Параллельное и последовательное соединение солнечных панелей

Как соединить солнечные батареи: последовательно или параллельно?

Наши сотрудники регулярно предоставляют консультации на предмет установки солнечных электростанций различных типов, а также компания Best Energy предоставляет полный комплекс услуг для установки солнечной электростанции «под ключ». Реже бывает применение автономной системы электроснабжения на основе солнечных батарей для автомобильного транспорта и недавно к нашим специалистам поступил интересный вопрос о том, как правильно соединить две солнечные батареи разной мощности: последовательно или параллельно? Ответ на этот вопрос было принято решение опубликовать на сайте в разделе поддержки по продукции альтернативных источников энергии, доработав его в полноценный формат статьи.

Схемы соединения солнечных батарей

Всего существует три схемы соединения солнечных панелей, которые могут применяться: параллельное, последовательное и параллельно-последовательное. В зависимости от мощности солнечной электростанции и напряжения постоянного тока может применяться одна из выбранных схем. Остановимся подробнее на каждой и опишем принцип работы.

Параллельное соединение солнечных панелей

Данная схема подходит для тех случаев, когда необходимо оставить напряжение на одном уровне, но повысить мощность солнечного PV-массива. Приведем пример на двух солнечных панелях мощность 100В с напряжением 12В. Соединение происходит путем подключения положительных соединений в одну группу, а отрицательных выводов – во вторую группу. Такими образом, напряжение остается прежним 12В, а мощность возрастает до 200 Вт.

Рисунок 1. Параллельное соединение солнечных панелей (12В 200Вт).

Последовательное соединение солнечных панелей

Последовательное соединение применяется в тех ситуациях, когда необходимо поднять уровень напряжения, но зафиксировать мощность на одном уровне. На схеме отражено соединение двух солнечных панелей мощностью 100Вт с напряжением 12В, когда в итоге получаем солнечный PV-массив 24В 100Вт.

Рисунок 2. Последовательное соединение солнечных панелей (24В 100Вт).

Параллельно-последовательное соединение солнечных панелей

Более сложной схемой соединения солнечных батарей будет параллельно-последовательный тип. Зачастую подобная схема применяется для относительно мощных солнечных массивов. Применение этой схемы дает возможность как поднять номинальное напряжение соединенных панелей, так и увеличить мощность. На примере показано, как можно соединить четыре панели с напряжением 12В и мощностью 100Вт. После соединения получаем солнечный PV-массив с напряжением 24В и мощностью 200Вт.

Рисунок 3. Параллельно-последовательное соединение солнечных панелей (24В 200Вт).

Соединение солнечных батарей разной мощности

Когда требуется соединить вместе солнечные батареи разной мощности, то может применяться две вышеописанные схемы: параллельная и последовательная. Однако необходимо учитывать возможности применяемого MPPT-контроллера. Так, чтобы подключить батареи параллельно, максимальный выходной ток должен соответствовать току MPPT-контроллера и наоборот, для соединения разных по мощности солнечных модулей последовательно, MPPT-контроллер обязательно должен иметь более высокое рабочее напряжение, чем сумма напряжения холостого хода двух модулей.

Рисунок 4. Параллельное и последовательной соединение солнечных панелей разной мощности.

Как видно по приведенным расчетам, производительность выше на 5,5% при последовательном соединении. Рекомендуем использовать этот вариант.

Внимание! Соединение солнечных батарей разной мощности несколько снижает производительность MPPT-контроллера и делает болеет трудным поиск точки максимальной мощности, но такая система также будет нормально работать при необходимости.

Заключение

Сегодня было рассмотрено то, как правильно и эффективно соединять фотоэлектрические панели. Но если остались вопросы, наши специалисты по альтернативной энергетике проведут необходимые консультации.

Также ранее мы писали о том, как правильно соединять аккумуляторные батареи и какие это несет преимущества в зависимости от применяемой схемы соединения: параллельной, последовательной и параллельно-последовательной.

Подключение солнечных панелей, схемы соединения

Монтаж солнечной электростанции может стоять до половины стоимости самого оборудования. Но, сделать это вполне можно и самостоятельно. Для этого не нужно иметь никакого специального оборудования, достаточно понимать схему соединения. Их несколько, выбирать нужно в зависимости от параметров тока и напряжения, которые необходимо получить. В этой статье мы разберем все варианты.

