Параллельное соединение транзисторов в блоках питания

ElectronicsBlog

Обучающие статьи по электронике

Составные транзисторы. Схемы включения.

Транзисторы как силовые элементы многих радиоэлектронных устройств для нормальной работы должны выполнять следующие функции:

1. Обеспечивать управление заданным током нагрузки при большом усилении по мощности.

2. Обладать достаточной (с учётом заданной выходной мощности и диапазонов изменения входного и выходного напряжений) рассеиваемой мощностью.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

3. Иметь максимально допустимое напряжение коллектор – эмиттер, позволяющее без опасности пробоя обеспечивать необходимое падение напряжение на переходе коллектор – эмиттер при возможных значениях входного и выходного напряжений.

В некоторых случаях имеющиеся в наличии транзисторы не позволяют выполнить одно или несколько вышеописанных условий, тогда прибегают к помощи так называемых составных транзисторов. Схем составных транзисторов существует великое множество, но основных схем существует всего три.

Тандемное включение транзисторов (схемы Дарлингтона и Шиклаи)

Довольно часто возникает ситуация, когда необходимого коэффициента усиления одного транзистора не хватает. В этом случае транзисторы соединяют тандемно (то есть выходной ток первого транзистора является входным током для второго). Существует две схемы такого включения: схема Дарлингтона и схема Шиклаи. Отличие заключается лишь в том, что в схеме Дарлингтона используются транзисторы одинакового типа проводимости, а в схеме Шиклаи – разного типа проводимости.


Схема Дарлингтона


Схема Шиклаи

Данные пары – это просто два каскада эмиттерного повторителя. Иногда данные составные схемы транзисторов называют «супер-β» пары, так как они функционируют как один транзистор с высоким коэффициентом усиления.

Общий коэффициент передачи тока будет равен:

При использовании данных схем вполне возможна такая ситуация, когда нагрузка уменьшится до нуля (или некоторого минимального значения, близкого к нулю) или при повышении температуры базовый ток транзистора VT1 может стать равным нулю или даже переменить направление за счёт неуправляемого обратного тока коллектора. Во избежание запирания транзистора VT2 его режим следует стабилизировать с помощью резистора R1.

Величину сопротивления R1 можно определить по формуле:

Параллельное включение транзисторов

Современные транзисторы позволяют реализовать электронные схемы расчитаные на широкие диапазоны изменений токов и напряжений, но в отдельных случаях для увеличения допустимой мощности рассеивания применяется параллельное включение транзисторов.


Схема параллельного включения транзисторов

Максимально допустимый ток протекающий через такой составной транзистор равен:

При такой схеме включения транзисторов следует учитывать, что вследствие разброса параметров параллельно включённых транзисторов токи между ними распределяются неравномерно. Большая часть тока будет протекать через транзистор, имеющий больший коэффициент усиления. Рассеиваемые транзисторами мощности можно выровнять включением в их эмиттерные цепи дополнительных симметрирующих резисторов с небольшими сопротивлениями. Так как на практике трудно подбирать такие сопротивление для каждого транзистора, в практических схемах в эмиттеры всех транзисторов ставят резисторы одного сопротивления. Сопротивление симметрирующих резисторов R1 и R2 можно определить по формуле

где n – число параллельно соединенных транзисторов

IK — ток проходящий через коллектор.

Такой способ связан с ухудшением усилительных свойств транзисторов, однако его достоинством является возможность получения мощного силового элемента при использовании относительно маломощных транзисторов.

Последовательное включение транзисторов

Во время работы силового транзистора на его переходе коллектор – эмиттер падает напряжение, представляющее собой разность входного и выходного напряжений. В отдельных случаях эта разность может превышать максимально допустимое напряжений коллектор – эмиттер транзистора, имеющегося в распоряжении. В этом случае необходимо использовать последовательное соединение нескольких транзисторов.


Схема последовательного включения транзисторов

Эквивалентный транзистор будет иметь следующие параметры:

Для симметрирования напряжений, которые будут падать на переходе коллектор – эмиттер транзисторов вводят симметрирующие резисторы R1 и R2 сопротивление, которых можно определить по формуле

где IB – ток базы составного регулирующего транзистора.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Параллельное включение IGBT транзисторов

С ростом мощности силового оборудования повышаются требования к электронике управления высоковольтной и сильноточной нагрузкой. В мощных импульсных преобразователях, где элементы работают одновременно с высокими уровнями напряжений и токов, зачастую требуется параллельное соединение силовых ключей, таких, например, как IGBT транзисторы, хорошо работающие в подобных схемах.

