Падение напряжения на светодиодах разных цветов

Toyota Camry 2.4 2005г. › Бортжурнал › Измеряем прямое падение напряжения на неизвестном светодиоде

В целом данная тема уже рассматривалась достаточно часто.

Следует помнить, что для нормальной работы светодиодов важен ток потребления… и, по сути, не важно само напряжения питания — оно может быть и 5 вольт и 25 и 1025… главное, чтобы было ограничение по току потребления светодиода.

А вот падение напряжения надо знать чтобы понимать «сколько останется» напряжения после светодиода…

Например, падение напряжения на светодиоде — 4 вольта, тогда при подаче на него питания в 7 вольт (при наличии ограничения тока до рабочего параметра) светодиод загорится, но уже после него в цепи будет 3 вольта — 7-4=3

Последовательно соединенные светодиоды с таким падением напряжения в количестве 2-х штук (при таком напряжении питания — в 7 вольт) светиться уже не будут, поскольку общая сумма падения напряжения будет больше, чем сам источник питания.

Как правило у каждого светодиода есть свои паспортные характеристики, где и можно узнать как прямое падение напряжения, так и рабочий ток потребления…

Однако иногда в наличии просто имеется какая то куча светодиодов «без каких либо характеристик»… вот и надо как то выяснить те или иные параметры.

Для проверки можно использовать «мультиметр» для проверки полупроводников.
Типа такого с Али

Он вполне может показать прямое падение маломощного светодиода и еще покажет расположение анода и катода.

Кстати, мощные светодиоды он не тестирует…
По крайней мере «орлиный глаз» оказался ему не по зубам — он определял его как конденсатор.

Также прямое падение напряжение на светодиоде можно померить обычным мультиметром.
Включаем схему:

1. плюс питания — токоограничивающий резистор — анод светодиода
2. минус питания — на катод светодиода
3. к ножкам светодиода подключаем мультиметр в режиме измерения напряжения.

Подаем постоянное напряжение питания с нуля (можно и сразу подать воль от 4-х для маломощных светодиодов).
Постепенно увеличиваем напряжение питания и следим за показаниями мультиметра.
Как только показания мультиметра перестанут сильно увеличиваться в не зависимости от увеличения напряжения питания, это и будет значение прямого падения напряжения на светодиоде.

Вот пример: я на маломощный светодиод подаю через токоограничивающий резистор в 1,5кОма напряжение 9 вольт, на на самом светодиоде при этом присутствует 1,9 вольт.
1,9 вольт — это и есть прямое падение напряжения данного светодиода.

Или на примере более мощного светодиода «орлиный глаз»:
Через тот же резистор 1,5 кОма (имеющийся резистор в 33 Ом можно проигнорировать) я подаю 14 вольт.
Однако на самом светодиоде наблюдаем напряжение не более 8 вольт:

При подаче напряжения питания 12 вольт, мой светодиод «орлиный глаз» потребляет 72мА, при 13 вольтах — 90мА и начинает сильно греться — на корпусе светодиода я замерил 62 градуса после чего прекратил подачу напряжения питания.
Так что токоограничение для данного светодиода надо делать где то в пределах 70мА и резистор помощнее надо ставить или использовать регулятор тока.

А вот видео по измерениям…

Разбор корпуса светодиода «орлиный глаз» я рассматривал в статье — Вскрытие «Орлиного глаза» в блоге.

Как узнать напряжение питания светодиода

Светодиод — полупроводниковый прибор, который преобразует прямой электрический ток в световое излучение. Английское название LED расшифровывается, как light emitting diode. Если раньше светодиоды представляли интерес только для узкого круга ученых, то сейчас их активно используют оформители для украшения помещений и разработки концепции светодизайна. В отличие от ламп накаливания, светодиоды преобразуют ток в световое излучение с минимальными потерями, то есть LED-лампы практически не нагреваются при наличии хорошего теплоотвода.

Если еще в середине прошлого века ученым удавалось получить мизерный КПД только в 2%, то сейчас светодиоды в среднем выдают КПД 35-45%, хотя встречаются и настоящие рекордсмены, у которых КПД достигает фантастических 60%. Светодиоды могут работать на протяжении длительного времени. Приборы относятся к низковольтным, то есть безопасным для человека. Основное эстетическое достоинство светодиодов — свет, излучаемый им, «чистый», так как лежит в узком диапазоне спектра. У приборов есть несколько основных ТХ: мощность, сила потребляемого тока, цветовая температура и напряжение. О том, как определить напряжение и поговорим дальше.