Комплект солнечной электростанции

Типичный комплект солнечной электростанции

Данное оборудование применяется в небольших гелиосистемах которые можно использовать для дома или для дачи. К обязательным компонентам относятся:

  • Солнечные панели или батареи – могут быть монокристаллические и поликристаллические. Чем отличаются и какие выбрать читайте здесь.
  • Инвертор – для чего он и как его выбрать читайте в этой статье.
  • Коннекторы для солнечных батарей – предназначены для быстрого подключения провода к панелям. Если бюджет ограничен, можно использовать пайку, но данное соединение намного удобнее.
  • Кабель, используется одножильный медный в двойной изоляции, стойкий к любым атмосферным воздействиям, сечение от 1.5 мм.

Опционный комплектующие, которые не обязательно должны быть в системе и устанавливаются при определенных задачах:

  • Аккумуляторные батареи – существует несколько вариантов, какой выбрать описано здесь.
  • Контроллер заряда аккумуляторов.
  • Реверсный электросчетчик, устанавливается если вы хотите продавать электроэнергию. В некоторых странах существует так называемый “зеленый тариф”, который позволяет зарабатывать, делая это.

Важные характеристики батарей, которые нужно учитывать

• Номинальное напряжение панелей – 12В или 24В.
• Максимальное напряжение при пиковой мощности Vmp.
• Напряжение холостого хода Voc – напряжение, выдаваемое панелями без нагрузки (важно при выборе контроллера заряда аккумулятора).
• Ток Imp – ток при максимальной мощности панели в А.

Схемы подключения

Существуют 3 возможные схемы подключения солнечных панелей между собой, это: последовательное, параллельное и последовательно-параллельное соединение. Теперь о них подробнее.

Последовательное соединение

В данной схеме минусовая клемма первой панели соединяется с плюсовой клеммой второй, минусовая второй с клеммой третьей и тд. Что дает такое соединение – напряжение всех панелей будет приплюсовываться. Другими словами, если вы хотите получить, например сразу 220В, данная схема поможет это сделать. но используется она крайне редко.

Разберем на примере. Имеем 4 панели с номинальной мощностью по 12В, Voc: 22.48В (это напряжение холостого хода) на выходе получаем 48В. Напряжение холостого хода = 22,48В*4=89,92В. при этом максимальная мощность тока, Imp, останется неизменной.

В данной схеме не рекомендуется использовать панели с разным значением Imp, поскольку эффективность системы будет низкая.

Параллельное соединение

К входам панелей подключаются клеммы одинакового знака, аналогично и к выходам. Удобнее всего это делать с помощью специальных Y коннекторов.

Эта схема позволяет, не поднимая напряжение панелей, увеличить ток. Разберем пример. Имеем 4 панели с номинальной мощностью по 12В, напряжение холостого хода 22.48В, ток в точке максимальной мощности 5.42А. На выходе схемы номинальное напряжение и напряжение холостого хода остается без изменений, но максимальная мощность будет равна 5,42А*4=21,68А.

Последовательно-параллельное соединение

В данной схеме часть панелей соединяется последовательно, часть параллельно. Это дает возможность подобрать оптимальный режим работы электростанции путем регулирования номинальной мощности и силы тока на выходе. Разберем на примере все тех же 4х панелей с характеристиками:

• Номинальное напряжение солнечной батареи: 12В.
• Напряжение холостого хода Voc: 22.48В.
• Ток в точке максимальной мощности Imp: 5.42А.

Соединив 2 солнечные панели последовательно и 2 параллельно на выходе мы получим напряжение 24В, напряжение холостого хода 44,96В, а ток при этом будет равен 5,42А*2=10,84А.

Это дает возможность получить сбалансированную систему и сэкономить на таком оборудовании как контроллера заряда аккумулятора, поскольку эму не нужно будет выдерживать большое напряжение в пике работы. Так же схема дает возможность использовать панели разной мощности, например 2 по 12В, преобразовать в 24В. Наиболее удобный вариант сети для дома.

Как подключить солнечную панель к контроллеру заряда

Это оборудование применяется в системе с аккумуляторами для контроля их уровня зарядки. То есть, сбрасывает излишки электроэнергии на них и предотвращает накопление в случаи полного заряда. Так же дает возможность подключения приборов с низким номинальным напряжением – 12В, 24В, 48В и тд. (в зависимости от того как соединены панели).

Подключение производится следующим образом. Контроллер имеет 3 пары контактов на панели (это стандартный вариант, есть варианты с другим количеством клемм, тогда нужно изучать инструкцию производителя к этому оборудованию):

  • 1 пара контактов – подключается сеть панелей.
  • 2 пара – подключаются аккумуляторы.
  • 3 пара – подключается источник и низким уровнем потребления.

Сначала рекомендуется подключить аккумуляторные батареи что бы проверить оборудование. Затем сами панели, после уже потребитель, если он предусмотрен в схеме.

Схема подключения, которая была в документации к контроллеру. Все достаточно просто и понятно.

