натяжения припоя и т. д. Флюс способствует лучшему затеканию расплавленного припоя в зазоры между соединяемыми деталями.

В качестве флюсов применяют смеси солей, растворы некоторых солей, кислот и органических соединений. Роль флюса при пайке могут выполнять также специальные газовые среды. Различают флюсы для легкоплавких и тугоплавких припоев, а также для пайки алюминиевых сплавов, коррозионно-стойких сталей и чугуна. Флюсы для мягких припоев – это хлористый цинк, нашатырь, канифоль, пасты и др. Флюсы для твердых припоев – это борнокислый натрий (бура), борная кислота и некоторые другие вещества. Большинство флюсов поступает в готовом для применения виде, а хлористый цинк (травленая кислота) готовят из технической соляной кислоты и металлического цинка, беря их в определенном соотношении. Флюсы увеличивают жидкотекучесть припоев при пайке.

Расчет на прочность паяных соединений производят по методике, изложенной для сварных соединений.

где А – площадь среза припоя.

Допускаемые напряжения на срез для оловянисто-свинцовых припоев [τ‘ ] = 20 ÷ 30 МПа, для медноцинковых припоев [τ‘] = 175 ÷ 230 МПа.

Соединения пайкой

Пайка — это процесс получения неразъёмного соединения материалов путём их автономного расплавления при смачивании, растекании и заполнении зазора между ними с последующей его кристаллизацией.

  1. Позволяет соединять металлы в любом сочетании;
  2. Соединение возможно при любой начальной температуре паяемого металла;
  3. Возможно соединение металлов с неметаллами;
  4. Паяные соединения легко разъёмные;
  5. Более точно выдерживается форма и размеры изделия, так как основной металл не расплавляется;
  6. Позволяет получать соединения без значительных внутренних напряжений и без коробления изделия;
  7. Повышенная производительность процесса позволяет паять за один приём большое количество изделий;
  8. Культура производства; возможна полная механизация и автоматизация.

1 — прикристаллизационный слой переменного химического состава;

2 — диффузионная зона с переменным химическим составом;

3 — участок с изменяемой структурой и свойствами в результате локального нагрева

4 — зона изотермической кристаллизации.

Рисунок 1. Структура паяного соединения

Термины и определения:

Припой — металл или сплав, вводимый в зазор меду деталями или образующийся меду ними в процессе пайки и имеющий более низкую температуру начала автономного плавления чем паяные материалы.

Паяное соединение — элемент паяной конструкции, состоящий из:

а) паяного шва и диффузионных зон при общем нагреве;

б) паяного шва из ЗТВ при локальном нагреве.

Галтель паяного шва — участок паяного шва, образовавшаяся в результате действия капиллярных сил у края зазора на наружных поверхностях соединяемых деталей.

Диффузионная зона — участок паяного соединения, характеризующийся измененным химическим составом основного материала и образовавшийся в результате диффузии компонентов припоя.

Классификация пайкиВиды капиллярной пайки:

  1. Пайка готовым припоем капиллярная пайка, при которой используется готовый припой и формирование шва происходит при его охлаждении.
  2. Контактно-реактивная капиллярная пайка, при которой припой образуется в результате контактно-реактивного плавления соединяемых материалов и прокладок.
  3. Реактивно-флюсовая капиллярная пайка, при которой припой образовывается в результате выделения металла из флюса.
  4. Диффузионная капиллярная пайка, при которой затвердевание паянного шва происходит выше температуры солидуса припоя без охлаждения.
  5. Металло-керамическая капиллярная пайка, при которой наполнитель металла керамического припоя образует разветвленный капилляр, удерживающий при пайке жидкую часть припоя вне капиллярного зазора.

Виды некапиллярной пайки:

  1. Пайко-сварка осуществляется без расплавления деталей.
  2. Сварко-пайка применяется при пайке металлов с разной температурой плавления, при этом металл с наименьшей температурой плавления выполняет функцию припоя.

Все способы пайки подразделяются:

  1. По физическим, химическим, электрохимическим признакам, определяющие процесс удаления оксидов с поверхности паяемого металла:
    • флюсовая;
    • ультрозвуковая;
    • в активной газовой среде;
    • в нейтральной газовой среде;
    • в вакууме.
  2. По виду нагрева:
    • 450 0 С для низкотемпературной пайки;
    • при повышении температуры любые источники нагрева.
  3. По отсутствию или наличию давления на паяемые детали:
    • без давления;
    • под давлением.
  4. По времени нагрева:
    • одновременно;
    • неодновременно.

