Параллельное соединение активного сопротивления и емкости

Параллельное соединение активного сопротивления, индуктивности и емкости

Рассмотрим схему, состоящую из параллельно соединенных активного и реактивных элементов (рис. 2.31, а).

Требуется по известным G, ВL, ВC, U рассчитать токи. Как и прежде, задачу будем решать двумя методами.

1. М е т о д в е к т о р н ы х д и а г р а м м.

Токи ветвей находятся сразу: , , .

Для определения общего тока необходимо построить векторную диаграмму (рис. 2.31, б). Построение начинаем с вектора напряжения, так как оно является общим для всех ветвей. Из векторной диаграммы имеем

или ,

где – полная проводимость цепи, равная

.

Разность индуктивной и емкостной проводимостей представляет собой общую реактивную проводимость цепи .

Рис. 2.31. Электрическая цепь и ее векторная диаграмма

Векторы токов на диаграмме образуют треугольник токов. Его горизонтальный катет, представляющий проекцию вектора тока на вектор напряжения, называется активной составляющей тока и равен току в активном элементе цепи: (рис. 2.32, а). Проекция вектора тока на направление, перпендикулярное напряжению, – это реактивная составляющая тока. Она равна суммарному току реактивных элементов и определяется как разность длин векторов: (см. рис. 2.31, б и 2.32, а).

Рис. 2.32. Треугольники токов и проводимостей

Разделив все стороны треугольника токов на , получим треугольник проводимостей (рис. 2.32, б), стороны которого связаны следующими соотношениями:

, , , . (2.29)

2. С и м в о л и ч е с к и й м е т о д.

Раньше были получены следующие формулы:

, , .

Подставляя их в уравнение первого закона Кирхгофа, получаем:

или ,

где – комплексная проводимость цепи, равная

Пример 2.12. Для цепи, показанной на рис. 2.33, а, рассчитать токи, угол сдвига фаз между током и напряжением на входе цепи, построить векторную диаграмму. Числовые значения параметров цепи: В, Ом, мкФ, с -1 .

Рис. 2.33. Электрическая цепь и ее векторная диаграмма

А, Ом,

А, А.

Векторная диаграмма приведена на рис. 2.33, б.

Угол сдвига фаз .

Величину общего тока можно найти иначе:

См, См,

См, А.

Пример 2.13. Начертить цепь, векторная диаграмма которой изображена на рис. 2.34, а.

Р е ш е н и е задачи показано на рис. 2.34, б.

Рис. 2.34. Векторная диаграмма и соответствующая ей электрическая цепь

Пример 2.14. Чему равно показание амперметра А на входе цепи в схемах рис. 2.35, если амперметры А1 и А2 во всех случаях показывают соответственно 4 и 3 А?

Рис. 2.35. Измерение тока в электрической цепи

Предлагаем для каждого случая самостоятельно построить векторную диаграмму и убедиться в правильности приведенных ответов: а) 5А, б) 7А, в) 1А.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Полное сопротивление цепи переменного тока

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным, а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида — индуктивные и емкостные.

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Введем понятие полного сопротивления цепи переменному току — Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью. а) — схема цепи; б) — сдвиг фаз тока и напряжения; в) — треугольник напряжений; д) — треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z 2 ) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

(1)

Извлекая квадратный корень из обеих частей этого равенства, получим,

(2)

Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

Читайте также  Как рассчитать мощность циркуляционного насоса для отопления?

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью. а) — схема цепи; б) — треугольник сопротивлений .

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Для данного случая:

(3)

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) — схема цепи; б) — треугольник сопротивлений .

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

(4)

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (XL или XC преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

(5)

(6)

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C .

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

(7)

Приводя к общему знаменателю подкоренное выражение, получим:

(8)

(9)

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

(10)

Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

Рисунок 6. Эквивалентная схема колебательного контура.

Формула полного сопротивления для этого случая будет:

(11)

Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

(12)

В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

(13)

При соблюдении этого условия полное сопротивление колебательного контура будет равно:

(14)

где L—индуктивность катушки в Гн;

С—емкость конденсатора в Ф;

R—активное сопротивление катушки в Ом.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Параллельное соединение активного сопротивления и емкости

Oпределение: Переменными называют токи и напряжения, изменяющиеся во времени, по величине и направлению. Их величина в любой момент времени называется мгновенным значением. Обозначаются мгновенные значения малыми буквами: i, u, e, p.