Важно. Необходимо соблюдать полярность всей системы, иначе она не будет работать, возможно выйдет из строя сам контроллер. Если вы будете подключать систему к сети, это особенно важно, иначе замыкание выведет из строя все оборудование.

Видео обзор подключения

Подключение к аккумулятору

Как уже писалось выше, аккумуляторные батареи подключаются к контроллеру, который будет контролировать их заряд. С другой стороны они подключаются к инвертору, который преобразует 12В, 24В, 48В в 220В для использования потребителями. Важно так же соблюдать полярность всей схемы и использовать большее сечение провода, рекомендовано в этой части системы сечение 3 мм.

Читайте также  Kb конвертор для укв приемника

Подключать аккумуляторы можно и напрямую к панелям, без использования контроллера. Однако это делать не желательно по нескольким причинам, самой важной из которых является “перегрев батарей”, то есть избыточная бесконтрольная зарядка, которая снизит их срок эксплуатации.

Подключение к инвертору

Данный прибор преобразовывает напряжение, вырабатываемое панелями или отдаваемое аккумуляторными батареями в 220В, после чего его можно использовать в бытовых целях. Есть инверторы, выдающие 380В, однако такие системы в домашних условиях используются крайне редко.

Сам процесс подключение достаточно прост, подсоединяем клеммы, обязательно соблюдая полярность, от аккумуляторов или непосредственно от солнечных панелей, если у вас система без контроллера и АКБ.

Схема подключения солнечных панелей в существующую электросеть такая же, но обязательно нужен гибридный инвертор. Работать он будет по следующему принципу: когда энергии от панелей или аккумуляторов достаточно для потребителя, он будет использовать ее, когда же не достаточно, выросла нагрузка или снизилась выработка, он будет использовать энергию с сети. Так же есть и другие варианты настройки такого оборудования, которые позволят эффективно использовать различные источники электроэнергии. Или настроить зарядку АКБ от сети в случаи нехватки солнечной энергии, например если у вас ночной тариф и ночью электроэнергия дешевле.

Как рассчитать мощность инвертора. Для начала необходимо выяснить напряжение и общую мощность собранной вами системы панелей:

  • Напряжение может быть 12В, 24В и 48В, как правило больше не бывает, и завист оно от собранной вами схемы панелей.
  • Общая мощность рассчитывается от количества панелей и мощности каждой из них. Пример, у вас 10 шт батарей по 280Вт, суммарно это 2.8кВт. Нужен незначительный запас, то есть инвертор берем минимум на 3кВт, если планируете увеличивать объем панелей в будущем, можно сразу взять более мощное оборудование.

Схема Подключения Солнечных Батарей

При монтаже солнечных батарей своими руками, панели лучше ориентировать на юг, так как в солнечные часы с этой стороны поступает максимальное количество солнечной энергии.


Подробнее о принципах работы и об особенностях построения систем автономного электроснабжения вы можете узнать от участников нашего портала, посетив соответствующую тему. Соответственно, к N-слою подключается отрицательный электрод для снятия электротока , а к P-слою — положительный.

Модули на крыше загородного дома Одна панель подключается к контроллеру без проблем — плюс и минус нужно подсоединить к соответствующим разъемам контроллера. Подключите фотоэлемент к контролеру таким же образом.
Солнечные панели. Зеленый тариф. Часть 1. Установка крепления электрических солнечных панелей

Солнечные элементы лишь восстанавливают отданный запас энергии заряжают АКБ. Диоды подбираются по двум основным параметрам: по максимальной силе тока, которая будет проходить в прямом направлении прямой токи по обратному напряжению.

Как известно, солнечные батареи предназначены для получения энергии из солнечного излучения, так вот аккумуляторы для солнечных батарей, выполняют иную функцию.

Существуют и другие, более сложные схемы, однако данное решение является универсальным и наиболее востребованным в быту.

Однако их цены несколько ниже, чем стоимость аналогов, поэтому модель пользуется спросом у собственников загородных домов. Плюс первой панели нужно подключить к минусу второй.

Нередко наряду с традиционными схемами используют альтернативные, основанные на получении энергии солнца.

Система солнечного электроснабжения дома .solar system.

Экономическая обоснованность

Применяя данную схему соединения панелей, мы можем регулировать напряжение и ток на выходе из системы нескольких панелей, что позволит подобрать наиболее оптимальный режим работы всей солнечной электростанции. Блок аккумуляторных батарей.

Она предполагает использование пористого стекловолоконного заполнителя-сепаратора. Резиновые перчатки — чтобы не вымазывать солнечные элементы особенно их лицевую часть.

Он должен поддерживать общую мощность системы энергоснабжения, обеспечивать заряд аккумуляторов и правильно распределять поток мощности при одновременном потреблении и заряде. Она заключается в добавлении оксида 4-хвалетного кремния в электролит, что способствует переходу электролита в гелеобразное состояние.