Существует множество нюансов, которые необходимо учитывать при параллельном включении двух и более IGBT. Один из них – соединение затворов транзисторов. Затворы параллельных IGBT могут подключаться к драйверу через общий резистор, отдельные резисторы или комбинацию общего и отдельных сопротивлений (Рисунок 1). Большинство специалистов сходится во мнении, что обязательно нужно использовать отдельные резисторы. Однако существуют веские доводы в пользу схемы с общим резистором.


а) Индивидуальные резисторы
б) Общий резистор
в) Комбинированное включение резисторов
Рисунок 1. Различные конфигурации схем управления затворами IGBT.

В первую очередь при расчете схемы с параллельными IGBT нужно определить максимальный ток управления транзисторами. Если выбранный драйвер не может обеспечить суммарный базовый ток нескольких IGBT, придется ставить отдельный драйвер на каждый транзистор. В этом случае индивидуальный резистор будет у каждого IGBT. Быстродействия большинства драйверов достаточно, чтобы обеспечить интервал между импульсами включения и выключения в несколько десятков наносекунд. Это время вполне соразмерно с временем переключения IGBT, составляющим сотни наносекунд.

При использовании одного драйвера предметом обсуждения может быть конфигурация резисторов в цепях затворов. Недостатком схемы с отдельными резисторами (Рисунок 1а) является возможность увеличения разброса времени переключения вследствие того, что управляющие напряжения затворов не будут отслеживать выходные сигналы драйвера. Даже если импульсы управления, подающиеся на резисторы с драйвера, будут абсолютно идентичны, различия в зарядах затворов в совокупности с сопротивлениями затворов и импеденсами проводников печатной платы приведут к несовпадению времен нарастания, спада и задержки сигналов на затворах IGBT. Тем не менее, многие выступают в защиту индивидуальных резисторов, поскольку последние минимизируют вероятность возникновения паразитной генерации между IGBT.

Причиной генерации может стать паразитная индуктивность платы (обычно в цепи эмиттера) в сочетании с емкостью затвора и усилением транзисторов. Минимизация индуктивности в цепи эмиттера играет важную роль в предотвращении паразитной генерации.

Общий резистор (Рисунок 1б) гарантирует, что потенциалы затворов обоих IGBT в любой момент времени будет практически одинаковыми, имея лишь незначительный разброс, обусловленный вариациями паразитных импедансов платы. При переходных процессах это может уменьшить различие в уровнях потерь и способствовать более равномерному распределению тока между транзисторами. С точки зрения режима по постоянному току не имеет значения, используются ли отдельные резисторы или один общий, поскольку, в конечном счете, затворы всех IGBT заряжаются до напряжения смещения. Аргументы в пользу общего резистора можно найти и в других источниках, но приводимые там рекомендации нельзя использовать как общие указания в случае с отдельными резисторами в цепях затворов.

Для тестирования различных конфигураций резисторов из 22 выпускаемых ON Semiconductor IGBT типа NGTB40N60IHL были выбраны два транзистора с наибольшим взаимным разбросом параметров. Их потери при включении составляли 1.65 мДж и 1.85 мДж, а потери при выключении 0.366 мДж и 0.390 мДж, соответственно. Транзисторы рассчитаны на рабочее напряжение 600 В и ток 40 А.

При использовании одного общего драйвера с отдельными 22-омными резисторами, наблюдалось ярко выраженное несовпадение кривых тока в момент выключения из-за несоответствия скоростей переключения, неравенства порогов, крутизны и зарядов затворов двух приборов. Замена двух резисторов одним общим с сопротивлением 11 Ом в любой момент времени уравнивает потенциалы на затворах обоих IGBT. В такой конфигурации существенно уменьшается перекос токов в момент выключения. С точки зрения рассогласования по постоянному току конфигурация резисторов значения не имеет.

Поскольку до разработки и сборки реального прототипа определить, возникнет ли между приборами паразитная генерация, невозможно, рекомендуется использовать комбинированную схему включения резисторов в цепях затворов (Рисунок 1в).

Комбинированная схема обеспечивает гибкость подбора сопротивлений резисторов, основанную на учете паразитных импедансов реальной схемы. Если в схеме с общим резистором наблюдается генерация, активную часть полного сопротивления цепи затвора можно разделить на отдельный и общий компонент. Для получения оптимальных характеристик сопротивления индивидуальных резисторов должны, насколько возможно, превышать значение сопротивления затвора, но оставаться в пределах, при которых исключается риск возникновения генерации. Эта схема легко может быть приведена в соответствие с конкретными условиями эксплуатации и использоваться в качестве самостоятельного функционального блока. Таким способом можно обеспечить максимальную близость потенциалов на затворах IGBT в моменты переключения, но с учетом опасности возникновения генерации лучше добавить небольшие индивидуальные сопротивления.