Как определить напряжение питания светодиодов

Источник питания для светодиодов — основная комплектующая деталь, которая преобразует сетевое напряжение. Как известно светодиоды питаются током, но напряжение, которое подается в данном случае, значения не имеет. Это может быть как 12 В, так и 1000 В. Главное для светодиода — это ток. При его нехватке свет лампочек тускнеет, а при переизбытке они начинают нагреваться, и даже теплоотвод не всегда может справиться. Если простая лампа накаливания «самостоятельно» выбирает для себя ток, то светодиод сам выбирает напряжение. Если светодиод требует напряжение в 5 В, а блок питания подает ему, к примеру, 5 В, то высока вероятность того, что светодиод просто сгорит. Дело в том, что возникает «конфликт» между источником питания и светодиодом. Первый пытается честно выдать 5 В, а второй старается взять только положенные для себя 3 В. Светодиод может «просадить» напряжение до нужного, если блок питания слабенький, но чаще в этой схватке все же побеждает хаос и разрушение и светодиод перегорает.

Чтобы подобных проблем не возникло, необходимо стабилизировать ток. Самый простой вариант — резистор. Он подключается последовательно со светодиодами. Резистор помогает ослабить источник питания и заставить его выдавать светодиоду нужное напряжение. Если речь идет о мощных светодиодах, то слабенькому резистору с ними не справиться. В этой ситуации потребуется полноценный стабилизатор.

Расчет резистора провести довольно просто. Для вычислений необходимо знать напряжение питания, падение напряжения и ток. От значения напряжения питания отнимают падение напряжения, а получившуюся величину делят на ток. Теперь остается только выбрать резистор с ближайшим стандартным сопротивлением. Некоторые предпочитают вообще убирать из формулы падение напряжения, так как его точное значение не всегда известно, но ниже приведены два способа для определения этой величины.

Как узнать падение напряжения на светодиоде

Падение напряжения на светодиоде — это одна из его важных характеристик. С помощью падения напряжения можно узнать, на сколько вольт уменьшится напряжение во время прохождения через один светодиод, если соединение было последовательным. К примеру, если падение напряжения на светодиоде 2,3 вольта, а напряжение питания 24 вольт, то после первой лампочки остальным останется 24—2,3=21,7 вольт. После прохождения второго светодиода значение станет еще меньше: 21,7—2,3=19,4 вольт.

Подсчеты можно проводить до тех пор, пока полученное значение не будет меньше падения напряжения, то есть на следующий диод его уже не хватит. После проведения нехитрых подсчетов можно прийти к выводу, что запитать при таких условиях можно только 10 светодиодов, а 11-й сиротливо останется в сторонке. Если в ленте их больше, то на остальных уже не хватит. Падение напряжения можно измерить двумя способами: практическим и теоретическим.

Теоретический метод

Для теоретического метода определения падения напряжения в светодиоде необходимы таблицы. Изменения этой характеристики напрямую связаны с его цветом. Для изготовления светодиодов разных цветов используются разные полупроводниковые материалы. Здесь производители во мнении не сходятся, а единого стандарта нет, поэтому каждый делает из того, из чего считает нужным. Падение напряжения во многом определяется химическим составом полупроводника. Точных значений для светодиодов одного цвета нет, но существует определенный диапазон, в котором они варьируются. К примеру, для синих и белых 3—3,6 В, для красных 1,8—2В, для жёлтых и зелёных 2—2,4В. Эти данные можно посмотреть по даташиту.

У белых светодиодов показатель самый высокий, а в хвосте списке расположились красные. Хотя данные и приблизительные, этого обычно достаточно для проведения расчетов. Если светодиоды достались по наследству без документации, то можно поискать в интернете похожие, а после скачать документацию для них. Такой метод, к сожалению, совершенно ненадежен, так как под идентичными корпусами может скрываться разная начинка, соответственно и характеристики у нее будут другими.

Практический метод

В реальности проще это падение напряжения на светодиоде измерить вольтметром в схеме, чем выискивать в графиках и таблицах. Не нужно объяснять, что вольтметр должен быть включен на постоянное напряжение, если через диод течет постоянный ток, а щупы должны касаться анода и катода диода. Если возникают трудности с идентификацией, то отличить их легко. Катод короче анода, что видно невооруженным глазом.

Итоги: что делать, если напряжение светодиода упало

Падение напряжения может сильно колебаться даже у одинаковых светодиодов от одного производителя в рамках одной партии. Этот показатель меняется по мере изнашивания светодиода. Также эта характеристика зависит от температуры. Сильный нагрев сокращает срок службы светодиода, поэтому необходим хороший теплоотвод и стабилизатор.

Все о светодиодах. Как это работает?

Что такое светодиод?

Светодиоды образуют неотъемлемую часть в современной электроники, простые показатели для оптических коммуникационных устройств. Светоизлучающие диоды используют свойства р-п перехода и испускают фотоны, когда ток в прямом направлении. Светодиоды специально излучают свет, когда потенциалы приложены к аноду и катоду.

История светодиодов начинается с 1907 года, когда капитан Генри Джозефа наблюдал особенности электро-люминесценции карбида кремния. Первый светодиод был разработан в 1962 году. Он был разработан Холоньяк, работал в General Electric (GE). Это был GaAsP устройства. Первая коммерческая версия светодиодов пришли на рынок в 1960-х годов.