Если вы житель Московского региона, то ваш угол наклона будет составлять градусов летом, и от 60 до 70 градусов зимой. Именно об этом мы и поговорим в этой статье.

Существуют гибкие солнечные батареи на основе аморфного кремния. В отдельных случаях потребители, питающиеся от постоянного тока, подключают напрямую к модулям.

А моно- можно отличить по форме — она не квадратная, а восьмиугольная, и цена на них выше.

Сначала на первую пару клемм подают напряжение 12 или 24 В от аккумуляторов.
Расключная коробка для солнечных батарей

Параллельное соединение

Sliderrr Залил силиконом зазоры между панелями немного приплюснул и срезал сопло шприца, чтобы обеспечить эстетичность шва и хороший контакт силикона со стеклом. Не меньшее значение имеет и общий угол наклона конструкции, он также определяется географической ориентацией строения.

Если бы в панелях не были встроены диоды, тогда при малейшем затенении хотя бы кусочка 1 панели вся цепочка полностью бы переставала давать ток.

Для обеспечения электричеством частного дома с 4-мя жильцами надо 8 панелей 1х2 м либо 5 панелей 1,8х1,9 м. Резиновые перчатки — чтобы не вымазывать солнечные элементы особенно их лицевую часть.

Так вы сможете без проблем узнать, работает солнечная панель или нет. При подключении солнечных батарей к сети схему лучше выбрать смешанную, так как она оптимальна. Схема приведена на рисунке ниже.

Эффективность СЭС в средних широтах велика, но не настолько, чтобы полностью обеспечивать электричеством большие дома. Чтобы защитить заднюю часть батареи во время сборки, можно сделать поролоновый мат и обернуть его в полиэтиленовую пленку. Монтировать батарею после этого пока рано, надо чтоб герметик полностью схватился.


Монокристаллические фотоэлектрические панели являются вторыми по популярности. При сборке солнечной электростанции следует иметь в виду каждое устройство, даже если конкретное подключение его не касается. Параллельное соединение увеличит силу тока и мощность , оставляя напряжение неизменным. Герметик лучше брать прозрачный. К входам подключаются клеммы одинакового знака.

Преобразователь напряжения. Такими образом, напряжение остается прежним 12В, а мощность возрастает до Вт. На схеме ниже вы сможете наглядно увидеть этот процесс. Установка диодов Шоттки В конструкции солнечных панелей зачастую используются элементы, о которых мы ранее не упоминали. Затем присоединяют непосредственно солнечные панели, используя прилагающиеся к ним провода, а у контроллера — вторую пару клемм.

Преимущества такого источника в том, что он практически неиссякаем, по крайней мере, в следующие пять миллиардов лет Солнце будет отдавать планете свою энергию и тепло. Потом груз убирается, а фанера и мат снимаются.
[Natalex] Что будет если подключить солнечную батарею к аккумулятору без диода Шоттки?

Подключение солнечных батарей к сети

Оставшиеся свободные провода выводят на контроллер.

Монтаж солнечных источников тепла и света на лоджии или на балконе происходит по подобной схеме. Типы аккумуляторов В солнечной энергетике наибольшей популярностью пользуется герметичный свинцово-кислотный аккумулятор, производимый с использованием 2 различных технологий: Gelled Electrolite.

Преимущества Таблица 2. При сборке солнечной электростанции следует иметь в виду каждое устройство, даже если конкретное подключение его не касается.

Флюс флюс-маркер — обязательно должен быть нейтральным в противном случае припаянные контакты быстро окислятся. Параллельно-последовательное соединение солнечных панелей 24В Вт. Диод позволяет пустить электричество в обход затененной панели. В таблице представлены оптимальные рекомендации.

Задача инвертеров — преобразовывать постоянное напряжение от АКБ в переменное напряжение В. Она предполагает использование пористого стекловолоконного заполнителя-сепаратора.

Рисунок 1. Это сутки работы электроприборов при безостановочном потреблении Вт. Сначала разрабатывается схема подключения солнечных панелей, которая позволяет получить от них максимальную эффективность. Основные параметры такого блока: рабочая емкость, ток заряда, ток разряда. Приведем пример на двух солнечных панелях мощность В с напряжением 12В.

Новости и информация

Эффективность СЭС в средних широтах велика, но не настолько, чтобы полностью обеспечивать электричеством большие дома. Рисунок 4. При неправильном подключении солнечных модулей бытовые приборы и комплектующие станции могут выйти из строя.