Читайте также  Новая технология позволит использовать графен для квантовых вычислений

Оптимизация параметров мощных схем с параллельным включением силовых ключей позволяет повысить надежность устройства и улучшить его рабочие характеристики. Рассмотренные в статье схемы управления затворами IGBT – один из факторов повышения эффективности мощных коммутационных узлов преобразовательной техники.

Перевод: Антон Юрьев по заказу РадиоЛоцман

Параллельное включение силовых транзисторов

A.T.Tappman

Александр Бородин

Информация Неисправность Прошивки Схемы Справочники Маркировка Корпуса Сокращения и аббревиатуры Частые вопросы Полезные ссылки

Справочная информация

Этот блок для тех, кто впервые попал на страницы нашего сайта. В форуме рассмотрены различные вопросы возникающие при ремонте бытовой и промышленной аппаратуры. Всю предоставленную информацию можно разбить на несколько пунктов:

  • Диагностика
  • Определение неисправности
  • Выбор метода ремонта
  • Поиск запчастей
  • Устранение дефекта
  • Настройка

Учитывайте, что некоторые неисправности являются не причиной, а следствием другой неисправности, либо не правильной настройки. Подробную информацию Вы найдете в соответствующих разделах.

Неисправности

Все неисправности по их проявлению можно разделить на два вида — стабильные и периодические. Наиболее часто рассматриваются следующие:

  • не включается
  • не корректно работает какой-то узел (блок)
  • периодически (иногда) что-то происходит

Если у Вас есть свой вопрос по определению дефекта, способу его устранения, либо поиску и замене запчастей, Вы должны создать свою, новую тему в соответствующем разделе.

  • О прошивках

    Большинство современной аппаратуры представляет из себя подобие программно-аппаратного комплекса. То есть, основной процессор управляет другими устройствами по программе, которая может находиться как в самом чипе процессора, так и в отдельных микросхемах памяти.

    На сайте существуют разделы с прошивками (дампами памяти) для микросхем, либо для обновления ПО через интерфейсы типа USB.

    • Прошивки ТВ (упорядоченные)
    • Запросы прошивок для ТВ
    • Прошивки для мониторов
    • Запросы разных прошивок
    • . и другие разделы

    По вопросам прошивки Вы должны выбрать раздел для вашего типа аппарата, иначе ответ и сам файл Вы не получите, а тема будет удалена.

  • Схемы аппаратуры

    Начинающие ремонтники часто ищут принципиальные схемы, схемы соединений, пользовательские и сервисные инструкции. Это могут быть как отдельные платы (блоки питания, основные платы, панели), так и полные Service Manual-ы. На сайте они размещены в специально отведенных разделах и доступны к скачиванию гостям, либо после создания аккаунта:

    • Схемы телевизоров (запросы)
    • Схемы телевизоров (хранилище)
    • Схемы мониторов (запросы)
    • Различные схемы (запросы)

    Внимательно читайте описание. Перед запросом схемы или прошивки произведите поиск по форуму, возможно она уже есть в архивах. Поиск доступен после создания аккаунта.

  • Справочники

    На сайте Вы можете скачать справочную литературу по электронным компонентам (справочники, таблицу аналогов, SMD-кодировку элементов, и тд.).

    • Справочник по транзисторам
    • ТДКС — распиновка, ремонт, прочее
    • Справочники по микросхемам
    • . и другие .

    Информация размещена в каталогах, файловых архивах, и отдельных темах, в зависимости от типов элементов.

    Marking (маркировка) — обозначение на электронных компонентах

    Современная элементная база стремится к миниатюрным размерам. Места на корпусе для нанесения маркировки не хватает. Поэтому, производители их маркируют СМД-кодами.

    Package (корпус) — вид корпуса электронного компонента

    При создании запросов в определении точного названия (партномера) компонента, необходимо указывать не только его маркировку, но и тип корпуса. Наиболее распостранены:

    • DIP (Dual In Package) – корпус с двухрядным расположением контактов для монтажа в отверстия
    • SOT-89 — пластковый корпус для поверхностного монтажа
    • SOT-23 — миниатюрный пластиковый корпус для поверхностного монтажа
    • TO-220 — тип корпуса для монтажа (пайки) в отверстия
    • SOP (SOIC, SO) — миниатюрные корпуса для поверхностного монтажа (SMD)
    • TSOP (Thin Small Outline Package) – тонкий корпус с уменьшенным расстоянием между выводами
    • BGA (Ball Grid Array) — корпус для монтажа выводов на шарики из припоя