Изготовление светодиодной технологии произвела бум в 1970-е годы с введением арсенида галлия алюминия (GaAlAs). Эти светодиоды высокой яркости и во много раз ярче, чем старая рассеянного типа. Синие и белые светодиоды были введены в 1990 году, в котором используется индия нитрида галлия (InGaN) в качестве полупроводника. Белый светодиод содержит неорганический фосфор. Когда голубой свет внутри светодиода попадает на люминофор, он излучает белый свет.

Что делает светодиод идеальным?

Светодиоды широко используются в электронных схемах из-за его преимущества по сравнению с лампами. Некоторые важные особенностями являются:

  • Светодиоды заключены в пластик, так что они могут выдерживать механические удары.
  • В отличие от ламп, светодиоды не выделяют тепло и потери мощности при нагреве практически отсутствует.
  • Светодиоды требуют очень низкий ток и напряжений обычно 20 мА при 1,8 вольта. Так что это идеально в схемах с батарейками.
Читайте также  Новый настольный принтер на kickstarter

Что находится внутри светодиода?

Внутри корпуса LED, есть две клеммы связаны маленький чип изготовлен из галлия соединения. Этот материал обладает свойством излучения фотонов при переходе P-N смещен в прямом. Различные цвета создаются выбиванием основного материала из другого веществама.

Внутри светодиода

Светодиодная технология

Яркость является важным аспектом LED. Глаз человека имеет максимальную чувствительность к свету около 550 нм в области желто — зеленой части видимого спектра. Именно поэтому зеленый светодиод излучается ярче, чем красный светодиод, хотя оба используют тот же ток. Важные параметры светодиодов являются:

  • Световой поток
    Указывает на энергии света, исходящего от светодиодов. Он измеряется в Люмен (лм) или Милли просвет (MLM)
  • Световая интенсивность
    светового потока, охватывающий большую площадь является силой света.Он определяется как Кандела (кд) или милли Кандела (MCD) Яркость светодиода напрямую связана с его силой света.
  • Светоотдача
    Это испускаемых относительной световой энергии к потребляемой мощности.Она измеряется в терминах люмен на ватт (лм Вт).

Прямой ток, прямое напряжение, угол обзора и скорость реагирования это факторы, влияющие на яркость и эффективность светодиодов. Прямой ток (I) является ток, протекающий через светодиод, когда он смещен в прямом направлении и он должен быть ограничен от 10 до 30 миллиампер, если выше то светодиоды будут уничтожены.

Угол обзора составляет от — угол оси, при котором световая интенсивность падения до половины осевого значения. Вот почему индикатор показывает больше яркости в полном объеме состоянии. Высокие яркие светодиоды имеют узкий угол обзора, так что свет фокусируется в пучок. Рабочее напряжение (V) является падение напряжения на светодиоде. Падение напряжения в диапазоне от 1,8 В до 2,6 вольт для обычных светодиодов, но в голубой и белый он будет идти до 5 вольт. Скорость отклика представляет, как быстро светодиод включается и выключается. Это очень важный фактор, если светодиоды используются в системах связи.

Требуется ли балластный резистор?

Светодиоды всегда подключены к источнику питания через резистор. Этот резистор называют «балластный резистор», которая защищает диод от повреждений, вызванных избыточным током. Он регулирует прямой тока на светодиод для безопасного предела и защищает ее от жжения.

Номинал резистора определяет прямой тока и, следовательно, яркость светодиодов. Простое уравнение Vs — Vf — используется для выбора резистора. Vs представляет входное напряжения цепи, Vf прямое падение напряжения светодиода(ов) при допустимом токе через светодиод. Полученное значение будет в Омах. Лучше ограничить ток до безопасного предела 20 мА.

Приведенная ниже таблица показывает прямое падение напряжения на светодиоде.

Красный Оранжевый Желтый Зеленый Синий Белый
1,8 В 2 V 2,1 В 2,2 В 3,6 В 3,6 В

Через типичный светодиод может пройти 30 -40 мА безопасный ток через него .Номинальный ток, чтобы дать достаточную яркость, стандартный красный светодиод 20 мА. Но это может быть 40 мА для синего и белого светодиода. Ограничение тока балластным резистором защищает диод от избыточного тока, протекающего через него. Значение балластного резистора должны быть тщательно отобраны, чтобы предотвратить повреждение светодиодов, а также получить достаточную яркость при токе 20 мА. Следующее уравнение объясняет, как выбирать балластный резистор.

R = V / I

Где R — является значение сопротивления в Ом, V — является входное напряжение в цепи, и I — это допустимый ток через светодиод в амперах. Для типичного красного светодиода, прямое падение напряжения составляет 1,8 вольта. Таким образом, если напряжение питания 12 В (Vs), падение напряжения на светодиод 1,8 В (V) и допустимый ток составляет 20 мА (Если), то значение балластного резистора будет

Vs — Vf / Если = 12 — 1,8 / 20 мА = 10,2 / 0,02 = 510 Ом.