Токи, значения которых повторяются через равные промежутки времени, называются периодическими. Наименьший промежуток времени, через который наблюдаются их повторения, называется периодом и обозначается буквой Т. Величина, обратная периоду, называется частотой, т.е. и измеряется в герцах (Гц). Величина называется угловой частотой переменного тока, она показывает изменение фазы тока в единицу времени и измеряется в радианах, деленных на секунду

Максимальное значение переменного тока или напряжения называется амплитудой. Оно обозначается большими буквам с индексом »m» (например, Im). Существует также понятие, действующего значения переменного тока (I). Количественно оно равно:

что для синусоидального характера изменения тока соответствует

Переменный ток можно математически записать в виде:

Здесь индекс выражает начальную фазу. Если синусоида начинается в точке пересечения осей координат, то = 0, тогда

Начальное значение тока может быть слева или справа от оси ординат. Тогда начальная фаза будет опережающей или отстающей.

1.2. СОПРОТИВЛЕНИЯ В ЦЕПЯХ ПЕРЕМЕННОГО ТОКА

Электрический ток в проводниках непрерывно связан с магнитным и электрическими полями.
Элементы, характеризующие преобразование электромагнитной энергии в тепло, называются активными сопротивлениями (обозначаются R).
Элементы, связанные с наличием только магнитного поля, называются индуктивностями.
Элементы, связанные с наличием электрического поля, называются емкостями.
Типичными представителями активных сопротивлений являются резисторы, лампы накаливания, электрические печи и т.д.
Индуктивностью обладают катушки реле, обмотки электродвигателей и транс-форматоров. Индуктивное сопротивление подчитывается по формуле:

где L — индуктивность.
Емкостью обладают конденсаторы, длинные линии электропередачи и т.д.
Емкостное сопротивление подсчитывается по формуле:

где С — емкость.
Реальные потребители электрической энергии могут иметь и комплексное значение сопротивлений. При наличии R и L значение суммарного сопротивления Z подсчитывается по формуле:

Аналогично ведется подсчет Z и для цепи R и С:

Потребители с R, L, C имеют суммарное сопротивление:

1.3. ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ АКТИВНОГО СОПРОТИВЛЕНИЯ R,
КОНДЕНСАТОРА С И ИНДУКТИВНОСТИ L

Рассмотрим цепь с активным, индуктивным и емкостным сопротивлениями, включенными последовательно (рис. 1.3.1).

Для анализа схемы разложим напряжение сети U на три составляющие:
UR — падение напряжения на активном сопротивлении,
UL — падение напряжения на индуктивном сопротивлении,
UC — падение напряжения на емкостном сопротивлении.

Ток в цепи I будет общим для всех элементов:

Проверку производят по формуле:

Следует отметить, что напряжения на отдельных участках цепи не всегда совпадают по фазе с током I.
Так, на активном сопротивлении падение напряжения совпадает по фазе с током, на индуктивном оно опережает по фазе ток на 90° и на емкостном — отстает от него на 90°.
Графически это можно показать на векторной диаграмме (рис. 1.3.2).

Изображенные выше три вектора падения напряжений можно геометрически сложить в один (рис. 1.3.3).

В таком соединении элементов возможны активно-индуктивный или активно-емкостный характеры нагрузки цепи. Следовательно, фазовый сдвиг имеет как положительный, так и отрицательный знак.
Интересным является режим, когда = 0.
В этом случае

Такой режим работы схемы называется резонансом напряжений.
Полное сопротивление при резонансе напряжений имеет минимальное значение:
, и при заданном напряжении U ток I может достигнуть максимального значения.
Из условия определим резонансную частоту

Читайте также  Соединение проводов с помощью зажимов

Явления резонанса напряжений широко используется в радиотехнике и в отдель-ных промышленных установках.