  • Краткие сокращения

    При подаче информации, на форуме принято использование сокращений и аббревиатур, например:

    Сокращение Краткое описание
    LED Light Emitting Diode — Светодиод (Светоизлучающий диод)
    MOSFET Metal Oxide Semiconductor Field Effect Transistor — Полевой транзистор с МОП структурой затвора
    EEPROM Electrically Erasable Programmable Read-Only Memory — Электрически стираемая память
    eMMC embedded Multimedia Memory Card — Встроенная мультимедийная карта памяти
    LCD Liquid Crystal Display — Жидкокристаллический дисплей (экран)
    SCL Serial Clock — Шина интерфейса I2C для передачи тактового сигнала
    SDA Serial Data — Шина интерфейса I2C для обмена данными
    ICSP In-Circuit Serial Programming – Протокол для внутрисхемного последовательного программирования
    IIC, I2C Inter-Integrated Circuit — Двухпроводный интерфейс обмена данными между микросхемами
    PCB Printed Circuit Board — Печатная плата
    PWM Pulse Width Modulation — Широтно-импульсная модуляция
    SPI Serial Peripheral Interface Protocol — Протокол последовательного периферийного интерфейса
    USB Universal Serial Bus — Универсальная последовательная шина
    DMA Direct Memory Access — Модуль для считывания и записи RAM без задействования процессора
    AC Alternating Current — Переменный ток
    DC Direct Current — Постоянный ток
    FM Frequency Modulation — Частотная модуляция (ЧМ)
    AFC Automatic Frequency Control — Автоматическое управление частотой

    Частые вопросы

    После регистрации аккаунта на сайте Вы сможете опубликовать свой вопрос или отвечать в существующих темах. Участие абсолютно бесплатное.

    Кто отвечает в форуме на вопросы ?

    Ответ в тему Параллельное включение силовых транзисторов как и все другие советы публикуются всем сообществом. Большинство участников это профессиональные мастера по ремонту и специалисты в области электроники.

    Как найти нужную информацию по форуму ?

    Возможность поиска по всему сайту и файловому архиву появится после регистрации. В верхнем правом углу будет отображаться форма поиска по сайту.

    По каким еще маркам можно спросить ?

    По любым. Наиболее частые ответы по популярным брэндам — LG, Samsung, Philips, Toshiba, Sony, Panasonic, Xiaomi, Sharp, JVC, DEXP, TCL, Hisense, и многие другие в том числе китайские модели.

    Какие еще файлы я смогу здесь скачать ?

    При активном участии в форуме Вам будут доступны дополнительные файлы и разделы, которые не отображаются гостям — схемы, прошивки, справочники, методы и секреты ремонта, типовые неисправности, сервисная информация.

    Полезные ссылки

    Здесь просто полезные ссылки для мастеров. Ссылки периодически обновляемые, в зависимости от востребованности тем.

    Тема: Блок питания 5-32 В , 25 А

    Опции темы
    • Версия для печати
    • Версия для печати всех страниц
    • Подписаться на эту тему…
  • Поиск по теме

    Спасибо за схемы. Забегая вперед, хочу спросить Geo, как в Вашей схеме паралелить проходные транзисторы? Я пока пошел по пути, предложенному Игорем 1967.Получилась такая схема По теплу качество ее на порядок лучше моей предыдущей схемы(см. выше сообщение 60). Из опытов: 15В 1А нагрузки-ЛМ-ка и Т5 холодные, а транзисторы Т1-Т4 чуть теплые (2 больше, 2 меньше).И лишь при 20В, 5А нагрузки температура начала подниматься. Палец на транзисторе едва можно держать(в прошлой схеме мокрый палец на корпусе транзистора шкварчал). Напряжение при включении нагрузки проседает на 1В, но затем держит четко. Вопрос:увеличение количества транзисторов имеет ли смысл, и до какого значения?

    Последний раз редактировалось ГАНС; 27.08.2013 в 00:17 .

    70%). Если БП на 20А, то 2 транзистора. Если 25А, то 3.
    Грется ведь не от числа транзисторов, а от мощности, которую нужно рассеять. Допустим 20V нужно отстабилизировать до 13V. Падение на регулир. транз. 7V, ток 20А. 20х7=140W на радиаторах транзисторв и самих корпусах транзисторов. Сколько бы Вы не брали транзисторов всё равно эти 140W нужно рассеять.
    Всё это для рег. транзисторов на радиаторах. Если без радиаторов, то не более 3W на транзистор. На счёт мощности аналогично. 140W_3= 47 транзисторов, как строгий минимум.
    Если транзисторы греются не равномерно, то это разброс параметров. Нужно либо подбирать экземпляры, либо выставлять ток для каждого(выравнивать) .