Но если 510 Ом резистор не доступен то можно подобрать ближайший, например 470 Ом резистор может быть использован даже если ток через светодиод слегка увеличивается. Но рекомендуется использовать 1 K резистор для увеличения срока службы светодиодов, хотя там будет небольшое снижение яркости.

Ниже готова арифметические для выбора ограничительного резистора для различных версий светодиодов при различных напряжениях.

Напряжение Красный Оранжевый Желтый Зеленый Синий Белый
12 V 470 Ω 470 Ω 470 Ω 470 Ω 390 Ω 390 Ω
9 V 330 Ω 330 Ω 330 Ω 330 Ω 270 Ω 270 Ω
6 V 180 Ω 180 Ω 180 Ω 180 Ω 120 Ω 120 Ω
5 V 180 Ω 150 Ω 150 Ω 150 Ω 68 Ω 68 Ω
3 V 56 Ω 47 Ω 47 Ω 33 Ω

С добавлением других цветов

Светодиод, который может дать разные цвета полезно в некоторых приложениях. Например, светодиоды могут указывать на все системы OK, когда он становится зеленой, и неисправный, когда он становится красной. Светодиоды, которые могут производить два цвета называются Bicolour (Биколор) светодиодов.

Двухцветный светодиодный охватывает два светодиода (обычно красный и зеленый) в общем пакете. Два кристалла установлены на двух клеммах. Двухцветный светодиодный дает красный цвет, если ток проходит в одном направлении и становится зеленым, когда направление тока меняется на противоположное.

Триколор и многоцветные светодиоды , также доступны, которые имеют два или более кристаллов, заключенных в общий корпус. Трехцветный светодиодный имеет два анода для красного и зеленого кристалла и общим катодом. Таким образом, он излучает красный и зеленый цвета в зависимости от анода, в котором имеется ток. Если оба анода подключены, то светодиоды испускают свет и получается желтый цвет. Общий анод и отдельные светодиоды типа катода, также имеются.

Двухцветный индикатор светится разными цветами , начиная от зеленого через желтый, оранжевый и красный основной на ток, протекающий через их аноды, выбрав подходящий резистор для ограничения тока анода. Многоцветные светодиоды содержат более двух чипов, обычно красного, зеленого и синего чипы-в одном корпусе. Мигание разными цветами светодиодов, теперь доступны с двумя выводами. Это дает радугу цвета, которые являются весьма привлекательным.

Инфракрасный диод — источник Невидимого света

ИК диоды широко используются в удаленном управлении (пульт ДУ). Инфракрасные диоды на самом деле испускают нормальный свет с определенным цветом, который не чувствителен к человеческим глазом, потому что его длина волны 950 нм, ниже видимого спектра. Многие источники, такие как солнце, лампы, даже человеческое тело испускает инфракрасные лучи. Поэтому необходимо, чтобы модулировать излучение от ИК-диода, чтобы использовать его в электронном приложении, чтобы предотвратить ложное срабатывание. Модуляции делает сигнал от ИК-светодиода значительно выше чем шум. Инфракрасные диоды есть в корпусе, которые являются непрозрачным для видимого света, но прозрачна для инфракрасного. ИК-светодиоды широко используются в системах управления.

Инфракрасные диоды

Фотодиод — Он может увидеть свет

Фотодиод генерирует ток, когда его р-п перехода получает фотоны видимого или инфракрасного света. Основная работа фотодиода зависит от поглощения фотонов в полупроводниковом материале. Фото-генерируемых носителей разделены электрическим полем, и в результате фототок пропорционален падающему свету. Скорость, с которой носители движутся в области обеднения связана с силой электрического поля по всему региону и подвижность носителей.

Фотон, который поглощается полупроводником в области обеднения приведет к образованию электронно-дырочной проводимости. Дырки и электроны будут транспортироваться под действием электрического поля к краям области обеднения. После носителей покидают область истощения они идут к клеммам фотодиода, чтобы сформировать фото-ток во внешней цепи. Время отклика фотодиода, как правило, 250 нано секунд .

Фотодиоды

Лазерные диоды

Лазерный диод похож на обычные прозрачные светодиодные, но производит Laserwith высокой интенсивности. В лазерном луче число атомов вибрируют в такой цикле, что всё испускаемое излучение одной длины волны в фазе друг с другом. Лазерный свет является монохроматическим и проходит в виде узкого пучка. Луч типичных лазерных диодов составляет 4 мм х 0,6 мм, которая расширяется только до 120 мм на расстоянии 15 метров.