Образование паянного соединения сопровождается спаем между припоем и паянным материалом.

Спай — переходный слой, образовавшийся в результате смачивания при температуре пайки и последующего взаимодействия на границе «основной металл припой».

Классификация спаев:

  1. Бездиффузионный — когда атомы не переходят через границу контакта.
  2. Растворно-диффузионный — когда основной металл растворяется в припое и растворяет элементы припоя.
  3. Контактно-реакционный — возникает без припоя за счет контактного расплавления основного металла.
  4. Дисперсированный — образуется между металлами не дающими между собой химического соединения, не растворимых друг в друге за счет сильного снижения поверхностного натяжения под действием припоя и дисперсированных твердых частиц.

Конструкционные параметры паяных соединений (рисунок 2)

  1. Тип соединения;
  2. Паяльный зазор;
  3. Величина нахлестки;
  4. Шероховатость поверхности;
  5. Радиус галтельного участка;
  6. Угол скоса кромок.

Припои и паяльные смеси. Требования предъявляемые к ним:

  1. Температура плавления припоя должна быть ниже температуры лавления паяемого металла;
  2. Припой должен обладать хорошей жидкотекучестью, смачивать поверхности металлов, растекаться, проникать в узкие зазоры;
  3. Припой должен образовывать с соединяемыми материалами сплав, обеспечивать прочную связь;
  4. Коррозионная стойкость паяных швов у материала должна быть одинаковой, во избежание электрокоррозии;
  5. Температурный коэффициент линейного расширения (ТКЛР) припоя и основного металла должны быть одинаковы во избежание остаточных напряжений и трещин;
  6. Припой не должен в значительной степени снижать прочность и пластичность соединяемых материалов;
  7. Электропроводность, теплопроводность и другие физико-химические свойства припоя и основного металла не должны сильно отличаться.

Классификация припоев:

  1. По химическому составу.
  2. По технологическим свойствам:
    • самофлюсующиеся припои — которые удаляют окислы с паяемой поверхности без участия флюса;
    • композиционные припои — состоящие из смеси тугоплавких и легкоплавких элементов.
  3. По содержанию активирующих компонентов, повышающих смачиваемость.
  4. По температуре плавления:
    • низкотемпературные (температура плавления припоя меньше 450 0 С);
    • высокотемпературные (температура плавления припоя больше 450 0 С).
  5. По сортаменту:
    • пластичные припои:
      • полоса;
      • фольга;
      • проволока.
    • хрупкие припои:
      • прутки;
      • отливки;
      • порошки;
      • пасты;
      • сетка;
      • стружка;
      • кольца;
      • брикеты.

Классификация флюсов:

  1. По температурному признаку:
    • низкотемпературные;
    • высокотемпературные.
  2. По природе растворителя:
    • водные;
    • неводные.
  3. По природе активаторов:
    • низкотемпературные:
      • галогенидные;
      • фторборидные;
      • боридноуглекислые.
    • высокотемпературные:
      • канифольные;
      • фторидные;
      • стеариновые;
      • кислотные;
      • гидрозиновые;
      • аниминовые.
  4. По механизму действия:
    • защитные;
    • химического действия;
    • электохимического действия;
    • реактивные.
  5. По агрегатному состоянию:
    • твердые;
    • жидкие;
    • пастообразные.

Механизмы флюсования:

  1. Химические реакции компонентов флюса с окислом:
    • образование восстановления металла;
    • образование легких комплексных соединений.
  2. Электрохимические реакции — ионные разрушения основного металла.
  3. Вследствие физических процессов, в результате химических реакций.

Состав флюсов:

  1. Основа, которая растворяет продукты флюсования (бура, хлориды легких металлов, бура + борный ангидрид);
  2. Растворители окисной пленки (фториды);
  3. Активные реагенты (соли тяжелых металлов, окислы, дающие комплексные соединения).

Флюсы подразделяются на 4 группы:

  1. На основе канифоли и других органических соединений (для низкотемпературной пайки, когда трудно промыть деталь после пайки);
  2. На основе хлористых соединений (для пайки легкоплавких металлов имеющих прочную окисную пленку) основа легкоплавкая эвтектика;
  3. На основе соединений бора (для пайки чугуна, меди и сплавов на ее основе);
  4. На основе фтористых соединений (для пайки сталей аустенитного класса, никеля и сплавов на его основе).