    Последний раз редактировалось КУ4ЕР; 27.08.2013 в 07:34 .

    КУ4ЕР, спасибо за ответ. Как я понял, в вопросе количества имеют смысл 1) МАХ Ток коллектора и 2) Допустимая рассеиваемая мощность на каждом транзисторе. И то и другое в случае параллельного соединения примерно поровну распределяется между транзисторами. И для Вашего примера, если Доп. вых. ток 25 А выдержат и три транзистора КТ819ГМ, то для облегчения теплового режима- есть смысл дальнейшего увеличения количества транзисторов? Верно или нет?

    Дальнейшее увеличение количества транзисторов не имеет смысла,да и падение напряжения будет больше.Имеет смысл добавить защиту,т.к. при пробое коллектор-змиттер любого из транзисторов напряжение вырастет до выпрямленного значения на конденсаторе фильтра.

    Нет, не верно. Количество тепла не зависит от количества транзисторов, а только от падения напряжения на них и тока. Если ток через каждый транзистор не превыхает 70% от МАХ, то нет смысла увеличивать их число.

    Читайте также  Питание светодиодов от 220 вольт своими руками

    Что-то недопонял:ведь при параллельном включении напряжение останется прежним, а ток будет I/количество транзисторов, соответственно мощность на каждом будет меньше! Применительно к примеру, что выше: да рассеять 140 Вт придется, но вклад каждого транзистора будет меньше, отсюда более щадящий температурный режим. Или не так?

    Нет, не так. Мощность на каждый транзистор будет меньше, но температура всего блока (транзисторы-радиатор) будет той же.

    Даже ГАНС начал правильно размышлять . Совершенно правильно. Транзисторы по мощности и по току выдержат, но как с трёх транзисторов снять тепло. Увеличивая количество корпусов транзисторов, мы его распределяем по радиатору, тем самым и распределяем тепло. Этого можно не делать в случае, если есть хороший принудительный обдув в зоне крепления их к радиатору, или медный игольчатый радиатор.
    При увеличении количества регулирующих транзисторов, никакого увеличения падения напряжения мы не получаем, так как они включаются параллельно. Уровнять токи через транзисторы можно включив в их выводы Базы последовательно сопротивления по 10 ом, но тогда на величину падения напряжения на этих резисторах уменьшится выходное напряжение.

    Вы писали, что мощность на одном транзисторе без радиатора не должна превышать 3 Вт. А какое практически предельное значение для транзистора с радиатором? В справочнике для КТ819ГМ указано 100 Вт. Правильно?

    Да Игорь 1967, благодаря Вам всем что-то начинает проясняться. Раньше, когда столкнулся с нагревом, то подумал про превышение допустимых электрических параметров транзисторов. Померил- нет превышений. А при этом я не учитывал общей «лишней» мощности, которую нужно было рассеять на транзисторах.

    Последний раз редактировалось ГАНС; 27.08.2013 в 11:45 .

    Параллельное соединение транзисторов в блоках питания

    ПАРАЛЛЕЛЬНОЕ ВКЛЮЧЕНИЕ СИЛОВЫХ ТРАНЗИСТОРОВ

    Вопросы на тему использования силовых транзисторов в параллельном включении появляются все чаще и чаще. Причем вопросы относятся как и к автомобильным преобразователям, так и к сетевым.
    Лень меня одолела и я решил ответить сразу на все вопросы в один заход, чтобы больше на эту тему не отвлекаться.
    Для примера возьмем последний вопрос на эту тему:
    Прошу помощи или совета с подбором MOSFET и рекомендации по ремонту. Ремонтирую преобразователь 12/220 1800 Ватт. Там в каждом плече выхода 220 Вольт стоят 6 транзисторов. В общем их всего 12шт. родные BLV740. Часть накрыльсь. До меня туда влепили IRF740 3 шт. Проверил нашёл пару ещё неисправных. Докупил ещё 3 IRF740 (чтобы все транзисторы в одном плече были одинаковые). Схема не заработала то включалась то уходила в защиту.
    В конце концов умерли ещё часть полевиков. Поставил все IRF740, заменив сгоревшие — снова не работает. Часть транзисторов греется и в конце концов опять часть сгорела. Предположил, что параметры транзисторов «разбежались», выпаял все, оставил по 1 транзистору на полупериод т.е 2 вверху и 2 внизу. Подключил-всё работает, нагрузку 100 Ватт держит. Теперь вопрос. Прав ли я что транзисторы нужно менять все одновременно. И можно ли заменить BLV740 на IRF740?
    Я конечно мог бы не разводить балобольню и ответить коротко, но я не люблю клонеров (бездумно клонирующих чущие схемы), поэтому данный ответ построю на ряде вопросов таким образом, что думающий человек поймет о чем речь, а бестолковый будет и дальше тратить свою бюджет на взрывающиеся полевики. (Ехидно хихикаю. )