Лазерный диод может включаться и выключаться на более высоких частотах даже выше, чем 1 ГГц. Так что это весьма полезно в телекоммуникационных системах.Поскольку лазер генерирует тепло на поражение тканей тела, он используется в хирургии, чтобы исцелить поражения в очень чувствительных частей, как сетчатки, головного мозга и т.д. лазерные диоды являются важными компонентами в проигрывателях компакт-дисков, чтобы получить данные, записанные в компакт-дисках.

Падение напряжения на светодиодах разных цветов

Дурацкий вопрос, наверное, но лучше задать, чем потом облажаться.

Есть светодиоды. Пусть на каждом падение напряжения 1.5В.

Берем баратеку на 4.5В и включаем последовательно между клеммами батарии 5 (пять) светодиодов.

Так как падение напряжения на одном 1.5В, то на первых трех оно уже составить 4.5В и оставшимся двум уже не хватит напряжения. А нет напряжеиня нет и тока, нет тока — нет свечения.

Но ведь не может быть чтобы в одной части провода есть ток, а в другой нет. Получается, что тока просто не будет! Следовательно, ни один светодиод светить в такой цепи не будет.

_________________
Д о л о й и д и о т и з м !
На вопросы по заказам на форуме и в личке НЕ отвечаю! Пишите письма.

_________________
Некоторые люди убеждены, что пробились наверх, хотя на самом деле они просто туда всплыли.

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

_________________
Если долго мучиться, что-нибудь. сломается.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Эмм. да, можно было задать и там. Ну да ладно.

Лампочки — это совсем не то! Лампочки будут светить! Вообще с ними все сложно с этими лампочками (R сильно зависит от T, на сколько я знаю).

И если не совсем так, то как именно?

_________________
Д о л о й и д и о т и з м !
На вопросы по заказам на форуме и в личке НЕ отвечаю! Пишите письма.

При замене в современном автомобиле электромеханических реле на интеллектуальные силовые ключи PROFET производства Infineon необходимо учитывать особенности их коммутации по сравнению с «сухими контактами» реле, а также особенности управления с их помощью различными типами нагрузок.

Читайте также  Как рассчитать время заряда конденсатора?

Вебинар посвящен проектированию и интеграции встроенных и внешних антенн Quectel для сотовых модемов, устройств навигации и передачи данных 2,4 ГГц. На вебинаре вы познакомитесь с продуктовой линейкой и способами решения проблем проектирования. В программе: выбор типа антенны; ключевые проблемы, влияющие на эффективность работы антенны; требования к сертификации ОТА; практическое измерение параметров антенн.

I=U/(R1+R2+..+RN)
но ток будет всегда, только маааленький, если R большое

Диод, на сколько я знаю, фигня не линейная и у нее R как такового нет. а есть воль-амперная характеристика, но пир I=0 R тоже 0. Что подтверждает мой вывод.

Вот тебе и простенький маленький вопрос — никакой ясности.

_________________
Д о л о й и д и о т и з м !
На вопросы по заказам на форуме и в личке НЕ отвечаю! Пишите письма.

_________________
Д о л о й и д и о т и з м !
На вопросы по заказам на форуме и в личке НЕ отвечаю! Пишите письма.

На каждом светодиоде будет висеть 0,9В, скорее всего, светица они не будут. Ток идти, естественно будет, но его не хватит. Падение напряжение (1,5в), про которое вы говорите, возникает на светодиоде, когда через него проходит номинальный ток
На практике нафиг вам ВАХ и прочая ерунда? Есть номинальное напряжение светика, вот и рассчитывайте схему так, чтобы это напряжение на нём и оказалось. В вашем случае надо батарейку на 7,5в.

_________________
Если долго мучиться, что-нибудь. сломается.

Последний раз редактировалось Паятель Вт июл 01, 2008 16:49:30, всего редактировалось 1 раз.

_________________
Некоторые люди убеждены, что пробились наверх, хотя на самом деле они просто туда всплыли.

Хоть бросьте меня собакм, но не соглашусь.
Ориентироваться следует на номинальный ток через переход, при котором светодиод номинально светится.
А какой при этом будет напряжение -глубоко безразлично.
Другое дело, что не при всяком прямом напряжении можно этот ток обеспечить. Поэтому надо повышать и повышать напряжение, контролируя ток цепи. А когда он достигнет номинала, заявленного производителем, вся цепочка светодиодов классно засверкает.
Если интересно, то можно померять падение напряжения на каждом светодиоде. Оно будет различным в определенных пределах.
Яркость тоже при таком токе может быть различной. Но это все зависит от технологии. Если бы все светодиоды делались в едином технологическом порыве ( как транзисторы в микросхеме), то такого почти бы не наблюдалось, а так -разные смены, разное качество песка и пр..

Так теория нам и подсказывает, — ребята, ориентируйтесь на ток через переход, поскольку вы иметет дело с токовым прибором.
Только ток. А поскольку у вас нет ни параметров светодиода, ни формул, то какая тут теория,- просто померяйте ток и подкрутите чего нибудь для того, чтобы он стал номинальным. И будет вам свет.