Газовые среды:

  1. Вакуум:
    • низкий Р -1 мм.рт.ст. — для пайки не применяется;
    • средний Р -4 мм.рт.ст. — для пайки бронзы, сталей всех классов, никеля;
    • — высокий Р>10 -4 мм.рт.ст. — для пайки титана, тантала, циркония, ниобия.

    Примечание: Р — степень разреженности.
    Механизм воздействия вакуума на окисную пленку состоит в снижении парциального давления кислорода на основной металл.

  2. Нейтральные среды: инертные, по отношению к основному металлу и припою, газы.
    Механизм воздействия нейтральной среды на окисную пленку состоит в снижении парциального давления кислорода на основной металл.
  3. Активные (восстановительные) среды: активные (водород, азот (аммиак при температуре 650 0 С разлагается на азот и водород).
    Механизм воздействия активной среды на окисную пленку состоит в химическом взаимодействии активного газа с оксидами основного металла.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки

Соединение контактов и проводов пайкой

Пайка — процесс соединения металлов в жестком состоянии припоями, которые при расплавлении затекают в зазор, смачивают спаиваемые поверхности, а при охлаждении, застывая, образуют паяный шов.

Пайка производится при температуре ниже температуры плавления материалов соединяемых деталей. Совместно с тем температура припоя, при помощи которого осуществляется пайка, должна быть несколько выше точки его плавления, а температура соединяемых деталей должна быть близка к температуре плавления припоя. Соблюдение этого условия нужно для получения таковой подвижности припоя, которая обеспечивает наполнение зазоров в швах меж контактными элементами и обтекание их поверхностей.

Не плохое качество соединения пайкой может быть выполнено только в этом случае, если припой смачивает контактные поверхности соединяемых частей, также обладает высочайшими капиллярными качествами и обеспечивает заполняемость зазоров меж соединяемыми элементами.

Металлургический способ соединения деталей с внедрением припоя, имеющего температуру плавления ниже 450°С, именуют мягенькой пайкой. Сцепление припоя с металлом получается благодаря адгезии припоя к металлу. Следует увидеть, что температура плавления припоя для мягенькой пайки 450°С принята условно.

Выполнение контактных соединений с внедрением припоя, имеющего температуру плавления выше 450°С, именуют жесткой пайкой. Соединение припоя с металлом в данном случае обусловливается как адгезией, так и диффузией припоя в металл.

При пайке практически не происходит расплавления соединяемых частей, потому паяные соединения легче чинить.

Пайкой производятся соединения фактически меж хоть какими схожими металлами либо сочетаниями различных металлов.

К числу металлов, которые просто паяются, относится медь. Но добавление к меди легирующих частей затрудняет процесс пайки, потому что наличие в меди примесей изменяет характеристики окисных пленок, являющихся препятствием для образования надежного соединения. Вместе с этим примеси в сплавах меди реагируют в процессе пайки и образуют хрупкие соединения. В этой связи при выполнении контактных соединений следует кропотливо выбирать флюсы и припои.

Читайте также  Датчик освещенности bh1750

Пайка алюминия связана с 2-мя основными трудностями. Во-1-х, на алюминии имеется тугоплавкая окисная пленка, во-2-х, алюминий обладает высочайшей теплопроводимостью при сравнимо низкой теплоемкости и огромным коэффициентом линейного расширения. Потому в процессе пайки дюралевых контактных частей нагрев должен быть локализован, выбор флюса следует создавать зависимо от легирующих присадок, введенных в металл.

Особенности разных соединяемых металлов либо их сочетаний предназначают как технологический процесс пайки, так и припои, флюсы, оборудование, используемое при пайке.

Структура паяных контактных соединений

Пайка имеет много общего со сваркой плавлением но меж ними имеются и принципные различия. Если при сварке основной и присадочный металлы находятся в сварочной ванне в расплавленном состоянии то при пайке основной металл не плавится.

Соединение пайкой в общем случае представляет собой комплекс металлургического и физико-химического процессов, протекающих на границе основного твердого металла с водянистым металлом — припоем. Зависимо от физико-химических параметров основного материала и припоя, также критерий и режима пайки спай, образующийся меж ними, имеет различное строение. Условием соединения основного металла с припоем, как понятно, является адгезия. При смачивании незапятанной железной поверхности припоем и следующем его затвердевании протекают последующие процессы.