    Итак, потихоньку поехали:
    Изначально стояло несколько штук BLV740, открываем даташник и смотрим всего одну единственную строчку — количество энергии, запасенной затвором, которая обозначается Q g .
    Почему именно эту строчку?
    Потому что от этого значения на прямую зависит время открытия и закрытия полевого транзистора технологии MOSFET. Чем больше это значение, тем больше требуется энергии, чтобы открыть или закрыть полевой транзистор. Сразу оговорюсь — есть такое понятние в полевых транзисторах, как емкость затвора. Этот параметр тоже важный, но уже когда преобразование происходит на частотах сотни кГц. Лезть туда настоятельно не рекомендую — нужно съесть не одну собаку в этой области, чтобы успешно перешагнуть хотя бы сотню килогерц, причем есть собаку вместе с будкой.
    Поэтому для наших относительно низкочастотных целей наиболее важным является именно Q g . Открываем даташник на BLV740, при этом не забываем отметить у себя в голове, что эти транзисторы производит только SHANGHAI BELLING CO. Итак, что мы видим:

    Нижнее значение Q g вообще не нормировано, впрочем как и типовое, указано только максимальное — 63 nC. Из этого напрашивается какой вывод?
    Не понятно?
    Ладно, подскажу чуточку — отбраковка производится только по максимальному значению, т.е. транзисторы выпущенные заводом SHANGHAI BELLING CO в январе и мае могут отличаться друг от друга, причем не только параметром Q g , а и всеми остальными.
    Че делать?
    Ну например можно вспомнить, что максимально одинаковые транзисторы могут получится только когда производится одна партия, т.е. когда «пилится» один кристалл кремния, в помещении одна и таже влажность и температура и обслуживает оборудование одна и таже смена обслюживающего персонала со своим идивидуальным запахом, влажностью рук и т.д.
    Да, да, это все влияет на качество конечного кристалла и всего транзистора в целом и именно поэтому разброс параметров в одной партии не превышает 2%. Обратите внимание даже в одинаковых условиях нет одинаковых транзисторов, есть разброс не более 2-х %. Что уж говорить о транзисторах других партий.
    Теперь включаем и прогреваем думатель.
    Готово? Тогда вопрос — что произойдет, если у нас включены два транзистора в параллель, но у одного энергия затвора равна 30 nC, а у второго 60 nC?
    Нет, первый не откроется в 2 раза быстрее — это зависит еще от резисторов в затворах, однако мысль потекла в нужном направлении — ПЕРВЫЙ ОТКРОЕТСЯ БЫСТРЕЕ ВТОРОГО. Другими словами первый транзистор возьме на себя не половину нагрузки а всю. Да, это будет длится какие то наносекунды, но даже это уже увеличит его температуру и в конечном итоге приведет через десяток-другой часов к перегреву и тепловому пробою. Про токовый пробой я не говорю — обычно технологический запас позволяет транзистору остаться живым, но работа на технологическом запасе это раскуривание кальяна на пороховой бочке.
    Теперь случай чуток тяжелее — параллельно включено четыре транзистора. У первого Q g равно 50 nC, у второго — 55 nC, у третьего — 60 nC, у четвертого — 45 nC.
    Вот тут уже говорить о тепловом пробое смысла не имеет -есть огромная вероятность того, что тот, кто открывается первым даже прогреться не успеет как слдеует — он принимает на себя нагрузку, предназначенную для четырех транзисторов.
    Кто догадался какой транзистор кончится первым молодец, ну а кто не доехал, то возвращаемся на три абзаца вверх и чиатем второй раз.
    Итак, надеюсь понятно, что транзисторы параллельно включать можно и нужно, только необходимо соблюдать определенные правила, чтобы не было лишних трат. Правило первое и самое простое:
    ТРАНЗИСТОРЫ ДОЛЖНЫ БЫТЬ ОДНОЙ ПАРТИИ, о производителе я вообще молчу — это само собой разумеется, поскольку даже нормированные параметры у заводов могут отличаться:

    Итак, в итоге видно, что транзисторы от STMicroelectronics и Fairchild имеют типовое значение Q g , которое может отличаться как сторону уменьшения, так и увеличения, а вот Vishay Siliconix решил не заморачиваться и обозначил только максимальное значение, а остальное как Бог на душу положит.
    Для тех же, кто часто балуется ремонтом всяких преобразователей или собирает мощные усилители, где в оконечном каскаде несколько транзисторов настоятельно рекомендую собрать стенд для отбраковки именно силовых транзисторов. Денег съест этот стенд не много, а вот нервы и бюджет будет экономить регулярно. Подробнее об этом стенде здесь:

    Читайте также  Сверхнизковольтный преобразователь напряжения

    Кстати сказать — видео можно просмотреть и сначала — есть некоторые моменты, которые любят пропускать начинающие и не очень опытные паяльщики.
    Данный стенд универсален — позволяет отбраковать как биполярные транзисторы, так и полевые, причем обоих структур. Принцип отбраковки основан на выборе транзисторов с одинаковым коф усиления, причем это происходит при токе кллектора порядка 0,5-1 А. Этот же параметр для полевых транзисторов на прямую связан со скоростью открытия-закрытия.
    Разработанно это устройство было ОЧЕНЬ давно, когда собирались на продажу услители Холтона на 800 Вт и в оконечном каскаде стояло по 8 штук IRFP240-IRFP9240. В брак уходило ОЧЕНЬ мало транзисторов, но это было до тех пор, пока их выпускала International Rectifier. Как только на рынке появились IRFP240-IRFP9240 Vishay Siliconix с усилителями Холтона в оригинале было покончено — из 10 транзисторов даже одной партии одинаковых попадалось лишь 2 или 3. Холтон был переведен на 2SA1943-2SC5200. Пока еще есть из чего выбирать.
    Ну если с параллельным включением все более-менее прояснилось, то как быть с плечами преобразователя? Можно использовать в одном плече транзисторы из одной пратии, а во втором из другой?
    Ответ я был дал, да вот только злоупотреблю уже прогретым Вашим думателем — разная скорость открытия-закрытия, одно плечо открыто дольше другого, а сердечник должен полностью размагничиваться и для этого на него нужно подавать ПЕРЕМЕННОЕ напряжение с одинаковой длительностью как отрицательной, так и положительной полуволны. Если этого не будет происходить, то некоторый момент времени намагниченный сердечник будет выстпать в роли АКТИВНОГО сопротивления, равного активному сопротивлению обмотки. Это когда на ОМах измеряешь сколько она Ом. Ну так и что будет?
    Снова ехидно хихикаю.
    Что до биполярных транзисторов, то тут решающим фактором является коф усиления. Именно от него зависит какой транзистор откроется быстрее и сильнее, он же на прямую влияет на ток перехода база-эмиттер.

    На последок настоятельно рекомендую почитать о расчетах импульсных блоков питания в Экселе — там о времени открытия-закрытия довольно подробно. ЧИТАТЬ.

    Параллельное соединение транзисторных выходов

    Схема подключения выхода NPN ко входу PNP.

    Написать эту статью меня побудил вопрос читателя.

    Он спрашивал, как подключить два прибора с транзисторным выходом на один вход контроллера. В результате получился ответ, достойный того, чтобы оформить его в статью.

    Эта статья перекликается с другой моей статьёй – про подключение датчиков с транзисторным выходом. Там – вся теория про НО, НЗ, PNP, NPN и подобные вещи.

    Также там описан способ переделки транзисторной логики PNP в NPN и обратно, который применяется в этой статье.

    Вопрос читателя:

    Александр, добрый день! Нужна Ваша помощь в схеме подключения к контроллеру Siemens ET 200SP ионизаторов Vessel N-1. Речь идет о NPN датчике с ОК.

    Задача стоит следующая: на одном рабочем месте два ионизатора включаются по сигналу оптического датчика через реле. К ним же через реле подается воздух с пневмораспределителя. В случае неисправности одного из ионизаторов ( или обоих “ИЛИ”) на вход контроллера (DI) должен приходить сигнал +24V. От ключей ионизатора ( ALM-COM).

    Т.к. рабочих мест много, то от 2-х ионизаторов- один сигнал. C одним PNP транзистором проблем бы не было. Но так питание на ионизаторы подается не постоянно, а от сигнала оптического датчика,то сигнал неисправности может быть только +24V.
    Необходимые схемы и мануалы прилагаю.

    Файлы, присланные читателем:

    Схема входного модуля контроллера:

    DI 16x24VDC ST. Входы контроллера, на один из которых приходит сигнал с двух выходов

    Что видно из схемы контроллера? Все входы – типа PNP, то есть, входы будут активны, когда на них поступает напряжение +24VDC. Соответственно, для этого входные ключи (это могут быть и датчики, и кнопки, и любые контакты – контроллеру всё равно) должны замкнуться и пропустить через себя ток. В случае, если ключ транзисторный, он должен быть проводимости типа PNP, то есть, коммутировать положительный полюс источника питания.