Дурацкий вопрос, наверное, но лучше задать, чем потом облажаться.

Есть светодиоды. Пусть на каждом падение напряжения 1.5В.

Берем баратеку на 4.5В и включаем последовательно между клеммами батарии 5 (пять) светодиодов.

Так как падение напряжения на одном 1.5В, то на первых трех оно уже составить 4.5В и оставшимся двум уже не хватит напряжения. А нет напряжеиня нет и тока, нет тока — нет свечения.

Но ведь не может быть чтобы в одной части провода есть ток, а в другой нет. Получается, что тока просто не будет! Следовательно, ни один светодиод светить в такой цепи не будет.

Берем батарейку на 3 Вольта. И так, как падение на первых трех будет 1,5*3=4,5 вольта, то остальные два должны восполнить дефицит напряжения и прямо обязаны генерировать напряжение.
Кто вам сказал, что на первых трех будет падать 1,5 вольта?
Все напряжение батарейки разделится между светодиодами в соответствии с падением напряжения на каждом.
Другое дело, что ни один светодиод светится не будет, потому что свечение начнется при определенном значение тока через переход, как это вам пояснили с помощью графика.
Следовательно, нужно поывшать напряжение источника, увеличивая тоук цепи, пока не засветятся..

падение в 1,5 вольта вы можете наблюдать при номинальном токе через светодиод, что связанно с особенностями прибора ( то есть с величиной контактной разности потенциалов, с омическим сопротивлением и пр)

_________________
Д о л о й и д и о т и з м !
На вопросы по заказам на форуме и в личке НЕ отвечаю! Пишите письма.

Во. Маладса..
А ещё луцше-взять отдельно взятый кингбрайт и не поленицца самому снять засисимоть тока через него от приложенного напряжения. Не забывая при этом наблюдать за светимостью девайсика.
Кстати, можете потом использовать его в качестве не только индикатора, но и в качестве источника образцового напряжения, что тоже приятно.

Дело в том, что в полупроводниковом переходе существует так называемый потенциальный барьер, не к ночи будь он упомянут.
То есть в самом переходе основные носители рекомбинуют и проводник p-типа в этом слое заряжен отрицательно, а проводник n-типа наоборот, имеет избыток дырок, то есть у него будет положительный потенциал.
Сумарный барьерный потенциал будет препьятствовать движению основных носителей из противоположных областей. И для включения перехода в прямом направлении нужно к переходу приложить потенциал, превышающий эту контактную разность потенциалов.
Величина этой контактной разности различна для разных типов переходов. Так, для кремния она равна прибл. 0,65 В, для германия 0, 3, для диодов Шотки прибл. такая же.
А вот для светодиодов она равна 1,2 в или даже 1,4..1,5 вольт.
Дело в том, что для производства светодиодов используется арсенид галия, фосфид галия и прочая несьедобная дрянь. И у этой фигни потенциал перехода гораздо выше и составляет именно ту величину, которую надо преодолеть для включения светодиода.
При рекомбинации носителей в переходе образуется не тепло, как в обычном диоде (фононы), а фотоны, то есть свет. И в зависимости от материала, спект его попадает в тот участок, который нужен _ в инфракрасный, в красный, зеленый или серо-буро-малиновый..

О светодиодах

Запись дневника создана пользователем Лифтанутый, 21.02.12
Просмотров: 16.321, Комментариев: 12

Эпоха массового внедрения светодиодов в жизнь наступила незаметно. Они быстро внедряются в повседневную жизнь. Освещение, бытовая техника, реклама, автомобили, а теперь еще и высокотехнологичное растениеводство — это неполный перечень сфер их использования.

Я, как дачник, заинтересовался последней сферой и здесь пытаюсь популярно сообщить полезную информацию о светодиодах для растений.

Основные преимущества светодиодного освещения

• Экономия электроэнергии на освещении до 10 раз;
• Долговечность (срок в режиме непрерывного свечения службы не менее 5 лет);
• Отсутствие необходимости проведения дорогостоящих работ по обслуживанию светильников;
• Комфортное освещение с заданным спектром и без вредных пульсаций
• Простое решение для обеспечения аварийного режима освещения;
• Эстетически привлекательное решение при небольших затратах;
• Безопасность эксплуатации;
• Высокая устойчивость к вибрациям;

В освещении — светодиоды следующая, после электроламп, ступень развития. Но если с лампочкой мы уверенно управляемся, то со светодиодами знакомы далеко не все. Предлагаю устранить сей пробел – это пригодится в будущем.
Светодиоды – это большая группа высокотехнологичных изделий микроэлектроники, различающихся не только областью применения, но и по цветовыми характеристиками, размерами, внутренним устройством, мощностью светового потока и другими параметрами. Если разбить слово «светодиод» на составляющие, то мы получим «свето» и «диод». А диод, как мы знаем, может пропускать ток только в одном направлении(от + к -, от анода к катоду), широко используется в электронике,как выпрямитель переменного тока.