Если составляющие, входящие в состав припоя, не ведут взаимодействие с главным металлом до растворения в нем, то меж припоем и этим металлом появляются межкристаллитные связи. Крепкость сцепления затвердевшего припоя с главным металлом близка к прочности собственного припоя. Это определяется тем, что припой заполняет все выпуклости и микроуглубления, образующие развитую поверхность сцепления, существенно превосходящую кажущуюся поверхность контакта.

В этом случае, когда при температуре пайки либо при более низких температурах может быть растворение 1-го металла в другом, кроме межкристаллитных связей происходит диффузия атомов припоя в паяемый металл и напротив. Обоюдная диффузия припоя и паяемого металла очень чувствительна к температуре. Потому развитие этого процесса находится в зависимости от температуры пайки и длительности нагрева. При определенных температурах паяемый металл и составляющие припоя образуют на границе соединения интерметаллические прослойки.

Структура контактного соединения, выполненного пайкой, представляет собой зону, состоящую из слоя литого припоя, равного зазору меж соединяемыми элементами и окруженного с обеих сторон продуктами взаимодействия припоя с основными металлами — прослойками интерметаллического типа различного состава — и областями обоюдной диффузии.

Структура паяного соединения: 1— соединяемые проводники; 2 — области коррозии; 3 — интерметаллические прослойки; 4 — припой; 5 — область диффузии

Пайка дюралевых проводов

Соединение и ответвление однопроволочных проводов сечением 2,5 — 10 мм2 пайкой производятся после того, когда концы жил за ранее соединены двойной скруткой так, чтоб в месте касания жил образовался желобок. Место соединения нагревают пламенем пропан-бутановой горелки либо бензиновой лампой до температуры начала плавления припоя. Потом с усилием натирают поверхности соединения палочкой припоя, введенной в пламя. В итоге трения желобок очищается от загрязнений и облуживается по мере прогрева соединения. Таким макаром запаивается все соединение.

Соединение и ответвление однопроволочных проводов пайкой

Соединение, оконцевание и ответвление изолированных дюралевых многопроволочных проводов пайкой создают после ступенчатой разделки контактных участков дюралевых жил и подготовительного их облуживания. Концы жил вставляют в особые формы, располагая их посреди и по центру трубчатой части таким макаром, чтоб они касались друг дружку. На жилы надевают защитные экраны для предохранения изоляции соединяемых жил от деяния пламени. При огромных сечениях жил дополнительно употребляют охладители. Внутренние поверхности форм за ранее окрашивают кокильной краской либо натирают мелом. Места ввода жил в форму уплотняют листовым либо шнуровым асбестом для предотвращения вытекания припоя.

Перед пайкой направленным пламенем нагревают среднюю часть формы, потом в пламя через литниковое отверстие вводят прут припоя, который, расплавляясь, заполняет форму до верха литникового отверстия.

На рисунке показано соединение, приготовленное к пайке. Разработан и употребляется метод пайки поливом припоя. При всем этом методе приготовленные жилы со скосами под углом 55° укладывают в. форму, оставляя зазор меж ними приблизительно 2 мм, другие операции подготовки жил к соединению подобны выполняемым при соединении сплавлением.

В тигле расплавляется и греется приблизительно до 600°С (во избежание резвого остывания) 7—8 кг припоя. Меж тиглем и местом заливки припоя устанавливают лоток для стекания припоя, который укрепляют к нагим частям жил. Припой заливается в форму через литниковое отверстие до того времени, пока не произойдет сплавление торцов жил и наполнение формы. Припой рекомендуется помешивать и счищать окисную пленку с торцов жил скребком. Продолжительность пайки не превосходит 1 — 1,5 мин.

Многопроволочные жилы с установленными на их формами, приготовленные к пайке: 1 — изоляция жилы, 2 — защитный экран, 3 — форма, 4 — жила, разбитая ступенчато, 5 — асбестовое уплотнение.

Соединение дюралевых жил кабеля пайкой поливом расплавленного припоя: а — вид процесса пайки, б — шаблон для дизайна концов жил; в — готовое соединение, 1 — припой, 2 — места пайки

Пайка медных проводников

Разработка соединения и оконцевания медных жил пайкой схожа. Пайка жил сечением 1,5 — 10 мм2 делается паяльничком, а сечением 16 — 240 мм2 — пропан-бутановой горелкой либо паяльной лампой; процесс пайки заключается в погружении в расплавленный припой либо поливе места пайки расплавленным припоем.