    Кстати, по контроллеру у меня есть ещё одна крутая статья – Ремонт станка на контроллере.

    Ионизатор – схема подключения выходов

    Я не знаю, что делает ионизатор (вероятно, ионизирует)). Собственно, нам это знать не особо нужно, пусть об этом думают технологи. Нас интересует единственный информационный выход – ALM (Alarm), который должен подключиться ко входу контроллера. В приведенном куске инструкции внизу показаны примеры подключения – везде используется схема ОЭ (общий эмиттер), где эмиттер всегда подключен к минусу, который коммутируетя транзистором типа NPN и подает этот минус на нагрузку. А плюс к нагрузке подключен постоянно.

    Положение осложняется двумя факторами:

    1. Вход контроллера и выход ионизатора не подходят друг другу. Для контроллера нужен PNP, а выход имеем NPN.
    2. Нужно подключить два выхода ионизатора на один вход. Вход запрограммирован, и его никак не изменить. Если бы можно было залезть в программу, можно было бы и логику работы изменить, и каждый выход посадить на свой вход, и логику ИЛИ реализовать программно.

    Схема подключения с оптическим датчиком, составленная читателем

    Оптический датчик (кстати, с транзисторным выходом PNP) к делу не относится, он подает питание на ионизаторы через реле К1 при появлении изделия.

    Два выхода ALM, обозначенные вопросиками, нам предстоит подключить к контроллеру, который скромно расположился в нижнем правом углу рисунка.

    Мой ответ по параллельному подключению:

    В случае неисправности одного из ионизаторов (согнал ALM становится активным) открывается транзистор на выходе оптопары.

    Нужно, чтобы при неисправности любого или нескольких ионизаторов становился активным нужный вход контроллера.

    Так как вход один, нужна схема ИЛИ.

    Активный уровень контроллера +24В. Точнее, +5…..+30V. Активный сигнал аварии ионизатора – открытый переход эмиттер-коллектор npn транзистора.

    Исходя из этого, схема подключения будет такой:

    Схема итог. Два выходных транзистора типа NPN подключены параллельно к одному входу PNP

    Коллекторы транзисторов (вых.4 ALM) подключаем к напряжению +24В (хотя, производитель туда рекомендует подключать нагрузку!). Эмиттеры – через резистор на вых 1 или 5 (GND). Резисторы R1, R2 нужны для обеспечения рабочего режима транзисторов, хотя их нет в схеме производителя.

    Получаем включение выходных транзисторов по схеме общий коллектор, в которой выход на эмиттере.

    Для понимания, схему можно преобразовать к классическому виду (я привязался к расположению клемм реального устройства, поэтому немного путаная схема получилась):

    Схема включения транзистора Общий Коллектор, классический вид

    На эмиттере будет потенциал GND, когда транзистор закрыт (нет аварии ионизатора), и потенциал +24В, когда происходит активизация выхода ALM (авария ионизатора).

    Чтобы соединить транзисторные каскады параллельно и подключить к одному входу контроллеру, надо их подключать через диоды, это исключит их взаимное влияние.

    Точка подключения всех диодов подключается ко входу контроллера. Диод(ы) открывается, когда открывается транзистор, при этом 24В проходит через переход коллектор-эмиттер, далее через диод на вход контроллера.

    Рекомендуется для стабильной работы вход контроллера зашунтировать резистором 100 кОм. Без него если схема работать и будет, то за надежность я не отвечаю. Чтобы диод работал, нужно, чтобы через него протекал ток. А ток входа контроллера ничтожно мал. Поэтому 100 кОм и обеспечивает этот ток.

    Получается, на резисторе R3 (а значит, на нужном входе контроллера) у нас присутствует напряжение, которое позволяет контроллеру работать в штатном режиме.

    Ещё пара слов по транзисторам, датчикам и контроллерам

    В контексте данной статьи всё равно, о каких датчиках идёт речь – датчиках приближения (индуктивных), фотодатчиках (оптических), или других. Суть одна – по какому-либо признаку на выходе датчика дискретно меняется потенциал.

    Чтобы нормально функционировать в мире датчиков контроллеров, входов, выходов, нужно четко понимать, какой уровень сигнала активный, какой – пассивный, и как работает тот или иной выход или вход. Бывает, что активный уровень контроллера – 0В, при этом контакты датчика замкнуты, и он в то же время – не активен.

    Кроме того, понятия “аналоговое”, “дискретное”, “цифровое” – весьма условны и перетекают плавно друг в друга.

    Поэтому изучайте матчасть, читайте мануалы, и задавайте вопросы в комментариях к статье!