Светодиод — это полупроводниковый кристалл в корпусе или без корпуса с двумя выводами. Это могут быть проволочные вывода или контактные площадки для поверхностного монтажа. Когда через кристалл светодиода проходит постоянный электрический ток – он излучает свет (эмитирует). В выпрямительных диодах другие кристаллы, которые не светятся.

Для упрощения можно сказать, что есть две группы светодиодов: маломощные индикаторные и мощные сверх яркие.

Самые широко распространённые светодиоды – это индикаторные, они известны нам уже несколько десятков лет. Они есть в любом устройстве бытовой техники, приборах контроля и диагностики. Они могут быть любой формы, и цвета, но объединяет их небольшой номинальный ток, не превышающий 20мА. Падение напряжения на них не превышает 3В.

Если перемножить напряжение на силу тока, мы получаем мощность. Для индикаторных она не превышает 3В х 0,02 = 0,06Ватт. Это оправдывает их назначение – не освещать, а информировать.

Нам сегодня интересны другие, мощные и сверхяркие светодиоды, которые можно использовать для освещения, в том числе растений.
Они появились много позднее индикаторных, но сегодня уже стали относительно более доступными, благодаря наличию ebay.com и множества интернет-магазинов.
Они рекламируются под мощностью 1 и даже 3 ватта. Все, что мощнее 3Вт, это уже не единичные кристаллы, а собранные вместе, под одно питание, кристаллы 1Вт — светодиодные матрицы.
Пока нет системной классификации мощных светодиодов. Каждый производитель обозначает и маркирует их по своему, поэтому из маркировки понять что покупаешь – сплошная лотерея. Но их группируют по главному параметру — номинальному току.
У мощных светодиодов он бывает от 300 до 700мА и выше. Напряжение для светодиода — второстепенный параметр — главное ток!

Падение напряжения на мощных светодиодах определяется спектральной характеристикой кристалла и обычно составляет 1,8-2,0В для красных и 3,0-3,5В для синих, зеленых и белых.
Следует отметить, что светодиоды бывают монохромные, которые не имеют люминофора (прозрачные) и светят одним цветом -синим, красным) и белые, которые изготовлены на базе монохромных и светят БЕЛЫМ ( всеми цветами радуги), за счет люминофора.

Для того, чтобы включить светодиод, нужен источник постоянного напряжения — аккумулятор, батарейка, адаптер и пр. Напряжения светодиод возьмет столько, сколько ему нужно (от типа кристалла), а вот тока — сколько дадите. То есть если ваш источник питания может выдать 5 ампер — светодиод будет брать этот ток, но через какое-то время обязательно сгорит.

Читайте также  Как рассчитать шунт для амперметра?

Поэтому ток светодиода нужно обязательно ограничивать. Простейший элемент ограничения тока – резистор, который включается последовательно и «гасит» избыток напряжения, преобразуя проходящий ток в тепло.
Например вам нужно сделать индикатор наличия напряжения для автомобиля на светодиоде. Зная, что падение напряжения на индикаторном светодиоде 3в (для зеленых), вычисляем, что нам нужно «погасить лишнее напряжение» бортовой сети 12-3=9В. Применив закон Ома, разделим 9Вольт на 0,02А (20мА –ток светодиода) и получим сопротивление гасящего резистора 45О Ом.
Мощные светодиоды так подключать тоже можно, но неудобно – нужны мощные резисторы, ток ведь большой! Эти резисторы называют гасящими, они резко снижают КПД светильника в целом. Поэтому для мощных светодиодов выпускаются особые источники питания — которые непрерывно обеспечивают стабильный ток (constant current). Это – драйверы, чисто маркетинговое название — чтобы не путать их с блоками питания — источниками напряжения (constant voltage).
Исправный драйвер, а это довольно сложное электронное устройство — ни при каких условиях не выдаст больше тока, чем он рассчитан — как бы вы не подключали диоды. Драйвер отличить от обычного источника напряжения можно только по маркировке – внешне они идентичны.
В магазинах теперь продают множество светодиодных светильников, имеющих цоколь и форму привычных нам ламп накаливания, галогенных и даже люминесцентных трубок. Это объясняется экономическими соображениями и переходным периодом, когда имеются миллионы люстр, бра и пр. — не выбрасывать же их сразу.
Многих смущает высокая стоимость светодиодных ламп. Но считать их чрезмерно дорогими — нет оснований. Они просто — другие. Давайте рассмотрим, почему они такие дорогие. Что такое лампа накаливания? Стеклянная колба с цоколем, внутри которой находится вольфрамовая спираль. По сути своей лампа больше греет, нежели светит.