На экран выведется несколько предложений. Так, чтобы подключить батареи параллельно, максимальный выходной ток должен соответствовать току MPPT-контроллера и наоборот, для соединения разных по мощности солнечных модулей последовательно, MPPT-контроллер обязательно должен иметь более высокое рабочее напряжение, чем сумма напряжения холостого хода двух модулей. Если необходимо выполнить подключение нескольких солнечных батарей, тогда необходимо воспользоваться одной из следующих схем соединения солнечных панелей: Параллельная. Пайка элементов в случае их последовательного соединения производится по следующей схеме.
🌞 Солнечные панели. Как сделать дешёвую и эффективную солнечную электростанцию. Лайфхак подключения✅

Читайте также  Как рассчитать рассеиваемую мощность резистора?

Как подключить Солнечные Панели (Схемы соединения)

Последовательное соединение, параллельное соединение и последовательно-параллельное соединение солнечных модулей

Возможные варианты подключения солнечных панелей

При монтаже солнечных электростанций неизбежно возникает вопрос – как соединять солнечные панели и чем отличаются варианты подключения. Именно об этом мы и поговорим в этой статье.

Существуют 3 варианта соединения солнечных панелей между собой:

-Последовательно-параллельное соединение солнечных панелей

Для того чтобы разобраться чем они отличаются, обратимся к основным характеристикам солнечных панелей:

• Номинальное напряжение солнечной батареи – как правило 12В или 24В, но существуют и исключения
• Напряжение при пиковой мощности Vmp – напряжение при которой панель выдает максимальную мощность
• Напряжение холостого хода Voc – напряжение в отсутствии нагрузки (важно при выборе контроллера заряда АКБ)
• Напряжение максимальное в системе Vdc – определяет максимальное количество панелей объединенных вместе
• Ток Imp – ток при максимальной мощности панели
• Ток Isc – ток короткого замыкания, максимально возможный ток панели

Мощность солнечной панели определяется как произведение Напряжения и тока в точке максимальной мощности – Vmp* Imp

В зависимости от того какая схема подключения солнечных панелей выбрана, будут определяться характеристики системы солнечных панелей и подбираться соответствующий контроллер заряда.

Теперь предметно рассмотрим каждую схему соединения:

1) Последовательное соединение солнечных панелей

При таком соединении минусовая клемма первой панели соединяется с плюсовой клеммой второй, минусовая второй с клеммой третьей и так далее.

При последовательном соединении нескольких панелей, напряжение всех панелей будет складываться. Ток системы будет равен току панели с минимальным током. По этой причине не рекомендуется соединять последовательно панели с различным значением ток максимальной мощности, поскольку работать они будут не в полную силу.

Рассмотрим на примере:

Имеем 4 солнечных монокристаллических панели со следующими характеристиками:

• Номинальное напряжение солнечной батареи: 12В
• Напряжение при пиковой мощности Vmp: 18.46 В
• Напряжение холостого хода Voc: 22.48В
• Напряжение максимальное в системе Vdc: 1000В
• Ток в точке максимальной мощности Imp: 5.42А
• Ток короткого замыкания Isc: 5.65А

Соединив последовательно 4 таких панели мы получим на выходе номинальное напряжение 12В*4=48В. Напряжение холостого хода = 22,48В*4=89,92В и Ток в точке максимальной мощности равный 5,42А. Эти три параметра задают нам ограничения при выборе контроллера заряда.

2) Параллельное соединение солнечных панелей

В данном случае панели соединяются при помощи специальных Y — коннекторов. У таких коннекторов имеется два входа и один выход. К входам подключаются клеммы одинакового знака.

При таком соединении напряжение на выходе каждой панели будет равны между собой и равны напряжению на выходе из системы панелей. Ток от всех панелей будет складываться. Такое соединение позволяет, не поднимая напряжения увеличить ток от панелей.

Рассмотрим на примере все тех же 4х панелей:

Соединив параллельно 4 таких панели мы получим номинальное напряжение на выходе равное 12В, Напряжение холостого хода останется 22,48В, но ток при этом будет равен 5,42А*4=21,68А.

3) Последовательно-параллельное соединение солнечных панелей

Последний тип соединения объединяет в себе два предыдущих. Применяя данную схему соединения панелей, мы можем регулировать напряжение и ток на выходе из системы нескольких панелей, что позволит подобрать наиболее оптимальный режим работы всей солнечной электростанции.

В случае такого подключения соединенные последовательно цепочки панелей объединяют параллельно.

Вернемся к нашему примеру с 4мя панелями:

Соединив по 2 панели последовательно и затем объединим их соединив цепочки панелей параллельно мы получим следующее. Номинальное напряжение на выходе будет равно сумме двух последовательно соединенных панелей 12В*2=24В, напряжение холостого хода будет равно 22,48В*2=44,96В, а ток при этом будет равен 5,42А*2=10,84А.