1.4. ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ КОНДЕНСАТОРА И КАТУШКИ,
ОБЛАДАЮЩЕЙ АКТИВНЫМ СОПРОТИВЛЕНИЕМ И ИНДУКТИВНОСТЬЮ

Рассмотрим цепь параллельного включения конденсатора и катушки, обладающей активным сопротивлением и индуктивностью (рис. 1.4.1).

В этой схеме общим параметром для двух ветвей является напряжение U. Первая ветвь — индуктивная катушка — обладает активным сопротивлением R и индуктивностью L. Результирующее сопротивление Z1 и ток I1 определяются по формуле:

, где

Поскольку сопротивление этой ветви комплексное, то ток в ветви отстает по фазе от напряжения на угол .

Покажем это на векторной диаграмме (рис. 1.4.2).

Спроецируем вектор тока I1 на оси координат. Горизонтальная составляющая тока будет представлять собой активную составляющую I1R, а вертикальная — I1L. Количественные значения этих составляющих будут равны:

где

Во вторую ветвь включен конденсатор. Его сопротивление

Этот ток опережает по фазе напряжение на 90°.
Для определения тока I в неразветвленной части цепи воспользуемся формулой:

Его значение можно получить и графическим путем, сложив векторы I1 и I2 (рис. 1.4.3)
Угол сдвига между током и напряжением обозначим буквой j .
Здесь возможны различные режимы в работе цепи. При = +90° преобладающим будет емкостный ток, при = -90° — индуктивный.
Возможен режим, когда = 0, т.е. ток в неразветвленной части цепи I будет иметь активный характер. Произойдет это в случае, когда I1L = I2, т.е. при равенстве реактивных составляющих тока в ветвях.

На векторной диаграмме это будет выглядеть так (рис. 1.4.4):

Такой режим называется резонансом токов. Также как в случае с резонансом на-пряжений, он широко применяется в радиотехнике.
Рассмотренный выше случай параллельного соединения R, L и C может быть также проанализирован с точки зрения повышения cos j для электроустановок. Известно, что cos j является технико-экономическим параметром в работе электроустановок. Определяется он по формуле:

, где

Р — активная мощность электроустановок, кВт,
S — полная мощность электроустановок, кВт.
На практике cos j определяют снятием со счетчиков показаний активной и реактивной энергии и, разделив одно показание на другое, получают tg j .
Далее по таблицам находят и cos j .
Чем больше cos j , тем экономичнее работает энергосистема, так как при одних и тех же значениях тока и напряжения (на которые рассчитан генератор) от него можно получить большую активную мощность.
Снижение cos j приводит к неполному использованию оборудования и при этом уменьшается КПД установки. Тарифы на электроэнергию предусматривают меньшую стоимость 1 киловатт-часа при высоком cos j , в сравнении с низким.
К мероприятиям по повышению cos относятся:
— недопущение холостых ходов электрооборудования,
— полная загрузка электродвигателей, трансформаторов и т.д.
Кроме этого, на cos j , положительно сказывается подключение к сети статических конденсаторов.

Параллельное соединение активного сопротивления и емкости

Последовательная R,L,C- цепь

Пусть напряжение на входе цепи (рис.5.1,а) синусоидально, т.е.

u =U m Sin ( w t+ y u ).

На основании второго закона Кирхгофа для данной цепи можно записать уравнение относительно комплексных амплитуд в виде

Зная комплексные сопротивления элементов цепи , на основании закона Ома в комплексной форме можно представить комплексные амплитуды напряжений на элементах так:

Находя отношение комплексных амплитуд напряжения и тока, получим комплексное сопротивление последовательной R,L,C- цепи в виде

Z=,

где — активная составляющая комплексного сопротивления,

= X L -X c – реактивная составляющая комплексного сопротивления.

Следует заметить, что реактивная составляющая сопротивления цепи равна разности индуктивного и емкостного сопротивлений и поэтому может принимать разные знаки или обращаться в 0. Указанное обстоятельство является следствием того, что при протекании через реактивные элементы L и C одного и того же тока i напряжение на них u L и u c находятся в противофазе. Полное сопротивление контура

и, следовательно, амплитуда тока может быть определена как

Аргумент комплексного сопротивления, определяющий фазовый сдвиг между напряжением и током, равен

и, следовательно, выражение для мгновенного значения тока в цепи можно окончательно получить в виде

Таким образом, как амплитуда, так и начальная фаза тока зависят от соотношений индуктивного и емкостного сопротивлений, что иллюстрируется векторными диаграммами, приведенными на рис. 5.1,б, в, г.