КПД обычной лампы накаливания не превышает 5%. Есть и другие лампы, но их КПД все равно намного ниже ,чем у светодиодных. Ни о какой экономичности говорить здесь не приходится, именно поэтому во всех странах начали массово запрещать этот источник света. (Когда у нас ввели запрет на выпуск ламп более 100вТ — стали выпускать лампы 99вТ). У светодиодов КПД составляет до 50%.

Итак, из чего состоит светодиодная лампа? Безусловно, один из важнейших компонентов — светодиод. От того, какой он, зависит то, как светит наша лампа.
Главный параметр осветительного светодиода — количество люмен на ватт. У дорогих светодиодов световой поток выше. И что немаловажно — они меньше греются, ведь у них выше КПД. А значит, лампа на дорогих светодиодах будет долговечнее и экономичнее. Дорогие светодиоды – это американские, европейские, корейские и японские бренды. Из Китая приходят похожие лампы, но… только внешне. К ак известно, надёжность составного устройства определяется надежностью самого ненадежного узла. В цоколе лампы еще располагается источник питания (драйвер) и, к сожалению, именно он определяет срок службы всей лампы. На сегодня это самое узкое место светодиодной лампы.
Еще один немаловажный компонент светодиодной лампы — радиатор. Он должен обеспечить хороший теплоотвод. На нем китайцы экономят
Все это имеет место в дешевых китайских поделках, потому что сэкономить они могут только на том, чего не видно (драйверах и радиаторах). . Но положение постепенно исправляется и при желании можно найти достойные экземпляры.
Так что пока на светодиодах можно сэкономить электроэнергию, но не деньги.

О «растительных» светодиодах.

Это мощные и яркие светодиоды монохромного свечения: синие с длиной волны (440нм) и красные (660нм) , которые используются для выращивания рассады или досвечивания овощей, цветов и ягод в любое время года. Их использование основано на теории фотосинтеза, описанной русским ученым Тимирязевым. Их не нужно путать с подобными цветными светодиодами, предназначенными для декоративно — рекламных целей. Поэтому важно запомнить длины волн «растительных» светодиодов в нанометрах 440 и 660.

Именно такие светодиоды, можно назвать правильными для досветки растений. Мы должны познакомиться с китайскими светодиодами, которые в несколько раз дешевле «брендов», недоступных нам.

Сначала уточним, что такое мощность светодиода. Китайцы рекламируют нам одноваттные, трехваттные и т.д. светодиоды. Они вводят нас в заблуждение, потому что мощность определяется только электрическими параметрами питания.
У каждого светодиода существует понятие — номинальный рабочий ток. Номинальный – это самый большой ток, который светодиод выдерживает длительное время без деградации. Только им определяется максимальная мощность светодиода. Если Вы выполните вычисления ниже, то убедитесь, что заявленная мощность

Через китайский светик можно пропустить максимум ток в 700 мА. Это означает, что его максимальная мощность равна произведению напряжения на ток, то есть примерно 3,5 В*0,7А=2,5 ватта. А для красных и того меньше. К тому же у дешевых кристаллов падение напряжения больше, чем у качественных брендовых, и на токе 0,7А может достигать 4-4,5 вольт, а это уже полноценные три ватта. Чем меньше падение напряжения на токе 700 мА, тем экономичнее светодиод – выше его КПД. Однако это ненадежно.

Большинство китайских светодиодов изготавливается в так называемом корпусе «эммитер», у которого диаметр теплоотводящего медного основания, всего около 5,5 мм. Это предъявляет повышенные требования к качеству теплового контакта с радиаторм. Размер кристалла пока невелик, примерно 1,5мм х 1,5мм. Чем больше размер кристалла, тем выше его световой поток, номинальный ток и максимальная мощность.

Я заметил, что при увеличении тока регулятором, глаз совсем не замечает увеличение светового потока, а нагрев да, растет. Поэтому не следует гнаться за большими токами, а подобрать его, чтобы светик не нагревался выше 80 градусов или предпринимать меры для принудительного отвода тепла – вентилятор.

Как определить на сколько вольт светодиод?

Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии. Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?

Теоретический метод

Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр. Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора. Существуют и другие способы тестирования излучающих диодов, о которых подробно написано в данной статье.

Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе. В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи. С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но ,с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов. Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта.

В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт. Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.

Узнать все технические характеристики светодиода можно из интернета. Для этого нужно скачать datasheet на схожую по внешним признакам модель, обязательно такого же цвета свечения, сверить паспортные размеры с действительными и выписать номинальные значения тока и падения напряжения. Следует учитывать, что данная методика весьма приблизительна, так как в одинаковом корпусе могут быть изготовлены светодиоды на 20 мА и на 150 мА с разбросом напряжения до 0,5 вольт.

Практический метод

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке. Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет. В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору.

Текущие показания на экране и будут номинальным прямым напряжением светодиода. Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно воспользоваться «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.