Такое соединение позволит максимально сэкономить на покупке контроллера заряда, поскольку от него не потребуется выдерживать больших напряжений как в случае последовательного соединения или больших токов как в случае параллельного соединения. Именно поэтому соединяя панели между собой необходимо стремится к балансу между токами и напряжениями.

О том как подобрать контроллер заряда можно прочитать тут –

А если вы хотите купить солнечную электростанцию ― позвоните по телефону 8-800-100-82-43 (+7-499-709-75-09) или оставьте заявку на сайте и мы сделаем все необходимые расчеты и подберем оптимальную комплектацию для вас!

Лига Караванеров

Отдых с друзьями. Наши мероприятия

Коммутация фотоэлектрических солнечных модулей!

  • Реклама

Коммутация фотоэлектрических солнечных модулей!

Goofy » 23 мар 2013, 21:52

При соединении солнечных батарей необходимо понимать основы теории электрических цепей-

Параллельное соединение
-при таком соединении напряжение в цепи соединенных параллельно солнечных батарей будет равно напряжению одной солнечной батареи. Т.е. Если вы соединяете 2 батареи у которых при нагрузке напряжение равно 17,5 вольт то на контроллер будет подано напряжение 17,5 вольт.
Ток при таком соединении суммируется ! Т.е. если 2 батареи при хорошей солнечной освещенности выдают по 7А каждая, то суммарный ток на контроллер будет 14А.

Последовательное соединение
-при таком соединении напряжение в цепи соединенных последовательно солнечных батарей будет равно
сумме напряжений солнечных батарей в данном соединении. Т.е. Если вы соединяете 2 батареи у которых напряжение в точке максимальной мощности равно 17,5 вольт, то на контроллер будет подано напряжение 35 вольт.
Ток при таком соединении будет равен току самой слабой солнечной батареи. Например одна солнечная батарея имеет ток в точке максимальной мощности
7,5А, а другая 7,3А — ток поданый на контроллер будет равен 7,3А.

Именно по этой причине не рекомендуется! подключать последовательно МОНО-кристаллические и ПОЛИ-кристаллические панели.

Солнечный батареи можно и нужно подключать последовательно-параллельно, если у вас много солнечных батарей, то вы сможете построить систему
у которой напряжения и токи будут оптимально подобраны для вашего солнечного контроллера.

Re: Коммутация фотоэлектрических солнечных модулей!

Goofy » 23 мар 2013, 22:58

немного дополню для понимания и разницы между теми или иными панелями при равной мощности 1000вт и какова при этом площадь покрытия модулем.
это к вопросу что лучше, поли или моно кристал, и разница в отом есть , причем очевидная и существенная!
так же добавлю то что, что контролер МРРТ работает с потерями КПД в комплексе с поликристалическими панелями, с ними лучше использовать ШИМ, только для чего использовать то на чем теряется даже минимум!
но это решает каждый для себя что ему надо и что лучше.

с уважением БМС !

Re: Коммутация фотоэлектрических солнечных модулей!

D.S.S. » 04 май 2013, 03:49

Re: Коммутация фотоэлектрических солнечных модулей!

Goofy » 04 май 2013, 08:05

ну да. пост ваш перенесем. тему создадим!
потому как ваш конкретный случай. больше не про параллельность подключения. а про то-
ПОЧЕМУ МНЕ НЕ ХВАТАЕТ ЭНЕРГИИ ДЛЯ РАБОТЫ ПОТРЕБИТЕЛЕЙ НА 220В!?
-вы съедаете больше чем ваша мощность панелей успевает возместить потери!
видел я ваши посты на том форуме про ваеко и тд и Василий вам на этот счет кажется ответил с лихвой!
считаем-
ваши акб суммарной мощности= 2880вт в час (условно)
продолжаем-
ваша панель выдает всего= 160вт в час и то. это будет в момент когда она будет стоять под прямым углом. в пик солнечной радиации и тд и тп .
вот и посчитайте- сколько нужно часов этого пика при правильном положении. что бы полностью зарядить ваши акб?!
ответ — МНОГО
а в нашем. плоском случае. панель выдаст дай бог две трети своей мощности( что то в пределах 70%) при учете что панели хорошие и не куплены бог знает где в интернете у непонятного продавца за дешево . чем продают компании с именем на рынке. при учете что они еще и чистые! и подобных составляющих для правильной работы комплекса много!
провода. контролер. и тд даже то насколько панель проветриваема!
факторов влияющих достаточно!