Соединение и ответвление медных жил сечением до 10 мм2 пайкой производится после подготовки их контактных концов. Жилы скручиваются, покрываются канифолью, место пайки подогревается паяльничком с расплавлением припоя в месте пайки либо методом погружения соединения в ванночку с припоем. После того как место соединения смочено припоем и им заполнены зазоры меж спаиваемыми концами, обогрев соединения прекращается.

Соединение и ответвление медных жил сечением 4 — 240 мм2 пайкой с применением контактной арматуры производится методом полива. Для этого припой в графитовых либо железных тиглях разогревают в электронной либо газовой печи до температуры 550—600 о С.

Приготовленные к соединению либо оконцеванию жилы за ранее облуживаются, а позже вставляются в гильзу либо наконечник. Стык жил проводов размещается посреди гильзы. При оконцевании жила вставляется в наконечник таким макаром, чтоб ее конец находился заподлицо с торцом трубчатой части наконечника. Во избежание вытекания припоя на жилу меж концом гильзы (наконечника) и краем изоляции подматывают асбест. Соединение при пайке размещается горизонтально. Полив припоя продолжают до наполнения объема меж жилой и наконечником, но менее 1,5 мин. По окончании пайки следует немедля (пока не остыл припой) протереть гильзу тканью, смоченной паяльной мазью, сгоняя и разглаживая при всем этом подтеки припоя.

Соединение проводников из разнородных металлов пайкой делается по той же технологии, что и соединение 2-ух дюралевых жил. При подготовке концов дюралевых жил для пайки производится скос их концов под углом 55 о или ступенчатая разделка, после этого концы облуживаются. Пайка ведется конкретным сплавлением в форме либо поливом за ранее расплавленным припоем. Соединение и ответвление дюралевых многопроволочных и однопроволочных жил может производиться и в медных луженых гильзах.

Способы пайки металла

При контактном плавлении образование жидкой фазы происходит прежде всего по дефектам структуры: границам зерен, субграницам и т. д. контактирующих металлов, так как коэффициенты диффузии по этим дефектам существенно превышают объемные коэффициенты диффузии.

Вклад диффузии по границам будет увеличиваться со снижением температуры взаимодействия. Процесс контактного плавления зависит также от кристаллографической ориентации контактирующих граней, что обусловлено различной энергией этих граней.

При пайке контактное плавление может быть осуществлено как при непосредственном контактировании паяемых металлов, так и при использовании промежуточных прокладок или покрытий на одном или обоих взаимодействующих металлах и дающих эффект контактного плавления на одном или обоих взаимодействующих металлах.

Основной технологической особенностью контактно-реактивной пайки является необходимость регулирования количества жидкой фазы. Ширину жидкой прослойки стремятся свести к минимуму, так как кристаллизующийся сплав может быть малопластичен, что особенно важно в случае образования интерметаллидов в шве.

Контактно-реактивная пайка А1 и его сплавов с использованием в качестве покрытия Ag и Си нашла применение как бесфлюсовый способ пайки, который позволяет получать прочные и коррозионноотойкие соединения.

В этих случаях Ag, обычно в виде прокладки толщиной 0,05-0,12 мм помещается между деталями, к которым прикладывают усилие поджатия 70-350 кгс/см 2 . После этого узел нагревают до температуры плавления эвтектики Ag-А1 (558°С).

Увеличение прочности при пайке за счет выдавливания из зоны соединения хрупкой эвтектики с успехом применяется при контактно-реактивной пайке А1 со сталями.

Контактно-реактивную пайку широко используют для соединения сплавов Си между собой и со сталями. Применение покрытия из Ag позволяет получать соединения при 800°С, имеющие относительно высокую прочность и пластичность за счет образования Ag-Cu-эвтектики.

Пайка Си с нанесенным на поверхность тонким слоем Ag (5-15 мкм) при достаточно быстром нагреве (например, электроконтактным способом) может быть выполнена на воздухе без флюса и специальных газовых сред.

Нанесение тонкого Ag-покрытия (1,2-6мкм) на латунные детали обеспечивает процесс пайки при 700° С. Паяный шов должен быть достаточно тонким, так как образующаяся Ag-Си-Zn-эвтектика малопластична из-за наличия в ней хрупкой Р (Ag-Си)-фазы.

Применение контактно-реактивной бесфлюсовой пайки латуней с серебряным покрытием без припоя или с припоями ПСр 72, ПСр 45 при нагреве в печи снижает пористость в паяных швах по сравнению с газопламенной капиллярной пайкой с флюсом 209. В последнем случае повышенную пористость связывают с непропаями, обусловленными высоким давлением паров Zn.