Если X L > X c и, следовательно, U mL > U mc ( рис.5.1,б), то j >0 и цепь носит индуктивный характер.

Если X L c и, следовательно, U mL mc (рис.5.1,в), то j и цепь носит емкостной характер.

Если X L = X c и, следовательно, U mL =U mc (рис.5.1,г), то j =0 и цепь носит резистивный характер. В этом случае в цепи имеет место резонанс.

Параллельная R, L, C-цепь

Пусть напряжение на входе контура ( рис.5.2,а) синусоидально. На основании первого закона Кирхгофа для данной цепи можно записать уравнение относительно комплексных амплитуд тока в виде

Зная комплексные проводимости ветвей цепи на основании закона Ома в комплексной форме можно представить комплексные амплитуды токов в ветвях так

Находя отношение комплексных амплитуд тока и напряжениz, получим комплексную проводимость параллельной R, L, C-цепи в виде

Y=,

где =1/R — активная составляющая комплексной проводимости,

=b L -b C — реактивная составляющая комплексной проводимости.

Реактивная составляющая комплексной проводимости рассматриваемой цепи равна разности проводимостей индуктивной и емкостной ветвей и поэтому может принимать разные знаки и обращаться при определенных условиях в 0. Указанное обстоятельство является следствием того, что при одинаковом напряжении на индуктивности и емкости токи, протекающие через эти элементы, находятся в противофазе.

Полная проводимость цепи

и, следовательно, амплитуда тока, протекающего через входные зажимы цепи, может быть определена как

.

Аргумент комплексной проводимости, определяющий фазовый сдвиг между напряжением и током находится по формуле

j =arctg(b/g)= arctg[R(1/ w L — w C)]

и, следовательно, выражение для мгновенного значения тока в неразветвленной части цепи можно окончательно получить в виде

.

Таким образом, как амплитуда, так и начальная фаза тока зависит от соотношения величин проводимостей индуктивной и емкостной ветвей, что иллюстрируется векторными диаграммами, приведенными на рис. 5.2 б, в, г.

Если b L C и, следовательно, I mL mC (рис. 5.2,б), то φ L >b C и, следовательно, I mL >I mC (рис. 5.2,в), то φ>0 и цепь носит индуктивный характер.

Если b L =b C и, следовательно, I mL =I mC ( рис. 5.2,г), то φ=0 и цепь носит резистивный характер. В этом случае в цепи имеет место резонанс.

Вообще в цепи, содержащей емкость и индуктивность, существует резонанс, если напряжение на зажимах цепи и ток, протекающий через зажимы, совпадают по фазе. В зависимости от схемы, по которой включены элементы R, L и C в цепях может иметь место либо резонанс напряжений, либо резонанс токов. При последовательном соединении указанных элементов в цепи имеет место резонанс напряжений, при параллельном- резонанс токов.

Эквивалентные преобразования пассивных двухполюсников

Как отмечалось ранее, ток напряжение на входе любого пассивного двухполюсника связаны между собой законом Ома в комлексной форме

или ,

где Z и Y- входные комплексное сопротивление и проводимость двухполюсника.

Входному комплексному сопротивлению Z= соответствует эквивалентная схема двухполюсника, состоящая из последовательного соединения активного сопротивления и реактивного сопротивления (рис. 5.3,а). Последняя в зависимости от знака может быть либо индуктивной либо емкостной .

В соответствии с выражением

напряжение на зажимах такого двухполюсника можно разложить на 2 составляю-щие : активную , совпадающую по фазе с током, и реактивную, сдвинутую по фазе на угол p /2.

Читайте также  Какой полупроводниковый прибор имеет отрицательное сопротивление?

Входной комплексной провдимости Y= соответствует эквивалентная схема двухполюсника, состоящая из параллельного соединения активной провдимости и реактивной проводимости (рис. 5.3,б). Последняя в зависимости от знака также может быть либо индуктивной либо емкостной .