параллелить можно что угодно))) вопрос в том, как все это работать будет_)__)
ну да, есть разница между 80 и 120вт, незначительная, но все ж есть!
а скажите, какой у вас контролер? сколько А?
просто можно посчитать что вас ждет при параллельном подключении- выше как раз про это сказано!
вот и вопрос-
сколько А ваш контролер!?
и еще, инверторы тоже разные бывают, не только синусойдные и модифицированные, но и с низким кпд и они сами на себя потребляют достаточно, я бы ставил ИБП!
у нас есть люди которые тестировали их и уже поставили и при этом пользуются бытовыми компрессорными холодильниками!

а еще интересно посмотреть на ваш комплекс, меня интересует сечение проводов и не только!

Читайте также  Как рассчитать солнечную электростанцию для дома?

зы-
а в обще, нужно считать все потребители, даже вашу светодиодную ленту!
знаете как бывает- было у человека 3 галогенки по 10вт= 30вт, а в итоге человек в будку приклеил как минимум 5 метров диодной ленты!
так вот, лента съедает в 5 метрах энергии больше чем 3 галогенки!
ко всему, даже к экономии нужно подходить с умом!
для того что б экономить сегодня. нужно вложится было еще вчера!
я себе поставил 12 ламп , светят как 20вт галогенки, но потребляют 0,7вт!- вот это я считаю экономией, правда в нее мне пришлось вложится примерно 13 -14 евро за одну лампочку. а их кажется толь 10. толь 12шт

с уважением БМС

Re: Коммутация фотоэлектрических солнечных модулей!

macsafe » 04 май 2013, 11:38

Возможность параллели шибко зависит от контроллера. Если он МРРТ, то смысл в нем теряется и деньги на ветер. А вообще разговор не верный. Главное не мощность панелей ,а их токи и напряжения.
Не, запараллелить то конечно можно, но вам надо КПД 50%?

И то это притянуто за уши. В реальности в солнечный пик лежащая на крыше панель и не ориентированная не выдаст больше 70% заявленной мощности

Re: Коммутация фотоэлектрических солнечных модулей!

D.S.S. » 04 май 2013, 12:56

Re: Коммутация фотоэлектрических солнечных модулей!

Goofy » 04 май 2013, 13:06

не за что пока спасибо. еще не помогли ни чем!
но стараемся)))

возможно!
на ник не обращал внимание читая. но тема про солнце и компрессор ваеко затрагивалась где то. кажется на укр сайте караванеров!
Олег. 12в комплекс убыточный сам по себе. потери на всем. даже на проводах и дальше
контролер так же потери и тд
в нашем. плоском случае. задача в том что б снизить эти потери
сечение 6 квадратов вполне! от контролер =а до акб тоже 6 киньте. тем бо что колодка на контролере позволяет. это конечно мало что даст супротив 4х. но все ж))
к компрессорному холодильнику нужен так же подход-
он должен стоять в затененной части. в проветриваемой и еще что бы его обдувало со всех сторон. под холодильники кемпинговые есть даже . забыл слово(. в общем типо подставки которая без столешницы. что б агрегатная часть продувалась
ну и соотв то что — чем чаще мы туда лезем. тем мы больше нарушаем разницу температуры окр среды с температурой в холодильнике. соотв термопара срабатывает и включает компрессор!
у меня 160вт/24в на все мои потребители хватает. даже раздаю часть энергии соседям)
но у меня нет больших потребностей и потребителей на 220в.
в моем случае стоит инвертор на 300вт синусойдный
при просевших батареях он конечно не тянет стиралку на 150вт)) да и аки сейчас полудохлые)

зы-
в общем надо считать потребители. сколько. что и куда!

с уважением БМС

Re: Коммутация фотоэлектрических солнечных модулей!

D.S.S. » 04 май 2013, 18:21

Re: Коммутация фотоэлектрических солнечных модулей!

Goofy » 04 май 2013, 18:26

я тоже не электрик слава богу)))
но с этими штуками уже давно связан. несколько лет!
идеально конечно ставить равнозначные панели. это идеально. но если нет этого идеала. тогда получится немного криво. слабые панели еще спят. а более мощная уже что то стала выдавать) ну примерно на пальцах так!

вы думаете что я не знаю ваеко?)))
нет. я понял какой у вас холодильник и как он работает!
с чего вы взяли что я вас не понял?
никакого конфликта на проводах не будет.
Олег. у меня такое чувстов что выц не слышите о чем вам говорят и не читаете то что написано)
в первом посту я четко написал как и что плюсуется при том или ином подключении!
по моему куда еще понятней!
а вы спрашиваете о том о чем написано в самом начале) и кто кого не понимает?)
я сейчас специально для вас перенесу дубль сюда-

Параллельное соединение
-при таком соединении напряжение в цепи соединенных параллельно солнечных батарей будет равно напряжению одной солнечной батареи. Т.е. Если вы соединяете 2 батареи у которых при нагрузке напряжение равно 17,5 вольт то на контроллер будет подано напряжение 17,5 вольт.
Ток при таком соединении суммируется ! Т.е. если 2 батареи при хорошей солнечной освещенности выдают по 7А каждая, то суммарный ток на контроллер будет 14А.