При контактно-реактивной пайке Ti и его сплавов в основном используются Си и Ni-покрытия, причем наилучшие результаты были получены при сочетании контактно-реактивной пайки с диффузионной, в процессе которой происходит коагуляция интерметаллидов (Ti2Ni; Cu3Ti; Cu3Ti2) и снижение их содержания в шве, приводящие к возрастанию механических свойств.

Контактно-реактивную пайку с успехом применяют и при соединении разнородных металлов, металлов с полупроводниками и т. д. При пайке Ti со сталью (усилие поджатия sgO, 1 кгс/мм 2 ) образующаяся жидкая фаза эвтектического состава после кристаллизации обеспечивает получение соединений с достаточно стабильными механическими свойствами.

Прочность шва ниже, чем у титана, однако равнопрочные соединения могут быть получены за счет увеличения перекрытия поверхностей, например, при конусном соединении труб и т. д.

Пайку деталей из Be со сталью выполняют при нагреве до 975°С, в качестве припоя используют Ti.

Бериллий с титаном образует эвтектику, которая хорошо смачивает поверхности и затекает в зазоры. Сплавы Ag-Си, обычно используемые для пайки, обладали меньшей жидкотекучестью и хуже смачивали поверхности, чем Be-Ti-сплав.

Основное требование при пайке пористых материалов заключается в том, чтобы свести к минимуму заполнение пор припоем. Один из способов пайки пористых материалов с непористыми заключается в том, что на пористую поверхность наносят слой Ni толщиной 0,125 мм.

Читайте также  Usb rs232 конвертер

Пайку выполняют в печи припоем системы Ni- Fe-Сг-В-Si при 982° С. При взаимодействии припоя с Ni-покрытием в процессе контактного плавления образуется сплав с более низкой температурой плавления, хорошо смачивающий паяемые поверхности.

Контактно-реактивную пайку используют также и для соединения жаропрочных сплавов и тугоплавких металлов: Nb, Mo, Та и W. Этот способ позволяет соединять тугоплавкие материалы при низких температурах и получать швы с высокой температурой вторичного расплавления.

Так, при пайке деталей из W припоем Pt-В, имеющим температуру плавления 860° С, за счет растворения W в припое при кристаллизации образуются стойкие бориды W и температура плавления шва резко возрастает. При соединении Nb и его сплавов используют припой Ti-30V-4Ве, имеющий температуру плавления 1288-1315°С.

Но наиболее широкое применение для пайки тугоплавких металлов нашли способы контактно-реактивной пайки с последующей диффузионной пайкой или диффузионным отжигом, которая обеспечивает увеличение температуры распая за счет диффузии в основной материал легкоплавких элементов.

Контактно-реактивной пайкой возможно соединять широкий спектр материалов. Факторами, регулирующими процесс, являются температура, время, давление, состав покрытий, их толщина.

Одним из основных параметров, позволяющих получать соединения с высокими механическими свойствами, является ширина шва. Ширину шва регулируют в основном за счет выбора оптимального давления, позволяющего помимо обеспечения тесного контакта между деталями выдавливать излишки припоя.

Другим способом снижения скорости контактного плавления является использование промежуточной прослойки между паяемыми металлами, в состав которой входит 70-97% неактивного металла, не принимающего участия в образовании жидкой прослойки.

Как правильно паять провода и что для этого понадобится

Существует очень много способов соединения проводников. В этой статье поговорим об одном из самых надёжных – пайка проводов паяльником. Процесс этот тонкий и кропотливый. Если ни разу в жизни в руках паяльник не держали, то надо будет немного поучиться. Во-первых, нужен опыт и навыки в умении пользоваться паяльным приспособлением. Во-вторых, перед тем, как паять провода, необходимо соединить их в скрутку. В-третьих, понадобится специальный инструмент и материалы.

Физика процесса

Перед тем, как выполнять соединение проводов пайкой, неплохо было бы разобраться в самой сути этого процесса.

С помощью паек получают неразъёмные соединения. Например, если нужно соединить какие-то два элемента (кабель либо провод), то между ними вводится припой в виде расплавленного металла. Необходимо чтобы температура плавления у этого металла была ниже, чем у материалов соединяемых элементов. Паяемый элемент, флюс и припой вводят в соприкосновение путём нагрева. Припой становится жидким и смачивает поверхность проводника. Когда нагрев прекращают, сплав припоя твердеет, тем самым образуется прочное контактное соединение.