В соответствии с выражением

ток, протекающий через зажимы такого двухполюсника можно разложить на 2 составляющие : активную , совпадающую по фазе с напряжением, и реактивную, сдвинутую по фазе на угол p /2.

Переход от комплексного сопротивления Z к комплексной прово-димости Y и обратно соответствует замене схемы двухполюсника с последо-вательным соединением активного сопротивления и реактивного сопротивления схемой с параллельным соединением элементов и и обратно. Схемы будут эквиваленты, если Y=1/Z, т.е.

.

Следовательно, .

Обратный пересчет осуществляется по формулам

Последовательное и параллельное соединение проводников, резисторов,
конденсаторов и катушек индуктивности. Онлайн расчёты.

«- Я тебе как электрику объясняю: Надя спит с мужиками последовательно, а Света параллельно. Кто из них шмара вавилонская?
— Ну, Света наверное.
— Вот! А мне, как кладовщику, видится немного другое: «поблядушка обыкновенная» — 2 штуки! »

«- А теперь скажи мне отрок, как течёт электричество по проводам электрическим, и цепям рукотворным, последовательным да параллельным, от плюса к минусу со скоростью света в вакууме?
— С Божьей помощью, батюшка! С Божьей помощью. »

Ну да ладно, достаточно! Шутки — штуками, а пора бы уже дело делать. Так что «Копайте пока здесь! А я тем временем схожу узнаю — где надо. », а заодно набросаю пару-тройку калькуляторов на заданную тему.

Итак.
При последовательном соединении проводников сила тока во всех проводниках одинакова, при этом общее напряжение в цепи равно сумме напряжений на концах каждого из проводников.
При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов, а сила тока в цепи равна сумме сил токов в отдельных параллельно соединённых проводниках.
Поясним рисунком с распределением напряжений, токов и формулами.


Рис.1

Расчёт проведём для 4 резисторов (проводников), соединённых последовательно или параллельно. Если элементов в цепи меньше, то оставляем лишние поля в таблице не заполненными.
Заодно, при желании узнать распределение значений токов и напряжений на каждом из элементов при последовательном и параллельном соединениях, есть возможность ввести величину общего напряжения в цепи U. А есть возможность не вводить.
Короче, все вводные, помеченные * — к заполнению не обязательны.

РАСЧЁТ СОПРОТИВЛЕНИЙ ПРИ ПАРАЛЛЕЛЬНОМ И ПОСЛЕДОВАТЕЛЬНОМ СОЕДИНЕНИИ
проводников

Теперь, что касается последовательных и параллельных соединений конденсаторов и катушек индуктивности.
Схема, приведённая на Рис.1 для проводников и резисторов, остаётся в полной силе и для катушек с конденсаторами, распределение напряжений и токов тоже никуда не девается, трансформируется лишь осмысление того, что токи эти и напряжения обязаны быть переменными.
Почему переменными?
А потому, что для постоянных значений этих величин — сопротивление конденсаторов составляет в первом приближении бесконечность, а катушек — ноль, соответственно и токи будут равны либо нулю, либо бесконечности, а для переменных значений иметь ярко выраженную зависимость от частоты.

Поэтому, для желающих рассчитать величины напряжений и токов в последовательных или параллельных цепях, состоящих из конденсаторов и катушек индуктивности, имеет полный смысл выяснить на странице ссылка на страницу значения реактивных сопротивлений данных элементов при интересующей Вас частоте и подставить эти значения в таблицу для расчёта проводников и резисторов. А в качестве общего напряжения в цепи — подставлять действующее значение амплитуды переменного тока.

Ну а теперь приведём таблицы для расчёта значений ёмкостей и индуктивностей при условии последовательного и параллельного соединений конденсаторов и катушек в количестве от 2 до 4 штук.
Расчёт поведём на основании хрестоматийных формул:

С = С 1 + С 2 +. + С n и 1/L = 1/L 1 + 1/L 2 +. + 1/L n для параллельных цепей и
L = L 1 + L 2 +. + L n и 1/С = 1/С 1 + 1/С 2 +. + 1/С n для последовательных.