в вашем случае это будет примерно так- 5А+5А+7А = 17А (примерно). для того что бы знатть точно. нужэны параметры
а то что напряжение разное- это не проблема. и не настолько оно велико. контролер выравнит все и пустит на акб нужные параметры зарядки!
соберите схему на коленках и посмотрите что получится. если вас смущает крепить сразу!

по поводу человека и его 40вт панели-
40вт в пик- понимаете это?
акб к примеру 100А т.е 1200вт в час
вот и получается что его панель на крыше тупо подпитывает акб. если он только не ошибся с модуляцией настроек и не жахает на акб большой ток и напряжение. в этом случае его автомобильный акб с жидким электролитом будет кипеть и придется ему регулярно подливать дистилятор. если его акб обслуживаемый!
вот такая жесткая но правда с жидкими электролитами и не правильными настройками ШИМ контролеров!

но это уже другая тема! жаль что мало кто сознается в том что акб кипят и он регулярно подливает водичку

с уважением БМС

Схемы и способы подключения солнечных батарей: как правильно провести монтаж солнечной панели

Альтернативный источник энергии на базе солнечных батарей – отличный вариант для организации независимого энергоснабжения. Он обеспечит высокую энергетическую эффективность не только в знойные деньки, но и в пасмурную погоду. Было бы неплохо иметь такое устройство у себя дома, не так ли?

Для этого нужно лишь грамотно подобрать технические компоненты и произвести монтаж. Сделать это может каждый, зная схемы и способы подключения солнечных батарей. Мы расскажем, как сооружается производительная система, перерабатывающая “зеленую энергию” в электричество, необходимое для питания бытового оборудования.

Кроме того, вы узнаете, как выбрать место для установки гелиопанелей и как совместить их со стационарной электросетью. Полезные советы и важные рекомендации окажут действенную помощь домашним мастерам. Для упрощения восприятия приведены тематические фотографии, схемы и видеоролики.

Устройство солнечной батареи

Планируя выполнить подключение солнечных панелей собственноручно, необходимо иметь представление, из каких элементов состоит система.

Солнечные панели состоят из комплекта батарей на фотоэлектрических элементах, основное предназначение которых – преобразовывать солнечную энергию в электрическую. Сила тока системы зависит от интенсивности света: чем ярче излучения, тем больший ток генерируется.

Основными конструктивными элементами системы выступают:

  • Солнечная батарея – преобразует солнечный свет в электрическую энергию.
  • Аккумулятор – химический источник тока, который накапливает сгенерированную электроэнергию.
  • Контроллер заряда – следит за напряжением аккумуляторов.
  • Инвертор, преобразующий постоянное электрическое напряжение аккумуляторной батареи в переменное 220В, которое необходимо для функционирования системы освещения и работы бытовой техники.
  • Предохранители, устанавливаемые между всеми элементами системы и защищающие систему от короткого замыкания.
  • Комплект коннекторов стандарта МС4.

Помимо основного предназначения контроллера – следить за напряжением аккумуляторов, устройство по мере необходимости отключает те или иные элементы. Если показатель на клеммах аккумулятора в дневное время достигает отметки в 14 Вольт, что указывает на их перезарядку, контроллер прерывает зарядку.

В ночной период, когда показатель напряжения аккумуляторов достигает предельно низкой отметки в 11 Вольт, контроллер останавливает работу электростанции.

Где лучше установить панели?

Первое, что необходимо сделать перед тем, как установить и подключить солнечную батарею – определиться с местом размещения агрегата.

Солнечные батареи можно размещать практически в любой хорошо освещаемой точке:

  • на крыше загородного коттеджа;
  • на балконе многоквартирного дома;
  • на прилегающей к дому территории.

Главное – обеспечить необходимые условия для получения максимальной выработки электроэнергии. Одним из таковых является ориентация и угол наклона относительно горизонта. Так светопоглощающая поверхность агрегата должна быть направлена в южную сторону.

В идеале солнечные лучи должны падать на нее под 90°. Чтобы добиться этого эффекта, необходимо подобрать оптимальный угол уклона в зависимости от климатических условий региона. Для каждого региона этот показатель свой.

К примеру, в московском регионе угол наклона размещения поверхности солнечных батарей для летних месяцев составляет 15-20°, а в зимние месяцы изменяется до отметки в 60-70°.