Прочность контакта зависит от того, насколько хорошо припой смочил поверхности соединяемых элементов. А тут уже прямая зависимость от того, насколько чистыми были эти элементы на момент пайки. Поэтому перед тем, как паять провода, они обязательно должны быть очищены от органических веществ (масло, жир) и от окисной плёнки. Для этой цели и надо использовать флюс, к тому же он понижает поверхностное натяжение и улучшает качество растекания.

Наименьшие требования к флюсу, припойному сплаву и температуре предъявляет пайка медных проводов. Поэтому если хотите обучиться такому делу, лучше сначала паять паяльником провода медного исполнения, а со временем, когда наберётесь мастерства и опыта, поработаете и с другими материалами.

Преимущества и недостатки пайки

Самым главным преимуществом пайки перед другими видами соединений проводов является надёжность. Спаянный электрический узел в плане надёжности может уступить лишь соединению, выполненному сваркой.

На весь период эксплуатации вы можете забыть о спаянном соединении, никакого дополнительного обслуживания оно не потребует.

Пользуясь пайкой, вы можете соединить проводники разные по сечению, одножильные с многожильными.

Этот метод относится к низким по себестоимости. Главное, чтобы у вас был паяльник, а припой с канифолью стоят совсем недорого, при этом расход их совсем мизерный.

Также несомненным преимуществом пайки является то, что с её помощью можно одновременно соединять более 2-х проводов.

К недостаткам пайки можно отнести высокую трудоёмкость и обязательное наличие навыков в пользовании паяльником.

Необходимые инструменты и материалы

Перед тем, как спаять два провода, надо для начала приобрести все необходимые материалы, а также запастись самым главным приспособлением – паяльником.

Паяльник

Устройство это представляет собою нагревательный прибор, с его помощью разогревают припойный сплав и поверхности деталей, которые необходимо припаивать. Он имеет три основные части:

  • ручка (её делают деревянной либо пластмассовой, она не греется в процессе работы);
  • нагревательный элемент;
  • рабочий элемент.

Паяльники бывают разных типов:

  1. Электронагревательный. Рабочей частью такого инструмента является кончик медного жала, которое разогревается с помощью нагревательного элемента. Температура жала достигает 300 градусов, при этом он не сильно мощный (от 60 до 100 Вт).
  2. Газовый. По принципу действия этот паяльник похож на обыкновенную газовую горелку, место, где должна производиться спайка, нагревается при помощи открытого пламени.
  3. Термовоздушный. Место пайки разогревают потомком горячего воздуха.
  4. Молотковый. У этого паяльника рабочей частью также является жало из меди, но по форме оно напоминает массивный молоток. Разогрев происходит при помощи открытого пламени либо за счёт встроенного электронагревательного элемента.

Наибольшее распространение получил электронагревательный паяльник для пайки радиодеталей и проводов.

Припой

Главным материалом в процессе пайки является припой. Он представляет собою сплав нескольких металлов, который имеет более низкую температуру плавления, чем у металла соединяемых элементов. Такие сплавы делают из олова, кадмия, серебра, меди, свинца, никеля.

Паять медные провода желательно сплавом марки ПОС-60. Буквы ПОС обозначают, что данный припой из олова и свинца. Цифры показывают, сколько процентов олова содержится в припое. Конечно, лучшим припойным материалом считается чистое олово, но это дорого, его применяют в исключительных случаях.

Форма выпуска припоя бывает разная – в гранулах, пастах, слитках, порошке, фольге или проволоке.

Как пользоваться припойным сплавом? Его греют выше температуры плавления и, когда он достигнет расплавленного состояния, прикасаются к твёрдым поверхностям соединяемых элементов. В этот момент начинаются химические и физические процессы. Припойный сплав растекается по металлическим поверхностям, проникая между ними во все зазоры.

Имейте в виду! Перед тем, как припаять алюминиевые провода, вам потребуется найти специальный припой. Для этого металла больше подойдут сплавы на основе цинка ЦО-12 (цинк с оловом) или ЦА-15 (цинк с алюминием).

Чаще всего в качестве флюса используют смесь органических и неорганических веществ, с помощью которой подготавливают поверхности для пайки. Это может быть канифоль, ацетилсалициловая или ортофосфорная кислота, нашатырь или соль бура.