Как и в предыдущей таблице вводные, помеченные * — к заполнению не обязательны.

РАСЧЁТ ЁМКОСТИ ПРИ ПАРАЛЛЕЛЬНОМ И ПОСЛЕДОВАТЕЛЬНОМ СОЕДИНЕНИИ
конденсаторов

Ну и в завершении ещё одна таблица.

РАСЧЁТ ИНДУКТИВНОСТИ ПРИ ПАРАЛЛЕЛЬНОМ И ПОСЛЕДОВАТЕЛЬНОМ СОЕДИНЕНИИ
катушек

Тут важно заметить, что приведённые в последней таблице расчёты верны только для индуктивно не связанных катушек, то есть для катушек, намотанных на разных каркасах и расположенных на значительных расстояниях друг от друга, во избежание, пересечения взаимных магнитных полей.

Электрический импеданс

Импеданс (impedance) – комплексное, полное сопротивление переменному току электрической цепи с активным и реактивным сопротивлением.

Импеданс и общий сдвиг фаз для синусоидального тока можно рассчитать исходя из последовательного или параллельного соединения элементов цепи.

Последовательное соединение

При последовательном соединении, согласно Закону Ома для переменного тока, во всех элементах цепи ток будет общим I = U/Z, а значения напряжений на каждом элементе определятся пропорционально его сопротивлению:
на выводах резистора UR = IR; на выводах конденсатора UC = IXC; на выводах катушки UL = IXL.

Векторы индуктивной и ёмкостной составляющих напряжения направлены в противоположные стороны.
С учётом отрицательного ёмкостного сдвига, общее напряжение на реактивных элементах UX = UL — UC .
Пропорционально напряжению, получим общее реактивное сопротивление X = XL — XC .
Векторы напряжений на активной и реактивной составляющей импеданса имеют угол сдвига фаз 90 градусов.
U , UR и UX представим в виде прямоугольного треугольника напряжений с углом сдвига фаз φ.

Тогда получим соотношение, согласно Теореме Пифагора, U ² = UR² + UX² .
Следовательно, с учётом пропорциональности элементов R, L, C значениям напряжений на их выводах, определим импеданс, который будет равен квадратному корню из суммы квадратов активного и реактивного сопротивлений цепи.

XL = ωL = 2πfL — реактивное сопротивление индуктивности.
XC = 1/(ωC) = 1/(2πfC) — реактивное сопротивление ёмкости.

Угол сдвига фаз φ и его дополнение до 90° δ определятся тригонометрическими функциями из треугольника сопротивлений с катетами R, X и гипотенузой Z, как показано на рисунке:

Обычно, для облегчения расчётов, импеданс представляют в виде комплексного числа, где действительной его частью является активное сопротивление, а мнимой — реактивное.
Для последовательного соединения импеданс можно записать в комплексном виде следующим образом:

Z = R + jX

Тогда в тригонометрической интерпретации модулем этого числа будет импеданс, а аргументом — угол φ.
В соответствии с формулой Эйлера, запишем показательную форму комплексного импеданса:

Z = |Z|e jargZ = Ze jφ

Отсюда активная составляющая импеданса R = Zcosφ
Реактивная составляющая X = Zsinφ.

Параллельное соединение

Для вычисления импеданса при параллельном соединении активных и реактивных сопротивлений будем исходить из суммы обратных им величин — проводимостей y = 1/Z, G = 1/R, b = 1/X.

y = 1/Z = √(G 2 + b 2 )

Сдвиг фаз в этом случае будет определён треугольником сопротивлений следующим образом:

Комплексную проводимость, как величину, обратную комплексному импедансу, запишем в алгебраической форме:

Y = G — jb

Либо в показательной форме:

Y = |Y|e -jφ = ye -jφ

Здесь:
Y — комплексная проводимость.
G — активная проводимость.
b — реактивная проводимость.
y — общая проводимость цепи, равная модулю комплексной проводимости.
e — константа, основание натурального логарифма.
j — мнимая единица.
φ — угол сдвига фаз.

Онлайн-калькулятор расчёта импеданса и угла сдвига фаз

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.