Самым распространённым флюсом считается канифоль. Некоторые используют кислоту для паяния, но она уступает канифоли по своим качествам. Хотя применять кислоту гораздо проще, намочили в ней кисть и нанесли вещество на соединяемые поверхности. С канифолью немного сложнее, нужно уложить в неё жилу, паяльником нагреть, тогда смола начнёт плавиться и обволакивать проводок.

Иногда используют припой, который представляет собою тонкую проволоку, заполненную внутри канифолью. Конечно же, это делает процесс более быстрым и удобным, достаточно будет только брать нагретым паяльником припой и наносить на соединяемые поверхности, отпадает необходимость в обработке каждого провода канифолью отдельно.

Другие инструменты

Также для того, чтобы сделать спайку проводников, потребуются:

  1. Место для работы, его надо покрыть материалом, которому не страшны будут капли расплавленного припоя. Подойдёт металлический стол либо какая-то подставка из металла или дерева, когда работы необходимо выполнять, например, в распределительной коробке.
  2. Подставка для паяльника (она должна быть надёжной и удобной).
  3. Кусочек влажной ткани или губка для протирки жала паяльника.
  4. Напильник. Перед применением паяльника, нужно будет сначала зачистить его жало, на нём не должно оставаться следов нагара, тогда пайка пойдёт легко.
  5. Нож либо специальное приспособление для снятия с проводов изоляционного слоя.
  6. Пассатижи.
  7. Наждачная бумага.
  8. Спирт.
  9. Изоляционная лента (или термоусаживаемая трубка).

Подготовительные работы

Перед тем, как спаять провода, необходимо выполнить ряд подготовительных работ:

  • На соединяемых жилах срежьте изоляционный слой на 40-50 мм.
  • Теперь необходимо зачистить оголённые участки от окисной плёнки. Это можно сделать с помощью наждачной мелкозернистой бумаги. Жилы проводов надо зачистить до блеска.
  • Перед тем, как паять медные жилы, выполняют их лужение. Нагрейте паяльник до температуры плавления канифоли. Как это узнать? Просто прикоснитесь инструментом к канифоли, она начнёт активно плавиться. Оголённый участок погрузите в канифольную смолу. Возьмите жалом немного припойного сплава и проведите по проводу. Чтобы сделать процесс равномернее и быстрее, немного проворачивайте провод. Жила из меди после лужения станет не красной, а серебристой. Проделайте то же самое со всеми проводами, которые надо будет спаивать.
  • Залуженные провода соедините в скрутку.

Как выполнять лужение проводов показано в этом видео:

Теперь всё готово к самому процессу пайки.

Выполнение пайки

Одной рукой при помощи пассатижей держите скрутку проводов. Если соединяете всего два тонких провода, и длина пайки будет небольшой, то вполне можно обходиться и без скрутки. Надо только очень плотно приложить проводники друг к другу. В другую руку возьмите разогретый до нужной температуры паяльник и наберите жалом припойный сплав. Прижмите его к месту соединения, приложив небольшое усилие. Должен произойти разогрев в этом месте, канифоль закипит и начнёт растекаться припойный сплав. Остаётся лишь дождаться, когда сплав растечётся и заполнит все зазоры между жилами.

Очень важно, чтобы соединяемые поверхности были хорошо прогреты. Потому что если припой затвердеет, а смачивание не произойдёт, получится непрочная пайка, электрики называют её «холодной» или «ложной».

Обязательно необходимо дать пайке остыть в неподвижном состоянии. Даже самое малое движение спаиваемых элементов в момент застывания припоя может повлиять на качество и прочность соединения.

Когда место пайки застынет, протрите его спиртом для удаления остатков флюса.

Как правильно произвести пайку подробно показано в этом видео:

а здесь можно посмотреть как паять скрутку в условиях приближенных к реальным:

Осталось лишь надёжно заизолировать соединение. Можно намотать 3-4 слоя изоленты. Хорошей изоляцией служит термоусаживаемая трубка. Только не забудьте надеть её на один из проводников до начала соединения. Потом натяните её на полученный электрический узел, нагрейте при помощи фена или зажигалки, и трубка плотно обхватит соединение. Второй вариант предпочтительнее, так как обеспечивает герметичность контактному соединению.

Мы рассказали вам, как правильно паять провода. В принципе это не сложно для тех, кто умеет пользоваться паяльником. Если вы этого ни разу не делали, лучше попросите кого-то вас немного обучить. Конечно, можно прочитать в статьях и теоретически всё понять. Но не забывайте, что «лучше один раз увидеть».